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Table S1. Simulation scenarios.

Sim 1
target-ISM

Sim 2
WGS-FSM

Sim 3
WGS-sig

Sim 4
NGS-like

Sim 5
NGS-doubl
et

Sim 6
NGS-large

Number of
ingroup
cells

40 100 60 40 40 100, 500,
1000

Number of
sites

5000 10000 10000 10000 10000 1000, 10000,
50000

Effective
population
size

10000 10000 10000 10000 10000 10000

Exponential
growth rate

10-4 10-4 10-4 10-4 10-4 10-4

Root
branch
length

0.01 0.01 0.01 0.01 0.01 0.01

Outgroup
branch
length

0 0 0 0 0 0

Lineage
rate
variation
(alpha)

1.0 1.0 1.0 1.0 1.0 1.0

Number of
fixed SNVs

250, 500,
1000

n/a n/a n/a n/a n/a

Number of
true SNVs

250, 500,
1000

1695 -
2560

1414 - 4215 1376 - 2123 1272 - 2094 181 - 347,
1841 - 3270,
7770 - 15705

Number of
observed
SNVs

206-4995,
415-4956,
807-4961

1531 -
10000

1224 -
10000

1147 -
10000,
1226 - 6841,
1227 - 2828

1271 - 9963 1000, 10000,
50000

Mutation
rate

n/a 10-6 10-6 10-6 10-6 10-6

Mutation
model

ISM diploid GTnR ISM S2 and
S6

GTnR GTnR GTnR

Mutation
rate
variation
among
sites (alpha)

n/a 1.0 n/a 1.0 1.0 1.0

Genotype
error

0, 0.01,
0.05, 0.10

0, 0.01,
0.05, 0.10

0, 0.01, 0.10,
0.20

n/a n/a n/a
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ADO 0, 0.10,
0.25, 0.50

0, 0.10,
0.25, 0.50

0, 0.05,
0.15, 0.50

0, 0.10, 0.25 0, 0.10 0.10

Sequencing
depth

n/a n/a n/a 5, 30, 100 5 5

Coverage
overdispers
ion

n/a n/a n/a 5 5 5

Sequencing
error

n/a n/a n/a 0, 0.01,
0.05

0/0.01 0.01

Amplificatio
n error
mean*

n/a n/a n/a 0, 0.05, 0.10 0/0.05 0.05

Amplificatio
n error
variance

n/a n/a n/a 0.01 0.01 0.01

Allelic
imbalance

n/a n/a n/a 0.50 0.50 0.50

Haploid
coverage
reduction

n/a n/a n/a 0.50 0.50 0.50

Doublet
rate

0 0 0 0 0, 0.05,
0.10, 0.20

0

Number of
replicates

100 100 100 100 100 20
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Table S2. Genotype codes. Encoding of unphased genotypes as single letters for the FASTA/PHYLIP genotype
files and translation to phased genotype likelihoods.

Symbol A C G T M R W S Y K

Genotype
(unphased )

A/A C/C G/G T/T A/C A/G A/T C/G C/T G/T

Genotypes
(phased)

A|A C|C G|G T|T A|C
C|A

A|G
G|A

A|T
T|A

C|G
G|C

C|T
T|C

G|T
T|G

A|A 1 0 0 0 0 0 0 0 0 0

C|C 0 1 0 0 0 0 0 0 0 0

G|G 0 0 1 0 0 0 0 0 0 0

T|T 0 0 0 1 0 0 0 0 0 0

A|C 0 0 0 0 1 0 0 0 0 0

A|G 0 0 0 0 0 1 0 0 0 0

A|T 0 0 0 0 0 0 1 0 0 0

C|G 0 0 0 0 0 0 0 1 0 0

C|T 0 0 0 0 0 0 0 0 1 0

G|T 0 0 0 0 0 0 0 0 0 1

C|A 0 0 0 0 1 0 0 0 0 0

G|A 0 0 0 0 0 1 0 0 0 0

T|A 0 0 0 0 0 0 1 0 0 0

G|C 0 0 0 0 0 0 0 1 0 0

T|C 0 0 0 0 0 0 0 0 1 0

T|G 0 0 0 0 0 0 0 0 0 1

4



CellPhy - Additional file 1

Table S3. CellPhy’s compatibility with variant callers.

