Supporting Information

p53 regulates skeletal muscle mitophagy and mitochondrial quality control following denervation-induced muscle disuse

Jonathan M. Memme, Ashley N. Oliveira and David A. Hood

Antibody	Manufacturer	Catalog No.	Molecular Weight (kDa)
A-Tublin	Millipore-Sigma	CP06-100UG	60
ATF 5	Abcam	ab60126	31
ATF4 (CREB2)	Santa Cruz Biotechnology	SC-200	50
ATG 7	Sigma-Aldrich	A2856-25uL	75
Bax	Santa Cruz Biotechnology	sc23959	23
Beclin 1	Cell Signaling	3738S	60
Cathepsin D	Santa Cruz Biotechnology	SC-6486	25-37
CHOP	Santa Cruz Biotechnology	SC-7351	27
ClpP	Abcam	ab124822	37
COXI	Abcam	ab14705	39
CPN10	Enzo Life Sciences	ADI-SPA-110	10
H2B	Cell Signalling	2934S	15
LC3 (A/B)	Cell Signaling	4108S	14-16
LonP	Cell Signaling	28020S	100
mtHSP70	Enzo Life Sciences	ADI-SPS-825-F	75
p53	made in ho	use	50
p62 (SQSTM1)	Abcam	ab56416	62
Parkin	Cell Signaling	4211S	52
PGC-1a	Millipore-Sigma	AB3242	100
PINK 1	Santa Cruz Biotechnology	sc-33796	50
TFE3	Sigma-Aldrich	HPA023881-100UL	72
TFEB	Bethyl Laboratories	A303-673A	50
TFEB	My Bio Source	MBS120432	50
YY1(H-10)	Santa Cruz Biotechnology	SC-7341	60

Table S1. List of antibodies

Table S2. List of primer of	oligonucleotide sequences	used in real-time	e quantitative	PCR	analysis
for <i>mus musculus</i>					

Gene	Organism	Forward Primer (5'-3')	Reverse Primer (5'-3')
PGC-1a (Ppargc1a)	Mus musculus	TTC CAC CAA GAG CAA GTA T	CGC TGT CCC ATG AGG TAT T
Atf4	Mus musculus	GCC GGT TTA AGT TGT GTG CT	CTG GAT TCG AGG AAT GTG CT
Atf5	Mus musculus	TGG AGC GGG AGA TCC AGT A	GAC GCT GGA GAC AGA CGT ACA
Tfeb	Mus musculus	AGC TCC AAC CCG AGA AAG AGT TTG	CGT TCA GGT GGC TGC TAG AC
Lc3 (Maplc3a)	Mus musculus	GCT TGC AGC TCA ATG CTA AC	CCT GCG AGG CAT AAA CCA TGT A
p62 (Sqstm1)	Mus musculus	TGT GGT GGG AAC TCG CTA TAA	CAG CGG CTA TGA GAG AAG CTA T
Parkin (Park2)	Mus musculus	GTC TGC AAT TTG GTT TGG AGT A	GCA TCA TGG GAT TGT CTC TTA AA
B2m	Mus musculus	GGT CTT TCT GGT GCT TGT CT	TAT GTT CGG CTT CCC ATT CT
Gapdh	Mus musculus	AAC ACT GAG CAT CTC CCT CA	GTG GGT GCA GCG AAC TTT AT

Figure S1. Nuclear, mitochondrial and cytosolic fraction purity in 7 day control and denervated gastrocnemius muscle.

Figure S2. Nuclear and cytosolic fraction purity in 1 day control and denervated gastrocnemius muscle.

