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Model Training

KDEEP

KDEEP was trained on the latest version of the refined set of PDBbind1 comprising of 4749

protein-ligand complexes after filtering of duplicates and complexes that failed the prepara-

tion. A validation set was created for hyperparameter tuning and early stopping by taking a

random sample of 10% of the codes in the refined set. As a test set, the core set of PDBbind

was used, which is comprised of 272 complexes.
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For all three models, during training and validation, the protein-ligand complex was

rotated around the geometrical center of the ligand before generating the final grid, in

order to augment the existing training set and compensate for the fact that CNNs are not

rotationally invariant.2

Clash detector

To train the clash detector model, we used the complexes available in the refined set of the

2019 version of PDBbind. The clashed poses were artificially generated by randomly rotating

the ligand on its own geometrical center while ensuring that at least one atom in the ligand

was within a distance of 1.5Å to the protein. We used the same architecture as for KDEEP,

and the binary cross-entropy loss function.3 We trained the model for 50 epochs with a

batch size of 32 and a starting learning rate of 10−3. This model achieved 0.97 classification

accuracy and 0.98 precision in a held-out validation set, constituted by a randomly selected

group of 10% of the protein-ligand complexes, for which clashed poses were also generated.

Both the training and validation sets were constructed in a balanced way, so that half the

examples were crystal poses and the other half were clashed poses.

Pose classifier

The pose classifier model was trained on BindingMoad database,4 which contains 38, 702

protein-ligand complexes. Ten docked poses were generated for each complex using the

rDock docking software,5 which led to more than 310, 110 examples after removing failed

jobs. This set was split into two classes, one featuring “good” poses (poses with RMSD below

1 Å) and “bad” poses (RMSD greater than 3 Å). Poses between 1 and 3 Å were discarded,

similar to the work by,2 to create a greater separation between the two distributions and

ease the classification task. The final number of examples was 270, 225, constituting a much

larger training set than the other two models. This model was trained with the same hyper-

parameters, loss function and architecture as the previous one.
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A validation set was created, composed by all the good and bad poses generated for

a random selection of 10% of the protein-ligand complexes in the BindingMoad database,

so that poses for the same protein-ligand complex cannot be found in both training and

validation sets. Because most of the poses belonged to the “bad” category, a sampling

correction was introduced in the training and a number of bad poses in the validation were

removed to reach a 1:1 ratio, reaching a total of 17, 478 examples in the validation set.

Strict split: KDEEP

For KDEEP, we designed a more strict split, where the PDBbind refined set was clustered

by sequence similarity using a 70% threshold. The three biggest clusters were selected for

testing. A final filter was applied to these three clusters to discard complexes whose ligands

had a fingerprint similarity greater than 0.6 with any ligand in any other cluster ensuring

that these test sets were different both in terms of protein sequence and ligand composition

from any other cluster. Finally, three different KDEEP models were trained using one of the

three clusters as test set (leaving one cluster out and training in all the others). Pearson’s

correlation coefficient in these three test sets was 0.70 (N=29), 0.28 (N=152) and 0.09

(N=81). Hence, predictive performance is lower than on the less strict split and it might be

family-dependent.

Quantitative analysis

Correlation between far away residues and accuracy

We tried to measure if any correlation existed between the presence of far protein residues

being highlighted and prediction accuracy. We summed the attributions of all protein chan-

nels for the voxels that were further than 8 Åfrom any ligand atom (bad attributions) and

divided it by the sum of all protein attributions, obtaining a percentage of the attributions

falling far from the ligand. The Pearson’s correlation with the prediction error was just 0.05

meaning that the presence of far away residues being highlighted does not correlate well with
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prediction accuracy.

Attribution consistency across rotations and pose variations

In order to check how sensitive attributions were to changes in the protein-ligand complex’s

orientation, attributions were computed for 10 different orientations for each system. Then

the ligand and protein atoms closest to the voxel with the highest attribution in the occu-

pancy channels were identified in each rotation. This allowed us to evaluate how consistent

was the selection in comparison to a random baseline, where the ligand and protein atoms

were selected randomly among those inside the 24Å
3

box. A similar experiment was per-

formed to evaluate attribution’s sensitivity to changes in the pose. Here, instead of 10

rotations, we applied minor rotations (up to 12º) and displacements (sampled from a normal

distribution with mean 0 and std 0.2Å) to the ligand alone, leading to 10 small variants

of the same pose. Due to the computational cost of these experiments, both of them were

performed in a random subset of 300 complexes sampled from PDBbind refined set.