Algorithm
Single-cell

specific
Multi-sample

calling
Output format

CellPhy support

Reference
ML mode

GL mode
allowed

SC-caller Yes No (VCF) Yes Script [66]

Monovar Yes Yes VCF Yes Yes [77]

Prosolo Yes No BCF Yes Yes [99]

Conbase Yes Yes TSV (Script) No [97]

sci-phi Yes Yes (VCF) Yes No [29]

scan-snv Yes No RDA (Script) No [98]

HaplotypeCaller No Yes VCF Yes Yes [91]

Remarks:

Although not single-cell specific, HaplotypeCaller is still widely popular within the
single-cell genomics community.

(VCF) Non-standard VCF

Script Conversion script provided with CellPhy

(Script) Conversion possible with a custom script (not provided)
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Fig. S1. Somatic diploid genotype phylogenetic model. A For each single nucleotide variable (SNV) site in the
population, diploid genotypes are defined by the nucleotide present at the maternal (♀) and paternal (♂)
homologous chromosomes. SNV sites are assumed to be independent, and their chromosomal position is ignored.
B In a given infinitesimal amount of time (Δt), only one mutation is allowed in one of the two homologous
chromosomes. These instantaneous rates form the Q matrix (Equation 2 in the main text) and contain 0 values
when the corresponding genotypes differ at more than one nucleotide. C Three cells are sampled from a
population of cells dividing asexually will have a specific genealogy (in bold). After cell division, cells will give rise
to 0, 1, or 2 daughter cells (cells that die after division are not represented). D From the observed genotypes, we
try to estimate the history of these three cells. Internal nodes are not observed, but the ancestral genotype at
these nodes (in gray) can be estimated. More than one change can occur along any branch of length t (formed by
infinite Δt). The transition probability matrix P(t) only considers the nucleotide at the beginning and at the end of a
branch (Equation 3 in the main text), and all its entries are positive.
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Fig. S2. Preliminary assessment of phylogenetic accuracy for all methods. Results for all methods were obtained
for two scenarios of Simulation 1 (“target-ISM”). Datasets consisted of 40 tumor cells plus one healthy, with 250
SNVs. Accuracy was evaluated under two different levels of genotype error (ERR), allelic dropout (ADO), with the
“missing” genotype recoding strategy. Phylogenetic accuracy is defined as 1 – nRF (see Methods). Results based
on 20 replicates. Boxplots were generated using the ggplot2 R package (https://ggplot2.tidyverse.org) with default
parameters. The lower and upper hinges correspond to the first and third quartiles. The upper whisker extends
from the hinge to the largest value no further than 1.5 * IQR (IQR is the interquartile range or distance between the
first and third quartiles). The lower whisker extends from the hinge to the smallest value at most 1.5 * IQR of the
hinge. Data beyond the end of the whiskers are called "outlying" points and are plotted individually.
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Fig. S3. Phylogenetic accuracy in Simulation 1 (“target-ISM”) with 500 SNVs. Datasets consisted of 40 cells.
Accuracy was evaluated under different levels of genotype error (ERR), allelic dropout (ADO), and genotype
recoding strategies (“keep”, “remove”, “missing”) as explained in the main text. Phylogenetic accuracy is defined as
1 – nRF (see Methods). See Fig. S2 for an explanation of the boxplots.
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Fig. S4. Phylogenetic accuracy in Simulation 1 (“target-ISM”) with 1,000 SNVs. Datasets consisted of 40 cells.
Accuracy was evaluated under different levels of genotype error (ERR), allelic dropout (ADO), and genotype
recoding strategies (“keep”, “remove”, “missing”) as explained in the main text. Phylogenetic accuracy is defined as
1 – nRF (see Methods). See Fig. S2 for an explanation of the boxplots.
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Fig. S5. Phylogenetic reconstruction accuracy in Simulation 3 (“WGS-sig”) with signature S2. Datasets
consisted of 60 cells and 1000-4000 SNVs. Accuracy was evaluated under different levels of genotype error (ERR)
and allelic dropout (ADO). Phylogenetic accuracy is defined as 1 – nRF (see Methods). See Fig. S2 for an
explanation of the boxplots.
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Fig. S6. Phylogenetic reconstruction accuracy in Simulation 3 (“WGS-sig”) with signature S6. Datasets
consisted of 60 cells and ~1000-4000 SNVs. Accuracy was evaluated under different levels of genotype error
(ERR) and allelic dropout (ADO). Phylogenetic accuracy is defined as 1 – nRF (see Methods). See Fig. S2 for an
explanation of the boxplots.
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Fig. S7. Phylogenetic accuracy in Simulation 4 (“NGS-like”) at 30x. Datasets consisted of 40 cells and
~1000-2000 SNVs. All methods use the ML genotypes except CellPhy-GL, which uses the genotype likelihoods.
Phylogenetic accuracy is defined as 1 – nRF (see Methods). AMP is the amplification error rate, SEQ is the
sequencing error rate, and ADO is the allelic dropout rate. See Fig. S2 for an explanation of the boxplots.
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Fig. S8. Phylogenetic accuracy in Simulation 4 (“NGS-like”) at 100x. Datasets consisted of 40 cells and
~1000-2000 SNVs. All methods use the ML genotypes except CellPhy-GL, which uses the genotype likelihoods.