С	Sample	RNA Area	bioA conc. [ng/uL]	rRNA Ratio [28s / 18s]	RNA Integrity Number (RIN)	DV200 (%)
	507 WT 7d CON	724.6	507 ng/uL	2.1	9.0	70%
	507 WT 7d DEN	362.0	253 ng/uL	2.0	9.6	76%
	510 WT 7d CON	220.8	155 ng/uL	2.1	9.3	73%
	510 WT 7d DEN	326.8	229 ng/uL	2.1	9.5	78%
	513 WT 7d CON	273.6	192 ng/uL	2.1	9.0	73%
	513 WT 7d DEN	265.5	186 ng/uL	2.1	9.4	78%
	501 mKO 7d CON	218.8	173 ng/uL	2.1	9.5	75%
	501 mKO 7d DEN	448.2	354 ng/uL	2.1	9.9	81%
	505 mKO 7d CON	235.2	186 ng/uL	2.0	9.6	74%
	505 mKO 7d DEN	527.8	417 ng/uL	2.0	9.9	81%
	506 mKO 7d CON	313.1	247 ng/uL	2.2	9.7	71%
	506 mKO 7d DEN	859.9	679 ng/uL	2.0	10.0	76%

Figure S3. Bioanalyzer quality control report for mRNA and cDNA samples prepared for RNA sequencing. (A) Representative RIN tracings from all samples used in RNAseq analysis. (B) RNA integrity was similar for across all samples, with thresholds set at rRNA ratio \geq 2.0; RIN \geq 7; and DV200% \geq 70% (C).

Figure S4. Principal-Component Analysis. **(A)** Principal-component 1 appears to segregate data based on denervation, whereas the principal-component 2 separates data based on genotype, albeit to a much lesser degree of variance between samples. **(B)** The sample clustering heatmap for visualization of sample similarity via the number of differentially expressed transcripts in pairwise comparisons.

Figure S5. Volcano plots for the four comparisons: **(A)** WT CON vs DEN; **(B)** mKO CON vs DEN; **(C)** WT CON vs mKO CON; and **(D)** WT DEN vs mKO DEN. Plots were generated using R v.3.6.1, using the differential gene expression results obtained from DESeq2. The genes with less than 3 FPKM in both comparison groups from each result set were filtered out before plotting. Genes which had abs(Log2FC) > 0.58 (=1.5x FC) and padj (FDR) <0.1 were colored red or blue depending on the direction of the fold change.

Table S3. RNAseq results for select genes involved in mitochondrial biogenesis, autophagy/mitophagy, lysosomal biogenesis, the UPR^{mt} and atrogenes/apoptotic factors along with corresponding heat map depicting log_2FC (Scale is -2 to +2, blue to red). Only genes with p-value and FDR < 0.05 were considered differentially expressed

