Biophysical Journal, Volume 121

Supplemental information

FiberSim: A flexible open-source model

of myofilament-level contraction

Sarah Kosta, Dylan Colli, Qiang Ye, and Kenneth S. Campbell

FiberSim: a flexible open-source model of myofilamentlevel contraction

Supporting Material

S. Kosta¹, D. Colli¹, Q. Ye², K. S. Campbell¹

cell (1).

¹Department of Physiology, University of Kentucky, Lexington, Kentucky, USA

² Department of Mathematics, University of Kentucky, Lexington, Kentucky, USA

ISOMETRIC TWITCH

Fig. S1 shows an isometric twitch simulation similar to the one presented in https://campbell-muscle-

lab.github.io/FiberSim/pages/demos/getting_started/isometric_twitch/isometric_twitch.ht ml, except that the number of thick filaments is increased from 16 to 196. The simulation takes approximatively 30 minutes to run on a standard Windows laptop, using 3 of the 4 processors (meaning that other tasks still can be performed during the FiberSim simulations). As a comparison, an equivalent simulation performed with MUSICO (with 200 thick filaments) takes approximatively 10 hours on a system with 192 processors (2).

TIME-STEP

Fig. S2 shows four isometric activations similar to the one presented in https://campbellmuscle-lab.github.io/FiberSim/pages/demos/getting_started/isometric_activation/isometr ic_activation.html. Each simulation is run with a different (constant) time-step.

Since the thin filament kinetics model is associated with the fastest rates, this will determine the maximal time-step we should use. The probability for a regulatory unit to activate is calculated using k_{on} . [Ca²⁺], where in the model files from the presented demos k_{on} is equal to 3.10⁷ M⁻¹ s⁻¹. Thus, for an isometric activation such as the one presented in Fig. S2, the activation rate is given by $3.10^7.10^{-4} = 3000 \text{ s}^{-1}$. The chosen time-step Δt should be small enough so that Δt < $\frac{1}{3000}$ ~ 3.10⁻⁴ s. We chose to work with Δt = 10⁻⁴ s in all the simulations presented in this paper. According to Fig. S2, this step size is enough to accurately describe thin and thick filaments activation while keeping a reasonable computational time.

THIN FILAMENT ACTIVATION CURVES

Fig. S3 shows two thin filament activation curves. The active binding sites proportion is calculated at different calcium concentrations in the absence of cross-bridges. When cooperativity is turned off ($y_{coop} = 0$), the Hill coefficient is close to 1. When cooperativity is turned on (y_{coop} = 10), the Hill coefficient increases to ~4. This last curve is in good agreement with the experimental data from (3).

SUPPORTING REFERENCES

- 1. ten Tusscher, K. H., and A. V. Panfilov. 2006. Alternans and spiral breakup in a human ventricular tissue model. *Am J Physiol Heart Circ Physiol*. 291(3):H1088- 1100, doi: 10.1152/ajpheart.00109.2006.
- 2. Mijailovich, S. M., M. Prodanovic, C. Poggesi, M. A. Geeves, and M. Regnier. 2021. Multiscale modeling of twitch contractions in cardiac trabeculae. *J Gen Physiol*. 153(3):e202012604, doi: 10.1085/JGP.202012604.
- 3. Kampourakis, T., Y. B. Sun, and M. Irving. 2016. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments. *Proc Natl Acad Sci U S A*. 113:E3039-E3047, doi: 10.1073/pnas.1602776113.