Phylogenetic accuracy is defined as 1 – nRF (see Methods). AMP is the amplification error rate, SEQ is the
sequencing error rate, and ADO is the allelic dropout rate. See Fig. S2 for an explanation of the boxplots.
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Fig. S9. Phylogenetic accuracy in Simulation 5 (“NGS-doublet”). Data simulated under mutational signature S2
and with a 5x sequencing depth. All methods use the ML genotypes except CellPhy-GL, which uses the genotype
likelihoods. Phylogenetic accuracy is defined as 1 – nRF (see Methods). DBL is the doublet rate, AMP is the
amplification error rate, SEQ is the sequencing error rate, and ADO is the allelic dropout rate. See Fig. S2 for an
explanation of the boxplots.
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Fig. S10. Estimation of the genotype error and ADO rate. A Genotype error ML estimates. B ADO rate ML
estimates. For simulation 1, 250, 500 or 1,000 SNVs were considered. Red dots highlight the true values. See Fig.
S2 for an explanation of the boxplots.
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Fig. S11. Time-to-completion with 100 bootstrap replicates using single and multi-threading. Sim1–Sim4 are
simulated datasets with 30, 100, 60, and 40 cells and 4753, 9935, 9982, and 3986 SNVs, respectively. CRC24 and
L86 correspond to two of the empirical datasets described in the main text. Note the logarithmic time scale on the
y-axis. CellPhy-ML16: ML genotype error model; CellPhy-GL16: genotype likelihood model; +BS: 100 bootstrap
replicates; +ST = single-threading; +MT = multi-threading (24 cores).
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Fig. S12. CRC24 genotype matrix for exonic variants. Genotype matrix of somatic mutations identified in the
CRC24 single-cell dataset (grey=reference homozygous, light gold=heterozygous, dark gold=alternative
homozygous, white=missing). Only exonic mutations are shown (n =126), sorted according to their prevalence
across the cell population. Gene names are displayed at the left of the map. Each column represents an individual
cell.
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Fig. S13. CRC24 variant allele frequency distribution in single-cell and bulk data. A Tumor middle - TM (bulk
sample) variant allele frequency (VAF) spectrum obtained from read depth of alternative alleles. B Tumor inferior -
TI (bulk sample) VAF spectrum obtained from read depth of alternative alleles. C Single-cell - SC VAF spectrum
obtained from allele frequency of genotype calls. All VAF distributions were derived from 3,936 shared SNVs
between the single-cells and the bulk samples.
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Fig. S14. SiFIT, SCIPhI, infSCITE, ScisTree, and TNT trees for the CRC24 dataset. A SiFit tree. B SCIPhI tree. C
infSCITE tree. D ScisTree tree. E. TNT tree (only bootstrap values above 50 are shown). Distinct colors represent
cell type: healthy (blue); tumor-non-stem from TI region (dark green), tumor-stem from TI region (light green),
tumor-non-stem from TM region (dark purple), tumor-stem from TM region (light purple).
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Fig. S15. Non-synonymous mutations along the CellPhy L86 tree. The dataset analyzed is a subset of the data
for patient CRC2 in [21]. The figure shows the CellPhy L86 tree with non-synonymous mutations mapped to the
internal branches of the tree. Distinct shapes and colors represent cell type: healthy diploid cells - from both
primary and metastatic sites - (dark purple circle), healthy diploid cells missorted (light purple circle), primary tumor
aneuploid cells (light orange square), metastatic aneuploid cells (dark orange square). Only bootstrap values above
50 are shown.
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Fig. S16. SiFiT, SCIPhI, infSCITE, ScisTree, and TNT trees for the L86 dataset. The dataset analyzed is a subset of
the data for patient CRC2 in [21]. A SiFit tree. B SCIPhI tree. C infSCITE tree. D ScisTree tree. E. TNT tree (only
bootstrap values above 50 are shown). Distinct colors represent cell type: healthy diploid cells from both primary
and metastatic sites (dark purple), healthy diploid cells missorted (light purple), primary tumor aneuploid cells (light
orange), metastatic aneuploid cells (dark orange).
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Fig. S17. Phylogenetic reconstruction from single neurons. Data consisted of 15 whole-genome sequenced
neurons from a healthy donor [69]. A Single-cell tree inferred with “Cellphy-GL”. B SiFit tree. C SCIPhI tree. D
infSCITE. E ScisTree. F TNT tree. In A and F, only bootstrap values above 50 are shown.
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Fig. S18. Phylogenetic reconstruction from single-cell hematopoietic colonies. Data consists of 140
whole-genome sequenced single-cell derived hematopoietic “colonies” from a healthy donor [15]. A ML
phylogenetic tree inferred with Cellphy using a genotype matrix with 127,884 mutations. Only bootstrap support
values above 50 are shown. B The same ML phylogeny as in (A), but ignoring branch lengths to ease visualization
of ancestral relationships. Only bootstrap values above 50 are shown.
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Fig. S19. Genotype likelihood vectors for a simple unrooted phylogenetic tree. To compute the likelihood of the
tree via the Felsenstein pruning algorithm, we place a virtual root (node 0) at an arbitrary inner node (here: node v).
Then, we perform a post-order tree traversal and compute likelihood vectors at each inner node recursively