			DeSeq				EdgeR											
			WT	mKO	WT 7d	Con vs	7d Den	mKO 70	d Con vs	7d Den	WT	mKO	WT 7d	Con vs	7d Den	mKO 7c	Con vs	7d Den
	Gene Common Name / Description	Gene	IOGFC	logFC	logFC	p-value	FDR	logFC	p-value	FDR	IOGFC	IOGFC	logFC	p-value	FDR	logFC	p-value	FDR
	PGC-1a	Ppargc1a			-0.68	0.00	0.00	-0.44	0.00	0.00			-0.67	0.00	0.00	-0.42	0.13	0.18
	PGC-1B	Ppargc1b			-0.72	0.00	0.00	-0.38	0.01	0.02			-0.71	0.00	0.00	-0.36	0.00	0.00
	Tfam	Tfam			-0.29	0.00	0.01	-0.32	0.00	0.00	_		-0.28	0.00	0.00	-0.30	0.00	0.00
	Tim 22	Timm22			0.31	0.16	0.52	0.05	0.69	0.78			0.33	0.03	0.11	0.06	0.42	0.50
	Tim 23	Timm23			-0.47	0.00	0.00	-0.50	0.00	0.00			-0.46	0.00	0.00	-0.48	0.00	0.00
	TIMDC1	Timmdc1			0.04	0.82	1.77	-0.01	0.93	0.96			0.07	0.63	1.40	0.01	0.86	0.90
	Tim13	Timm13			-0.27	0.00	0.01	-0.29	0.00	0.01			-0.26	0.00	0.00	-0.28	0.00	0.00
	Tom 40	Tomm40			-0.03	0.89	1.86	0.08	0.45	0.58			0.00	0.98	1.99	0.10	0.18	0.25
	Tom 20	Tomm20			0.20	0.02	0.05	0.10	0.24	0.36			0.22	0.00	0.01	0.12	0.06	0.09
	TOM22	Tomm22			0.42	0.00	0.00	0.50	0.00	0.00			0.43	0.00	0.00	0.52	0.00	0.00
	CI - Ubiquinone oxidoreductase subunit A13	Ndufa13			-0.85	0.00	0.00	-0.91	0.00	0.00			-0.83	0.00	0.00	-0.89	0.00	0.00
	CI - Ubiquinone oxidoreductase subunit S1	Ndufs1			-1.18	0.00	0.00	-1.24	0.00	0.00			-1.16	0.00	0.00	-1.22	0.00	0.00
	CI - Ubiguinone oxidoreductase subunit V1	Ndufv1			-0.96	0.00	0.00	-1.08	0.00	0.00			-0.95	0.00	0.00	-1.06	0.00	0.00
	CI - NADH dehvdrogenase 3. mitochondrial	mt-Nd3			-2.09	0.22	0.67	-1.19	0.12	0.21			-2.07	0.06	0.18	-1.15	0.02	0.04
sis.	CI - NADH dehvdrogenase 2. mitochondrial	mt-Nd2			-1.63	0.00	0.00	-1.72	0.00	0.00			-1.61	0.00	0.00	-1.70	0.00	0.00
ene	CII - succinate dehydrogenase complex subunit A flavoprotein	Sdha			-1.40	0.00	0.00	-1.45	0.00	0.00			-1.39	0.00	0.00	-1.43	0.00	0.00
og	CIL - succinate dehydrogenase complex, subunit B flavonrotein	Sdhb			-0.97	0.00	0.00	-1.05	0.00	0.00			-0.95	0.00	0.00	-1.04	0.00	0.00
B	CIL - succinate dehydrogenase complex, subunit C, flavoprotein	Sdbo			-0.94	0.00	0.00	-0.00	0.00	0.00			-0.92	0.00	0.00	-0.97	0.00	0.00
dria	CIL - succinate dehydrogenase complex, subunit C, flavoprotein	Sdbaft			-0.94	1.00	2.00	-0.99	0.00	1.00			-0.92	0.00	1.00	-0.97	0.00	0.00
h		Odital I			0.00	0.45	2.00	0.00	0.39	0.00			0.02	0.90	1.07	0.02	0.00	0.07
toc	On - succinate denydrogenase complex assembly factor 2	Junai2			-0.14	0.45	1.17	0.07	0.00	0.03			-0.12	0.35	0.87	0.08	0.22	0.29
Σ	om - ubiquinoi cytochrome c reductase core protein 2	uqcrc2			-0.//	0.00	0.00	-0.81	0.00	0.00			-0.76	0.00	0.00	-0.79	0.00	0.00