4



Clas
h dete

cto
r

Pos
e c

las
sifi

er
KDEEP

Random
 Base

line

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Di
st

an
ce

 b
et

we
en

 th
e 

tw
o 

be
st

 v
ox

el
s (

Å)

Protein hydrophobic - Ligand hydrophobic

Figure S1: Distance distribution between the two voxels with highest, absolute attribution
value in protein hydrophobic and ligand hydrophobic channels.
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Figure S2: Distance distribution between the two voxels with highest, absolute attribution
value in protein aromatic and ligand aromatic channels.
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Figure S3: Distance distribution between the two voxels with highest, absolute attribution
value in protein acceptor and ligand donor channels.

7



Clas
h dete

cto
r

Pos
e c

las
sifi

er
KDEEP

Random
 Base

line

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Di
st

an
ce

 b
et

we
en

 th
e 

tw
o 

be
st

 v
ox

el
s (

Å)

Protein donor - Ligand acceptor

Figure S4: Distance distribution between the two voxels with highest, absolute attribution
value in protein donor and ligand acceptor channels.
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Figure S5: Distance distribution between the two voxels with highest, absolute attribution
value in protein positive and ligand negative channels.
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Figure S6: Distance distribution between the two voxels with highest, absolute attribution
value in protein negative and ligand positive channels.
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Figure S7: Attributions computed for the pose classifier model for the protein and ligand
aromatic channels (yellow and brown, respectively). In addition to highlighting the aromatic
ring in the Tyr residue engaging in a pi-stacking interaction with the ligand (lower right
corner), two other regions in the aromatic protein channel appear highlighted (red dots
at the top), despite being far apart from the ligand. A His residue can be found at that
location (not shown for clarity) but no interaction with the ligand is possible as a beta sheet
sits between the two parties. PDB code: 5JVD
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Figure S8: Attributions computed for KDEEP model for the protein and ligand aromatic
channels (yellow and brown, respectively). In addition to highlighting the aromatic ring
in the Tyr residue engaging in a pi-stacking interaction with the ligand, two extra regions
appear highlighted in the protein aromatic channel (identified by two red dots), despite being
far apart from the ligand. The aromatic residues present at those locations (not shown for
clarity) are a Trp (left red dot) and a Tyr (bottom right dot). Both are far away and shielded
from the ligand by other protein residues. PDB code: 5JVD
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Figure S9: Correlation between the sum of the attributions of the two best voxels and
distance between them. Each column represents a model and each row represents a protein-
ligand channel combination (P is for protein, L for ligand, occ is occupancy, aro is aromatic,
hydropho is hydrophobic, acc is acceptor, don is donor, neg is negative and pos is positive.)
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Protein consistency across rotations

Figure S10: Consistency in protein atom attributions across 10 different orientations. The
protein atom closest to the best voxel in the protein occupancy channel is identified in each of
the 10 orientations. For each complex, we plot how many times the same atom was selected.
As can be seen, in the clash detector and pose classifier models, for some complexes, the
exact same protein atom is picked in all 10 rotations. In all three models, the distribution
is clearly shifted upwards (more consistent) compared to the random baseline.
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Ligand consistency across rotations

Figure S11: Consistency in ligand atom attributions across 10 different orientations. The
ligand atom closest to the best voxel in the ligand occupancy channel is identified in each of
the 10 orientations. For each complex, we plot how many times the same ligand atom was
selected. All three models show a distribution more shifted towards greater values than the
random baseline.
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Protein consistency across pose variants

Figure S12: Consistency in protein atom attributions across 10 pose variations. The protein
atom closest to the best voxel in the protein occupancy channel is identified in each of the
10 variants. For each complex, we plot how many times the same atom was selected. In
KDEEP, the exact same protein atom is select in all 10 pose variants for a large number of
complexes.
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Ligand consistency across pose variants

Figure S13: Consistency in ligand atom attributions across 10 pose variations. The ligand
atom closest to the best voxel in the ligand occupancy channel is identified in each of the
10 poses. For each complex, we plot how many times the same ligand atom was selected.
Although all three models show a distribution better than the baseline, unfortunately, there
are few complexes on which the exact same ligand atom is picked in all 10 poses.
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