according to Equation (19). We use vectors and to compute , vectors and (not shown) to compute ,𝐿𝑢 𝐿𝑤 𝐿𝑣 𝐿𝑥 𝐿𝑦 𝐿𝑧

and then finally vectors and to compute .𝐿𝑣 𝐿𝑧 𝐿0
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Fig. S20. Phylogenetic likelihood calculations. A Outline of a simple likelihood calculation on a given tree with
given branch lengths, when the inner states are also given. B The likelihood is just the sum over the likelihoods of
all possible evolutionary scenarios. The likelihood of the trees in parentheses is calculated as in the simple
example for given states.
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Fig. S21. Phylogenetic bootstrap calculation. Outline of bootstrap proportion/branch support computations. For
each inner branch in the reference tree on the left, we count how frequently the bipartition/split (AB|CD in the
example) occurs in the set of bootstrap trees on the right. Here the bipartition/split/branch is present in two out of
three bootstrap trees, and hence the branch support is ⅔.
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Fig. S22. Phylogenetic accuracy with approximate model GT10 in Simulation 6 (“NGS-large”). The approximate
10-state model for unphased genotypes (ML10/GL10) yields very similar accuracy to the original 16-state model
(ML16/GL16). This observation holds for all simulations in our study (data not shown). Data simulated under
mutational signature S2 and with a 5x sequencing depth. Phylogenetic accuracy is defined as 1 – nRF (see
Methods). See Fig. S2 for an explanation of the boxplots.
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Supplementary Note 1. Genotype error model

P (N | M) is the probability of observing the single-cell genotype N after sequencing, given the true
genotype M, diploid and biallelic. We consider two types of technical errors resulting in a wrong
genotype, allelic dropout (ADO) and amplification/sequencing error (ERR), which occur at rates δ and ε,
respectively. Note that we allow for the presence of both ADO and ERR in the same observed
genotype.