1	UIII - ubiquinoi-cytochrome c reductase, Hieske iron-sulfur polypeptide 1	Uqcrfs1			-0.73	0.00	0.00	-0.84	0.00	0.00			-0.72	0.00	0.00	-0.82	0.00	0.00
1	CIII - ubiquinol-cytochrome c reductase, complex III subunit VII	Uqcrq			-0.73	0.00	0.00	-0.89	0.00	0.00			-0.72	0.00	0.00	-0.87	0.00	0.00
1	CIII - ubiquinol-cytochrome c reductase core protein 1	Uqcrc1			-1.24	0.00	0.00	-1.27	0.00	0.00			-1.23	0.00	0.00	-1.25	0.00	0.00
1	CIII - cytochrome b, mitochondrial	mt-Cytb			-1.01	0.00	0.00	-1.17	0.00	0.00			-1.00	0.00	0.00	-1.15	0.00	0.00
1	CIV - SCO2 cytochrome c oxidase assembly protein	Sco2			0.71	0.04	0.16	0.63	0.00	0.00			0.37	0.01	0.02	0.64	0.00	0.00
	CIV - SCO1 cytochrome c oxidase assembly protein	Sco1			0.60	0.07	0.25	0.32	0.05	0.10			0.31	0.01	0.02	0.33	0.00	0.01
	CIV - cytochrome c oxidase I, mitochondrial	mt-Co1			-1.23	0.00	0.00	-1.33	0.00	0.00			-1.22	0.00	0.00	-1.31	0.00	0.00
	CIV - cytochrome oxidase subunit III	mt-Co3			-1.24	0.00	0.00	-1.36	0.00	0.00			-1.22	0.00	0.00	-1.35	0.00	0.00
	CIV - cytochrome c oxidase subunit 412	Cox4i2			-1.56	0.04	0.17	-0.90	0.02	0.04			-0.76	0.00	0.01	-0.87	0.00	0.00
	CV - ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1	Atp5a1			-1.12	0.00	0.00	-1.17	0.00	0.00			-1.11	0.00	0.00	-1.15	0.00	0.00
	CV - ATP synthase mitochondrial F1 complex assembly factor 1	Atpaf1			-0.72	0.00	0.00	-0.70	0.00	0.00			-0.71	0.00	0.00	-0.68	0.00	0.00
	CV - ATP synthase mitochondrial F1 complex assembly factor 2	Atpaf2			-0.49	0.00	0.00	-0.45	0.00	0.00			-0.47	0.00	0.00	-0.43	0.00	0.00
	CV - ATP synthase, H+ transporting, mitochondrial F1 complex, delta subunit	Atp5d			-0.43	0.00	0.00	-0.51	0.00	0.00			-0.42	0.00	0.00	-0.49	0.00	0.00
	CV - ATP synthase 8, mitochondrial	mt-Atp8			-1.85	0.18	0.56	-1.37	0.11	0.18			-1.77	0.05	0.15	-1.31	0.02	0.03
	Beclin1	Becn1			-0.14	0.41	1.09	-0.22	0.01	0.03			-0.12	0.33	0.83	-0.20	0.01	0.01
	ULK1	Ulk1			-0.41	0.00	0.00	-0.75	0.00	0.00			-0.40	0.00	0.00	-0.73	0.00	0.00
	Atg5	Atg5			0.37	0.16	0.52	0.05	0.72	0.81			0.20	0.03	0.05	0.07	0.45	0.53
gy	Atg7	Atg7			0.82	0.00	0.00	0.76	0.00	0.00			0.83	0.00	0.00	0.78	0.00	0.00
Å	Atg12	Atg12			0.38	0.00	0.00	0.22	0.04	0.07			0.40	0.00	0.00	0.24	0.00	0.01
Mitc	LC3 - microtubule-associated protein 1 light chain 3 alpha	Map1lc3a			1.59	0.00	0.00	1.25	0.00	0.00			1.60	0.00	0.00	1.26	0.00	0.00
ye/	LC3 - microtubule-associated protein 1 light chain 3 beta	Map1lc3b			-0.25	0.11	0.39	-0.32	0.00	0.00			-0.23	0.07	0.23	-0.30	0.00	0.00
pha	p62	Sqstm1			0.82	0.00	0.00	0.51	0.00	0.00			0.83	0.00	0.00	0.53	0.00	0.00
f	Parkin	Prkn			0.97	0.00	0.00	0.88	0.00	0.00			0.98	0.00	0.00	0.90	0.00	0.00
_	PINK1	Pink1			-1.48	0.00	0.00	-1.59	0.00	0.00			-1.47	0.00	0.00	-1.57	0.00	0.00
1	FoxO1	Foxo1			0.68	0.00	0.00	0.03	0.82	0.88			0.69	0.00	0.00	0.03	0.86	0.89
1	FoxO3	Foxo3			0.37	0.09	0.31	0.03	0.78	0.86			0.19	0.01	0.02	0.05	0.54	0.61
F	ТГЕВ	Tfeb			-1.43	0.00	0.00	-1.59	0.00	0.00			-1.42	0.00	0.00	-1.57	0.00	0.00
1	TEE3	Tfe3			0.37	0.22	0.66	0.05	0.76	0.84			0.40	0.05	0.17	0.07	0.48	0.56
1	···	Mcolp1			-0.12	0.61	1.45	-0.00	0.46	0.50			-0.10	0.53	1.00	-0.07	0.36	0.44
1	Cathensin D	Cted			1 16	0.00	0.00	1.04	0.00	0.00			1 17	0.00	0.00	1.06	0.00	0.00
ş	Catheosin B	Ctsh			0.66	0.00	0.00	0.71	0.00	0.00			0.67	0.00	0.00	0.73	0.00	0.00
sme	l amnt	Lame 1			-0.00	0.00	0.00	-0.20	0.00	0.00			_0.07	0.00	0.00	-0.20	0.00	0.00
vso	Lamp?	Lamp			-0.23	0.00	0.00	-0.38	0.00	0.00			-0.22	0.00	0.00	-0.30	0.00	0.00
12		Lamp2			0.48	0.00	0.00	0.42	0.00	0.00			0.49	0.00	0.00	0.44	0.00	0.00
1	ATPase, H+ transporting, tysosomal V0 subunit U2	Atp6V0d2			5.25	0.00	0.00	3.72	0.00	0.00			4.92	0.00	0.00	3.66	0.00	0.00
1	ATRASE, FI+ transporting, iysosomal V1 subunit E1	Ацроутет			0.58	0.00	0.00	0.50	0.00	0.00			0.59	0.00	0.00	0.52	0.00	0.00
1	A I rase, H+ transporting, lysosomal V1 subunit H	Atp6v1h			1.13	0.00	0.00	1.14	0.00	0.00			1.14	0.00	0.00	1.16	0.00	0.00
┣	HSG70	Hspa8			0.46	0.00	0.00	0.47	0.00	0.00			0.47	0.00	0.00	0.49	0.00	0.00
1		Atf4			-0.95	0.00	0.00	-0.86	0.00	0.00			-0.94	0.00	0.00	-0.84	0.00	0.00
1	ATF5	Atf5			-0.19	0.42	1.10	0.02	0.88	0.92			-0.16	0.54	1.23	0.04	0.78	0.83
1	CHOP	Ddit3			-0.55	0.05	0.20	0.54	0.00	0.00			-0.54	0.05	0.15	0.56	0.00	0.00
1_	ClpP	Clpp			-0.49	0.00	0.00	-0.44	0.00	0.00			-0.47	0.00	0.00	-0.42	0.00	0.00
Ĩ	LonP	Lonp1			-0.34	0.00	0.00	-0.39	0.00	0.00			-0.33	0.00	0.00	-0.37	0.00	0.00
1 ₽	OMA1	Oma1			-0.82	0.00	0.00	-0.75	0.00	0.00			-0.80	0.00	0.00	-0.73	0.00	0.00
1	SirT3	Sirt3			-0.55	0.00	0.00	-0.51	0.00	0.00			-0.54	0.00	0.00	-0.49	0.00	0.00
1	CPN10	Hspe1			0.03	0.88	1.85	0.07	0.48	0.60			0.05	0.68	1.49	0.09	0.20	0.26
1	GRP75	Hspa9			-0.32	0.03	0.12	-0.14	0.08	0.14			-0.30	0.03	0.11	-0.12	0.10	0.15
L	HSP60	Hspd1			-0.40	0.00	0.00	-0.41	0.00	0.00			-0.39	0.00	0.00	-0.39	0.00	0.00
	Murf1	Trim63			0.61	0.00	0.00	0.05	0.60	0.71			0.62	0.00	0.00	0.07	0.41	0.49
1	Atrogin1	Fbxo32			1.36	0.00	0.00	-0.02	0.94	0.96			1.37	0.00	0.00	0.00	1.00	1.00
1	Bax	Bax			0.96	0.00	0.00	0.98	0.00	0.00			0.97	0.00	0.00	1.00	0.00	0.00
1	Bcl-2	Bcl2			-0.76	0.00	0.00	-0.56	0.02	0.05			-0.76	0.00	0.00	-0.56	0.01	0.02
1	IGF-1	lgf1			0.57	0.00	0.00	1.08	0.00	0.00			0.59	0.00	0.00	1.09	0.00	0.00

Figure S6. A plot of the GSEA normalized enrichment score for the two independent comparisons was generated, which did not reveal any gene-sets with large differences between the two comparisons. Correlation between normalized enrichment scores (NES) for the WT: denervated vs control, and KO: denervated vs control. Red line represents identity, the blue line is the best fit line from linear regression. Top panels: gene-sets with negative NES.

Table S4. To test whether genotype affected gene expression differentially in the two treatments, an interaction term was included in the statistical model for detection of differentially expressed genes. GSEA enrichment analysis revealed the top gene sets enriched in up- and down-regulate genes.

Supplemental Table 4A. The top-ranking gene sets enriched in up-regulated genes						
GS	SIZE	ES	NES	NOM p-val	FDR q-val	FWER p-val
GO: extracellular matrix structural constituent	125	0.56	2.58	0.000	0.000	0.000
GO: collagen trimer	70	0.58	2.41	0.000	0.000	0.000
GO: collagen-containing extracellular matrix	271	0.47	2.41	0.000	0.000	0.000
R: collagen biosynthesis and modifying enzymes	60	0.59	2.37	0.000	0.000	0.000
R: collagen chain trimerization	41	0.63	2.33	0.000	0.000	0.000
KEGG: staphylococcus aureus infection	41	0.63	2.32	0.000	0.000	0.001
R: collagen formation	79	0.54	2.31	0.000	0.000	0.001
GO: extracellular matrix	378	0.43	2.27	0.000	0.000	0.002
GO: myeloid leukocyte mediated immunity	79	0.51	2.16	0.000	0.002	0.015
R: assembly of collagen fibrils and other multimeric structures	51	0.55	2.15	0.000	0.002	0.017
R: extracellular matrix organization	247	0.43	2.15	0.000	0.002	0.018
KEGG: glycosaminoglycan degradation	16	0.73	2.14	0.000	0.002	0.021
R: homologous dna pairing and strand exchange	40	0.57	2.09	0.000	0.003	0.047
GO: granulocyte migration	106	0.46	2.07	0.000	0.004	0.058
GO: chromosome separation	83	0.48	2.06	0.000	0.004	0.065
GO: negative regulation of nuclear division	58	0.51	2.06	0.000	0.004	0.071
GO: phagocytosis	163	0.43	2.06	0.000	0.004	0.073
R: chemokine receptors bind chemokines	30	0.59	2.05	0.000	0.004	0.079
GO: antigen processing and presentation of peptide antigen	46	0.53	2.03	0.000	0.005	0.108
GO: metaphase/anaphase transition of cell cycle	56	0.51	2.02	0.000	0.006	0.121

Supplemental Table 4B. The top-ranking gene sets enriched in down-regulated genes											
GS	SIZE	ES	NES	NOM p-val	FDR q-val	FWER p-val					
R: foxo-mediated transcription of cell cycle genes	16	-0.8	-2.32	0.000	0.000	0.001					
R: autophagy	118	-0.5	-2.23	0.000	0.001	0.003					
GO: autophagosome	63	-0.55	-2.23	0.000	0.001	0.004					
GO: fatty acid catabolic process	82	-0.53	-2.21	0.000	0.001	0.004					
R: constitutive signaling by akt1 e17k in cancer	26	-0.67	-2.2	0.000	0.001	0.007					
R: macroautophagy	105	-0.5	-2.19	0.000	0.001	0.007					
GO: polyubiquitin modification-dependent protein binding	48	-0.58	-2.18	0.000	0.001	0.009					
GO: autophagosome assembly	88	-0.52	-2.18	0.000	0.001	0.010					
GO: lipid oxidation	88	-0.51	-2.17	0.000	0.001	0.012					
GO: ubiquitin binding	69	-0.53	-2.17	0.000	0.001	0.013					
GO: macroautophagy	184	-0.45	-2.16	0.000	0.001	0.013					
GO: autophagosome organization	92	-0.5	-2.16	0.000	0.001	0.013					
KEGG: oxidative phosphorylation	123	-0.48	-2.16	0.000	0.001	0.013					
KEGG: mitophagy - animal	65	-0.53	-2.13	0.000	0.001	0.020					
GO: mitochondrion disassembly	62	-0.53	-2.13	0.000	0.001	0.020					
GO: fatty acid oxidation	86	-0.5	-2.13	0.000	0.001	0.020					
GO: regulation of tor signaling	89	-0.5	-2.13	0.000	0.001	0.021					
GO: respiratory chain	87	-0.5	-2.13	0.000	0.001	0.022					
GO: autophagy of mitochondrion	62	-0.53	-2.12	0.000	0.001	0.023					

Table S5. Linear regression analysis comparing the fold-change (FC) in whole muscle (WM) LC3-II or p62 protein expression with the fold-change in autophagy flux measured via LC3-II or p62 accumulation. Comparisons were derived from previously published work cited within column from our laboratory, in which flux was measured using either colchicine injections or bafilomycin A treatment in order to block lysosomal degradation of the autophagosome.

					LC3-II		pe	62
Referenced Paper	Conditions	Model	Flux Measure	Comparison	FC in Protein	FC in Flux	FC in Protein	FC in Flux
				WT: Den / Con	2.8	0.4	1.5	0.5
(13) Vainshtein, A. et	- 7d Denervation	Mico	Colchicine	KO: Den / Con	2.2	0.1	0.7	>3
2015	- PGC-1a KO vs WT	WIICE	injections	KO: Con / WT Con	0.7	0.6	1.3	0.1
				KO: Den / WT Den	0.5	1.1	0.6	1.4
				WT: Ex / Con	2.1	1.7	0.9	1.2
	- PGC-1a KO vs WT			WT: Ex+R/Con	1.5	1.9	1.7	1.4
(46) Vainshtein, A. et	- Acute Exercise (Ex)	Mice	Colchicine	KO: Ex / Con	0.7	1.4	1.5	1.4
Physiol., 2015	- Acute Ex + Recovery	WIICE	injections	KO: Ex+R / Con	1.7	0.5	1.8	1.0
	(EX+R)			KO: Ex+R / Ex	2.4	0.4	1.2	0.7
				Con: KO / WT	1.1	0.9	0.9	1.0
(47) Parousis, A. et al. <i>Autophagy,</i> 2016	- Chronic Contractile Activity	C2C12	Bafalomycin A treatment	CCA / Con	-	-	1.2	0.6
	- Aged vs Young - 7d Chronic	Rats	Colchicine iniections	Young: CCA / Con	1.26	0.8	-	-
(48) Carter, H.N. et al. <i>J. Physiol.</i> , 2018				Con: Aged / Young	1.5	1.3	-	-
orr nyelen, 2010	Contractile Activity		njeetiene	Aged: CCA / Con	1.18	1.0	-	-
				1d CCA / Con	0.7	2.2	0.6	1.6
(49) Kim, Y et al.	- 1, 2, 5, & 7-days of Chronic Contractile	Rate	Colchicine	2d CCA / Con	0.5	2.2	1.8	0.7
Pflügers Arch., 2018	Activity	nais	injections	5d CCA / Con	0.4	2.4	1.5	0.8
				7d CCA / Con	0.4	2.3	1.3	1.4
			0.1.1.1.1.1.1	1d Den / Con	1.1	1.3	1.2	0.9
(50) Triolo, M. et al. J. Physiol., 2022	- 1, 3, & 70 Denervation	Mice	iniections	3d Den / Con	1.3	1.9	3.4	0.7
				7d Den / Con	2.1	0.7	2.3	0.1
			WM LO	C3-II vs LC3-II Flux	R2 = 0.4	108	p=0.002	
			w	M p62 vs p62 Flux	R2 = 0.2	21	p=0.049	