Allelic dropout occurs during single-cell whole-genome amplification (scWGA) when one of the two
alleles is not amplified and cannot be represented in the observed data. ADO implies a single allele, as
otherwise the genotype is “missing”. Thus, the rate δ is the probability that the amplification of one or
the other allele has failed, and therefore that we observe the homozygous genotype defined by the
amplified allele. Given the phased genotype a|b, and with “_ “ indicating the dropped allele:

ADO rate (δ) = P (_|b | a|b) + P (a|_ | a|b)

An amplification/sequencing error occurs when the observed allele is not the true allele. Given that the
ERR rate tends to be small, we assume a maximum of one ERR per genotype.  Specifically:

ERR rate (ε) = P (b|a), where b != a

Phased genotypes error model

Under these assumptions, there are seven scenarios (I-VII) with non-zero probability for the calculation
of P (N | M) for phased genotypes, with alleles a-d:

If the true genotype is homozygous

I. P (a|a | a|a) = (1 – δ) * (1 – ε) + δ * (1 – ½ ε) = 1 – ε + ½ δε

For example, P (AA | AA). This can happen in two ways: (1) without ADO (i.e., 1 – δ) and without ERR (i.e.,
1 – ε), or (2) after ADO in either allele (δ) and without ERR in the non-dropped allele (i.e., 1 – ½ ε).

II. P (a|b | aa) = (1 – δ) * ½ ⅓ ε = (1 – δ) * ⅙ ε

For example, P (AT | AA). This can only happen without ADO (i.e., 1 – δ), followed by an ERR in a specific
allele that is converted to one of the other three nucleotides (i.e., ½ ⅓ ε).

III. P (b|b | a|a) = δ * ½ ⅓ ε =  ⅙ δε

For example, P (TT | AA). Because we ignore more than one ERR per genotype, this can only happen
through ADO in either allele (i.e., δ), followed by an ERR in the non-dropped allele (i.e., ½ ⅓ ε).

For a given true homozygous genotype, we have 1 I, 6 II, 3 III combinations, so the sum of probabilities
is:  1 – ε + ½ δε + ε – δε + ½ δε  = 1
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If the true genotype is heterozygous

IV. P (a|a | a|b) = (1 – δ) * ½ ⅓ ε + ½ δ * (1 – ½ ε) + ½ δ * ½ ⅓ ε = ½ δ + ⅙ ε – ⅓ δε

For example, P (AA | AT). This can happen in three ways: (1) without ADO (i.e., 1 – δ) and with ERR in
allele j (i.e.,½ ⅓ ε), (2) after ADO in allele j (i.e., ½ δ) followed by no ERR in allele i (i.e., 1 – ½ ε), or (3)
after ADO in allele i (i.e., ½ δ) followed by an ERR in allele j (i.e., ½ ⅓ ε).

V. P (c|c | a|b) = δ * ½ ⅓ ε = ⅙ δε

For example, P (CC | AT). Because we ignore the possibility of two ERR in the same genotype, this can
only occur if there is ADO in either allele (i.e., δ), followed by an ERR in the non-dropped allele (i.e., ½ ⅓
ε).

VI. P (a|c | a|b) =  (1 – δ) * (½ ⅓ ε) = (1 – δ) ⅙ ε

For example, P (AC | AT). This can only happen without ADO (i.e., 1 – δ), through an ERR in allele j (i.e.,
½ ⅓ ε).

VII. P (a|b | a|b) = (1 – δ) * (1 – ε)

For example, P (AT | AT). This case can only happen without ADO (i.e., 1 – δ) and without ERR (i.e., 1 –
ε).

For a given true heterozygous genotype, we have 2 IV, 2 V, 4 VI, and 1 VII combinations, so the sum of
probabilities is δ + ⅓ ε – ⅔ δε + ⅓ δε + (1 – δ) ⅔ ε + (1 – δ) * (1 – ε) = 1. Given the model’s assumptions,
P (N | M) is zero for the remaining scenarios.

Unphased genotypes error model

For unphased genotypes, the error model is identical to the phased case,  except for scenario II:

P (a|b | a|a) = (1 – δ) * ½ ⅓ ε = (1 – δ) * ⅓  ε

For example, P (AT | AA). This can only happen without ADO (i.e., 1 – δ), followed by an ERR in one of
the alleles converted to one of the other three nucleotides (i.e., ⅓ ε).
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Supplementary Note 2. Approximate model of evolution for unphased diploid genotypes
with ten states

Current techniques for producing scDNA-seq data do not reveal the phase of the genotypes (i.e., we
do not know which allele is located in the maternal or paternal chromosome). We have also
implemented a specific model for unphased genotypes with only ten states that speed up the
calculations. However, for unphased states, the probability of changing between a homozygous and a
heterozygous genotype is not reversible, as, in principle, the change from genotype aa to genotype ab
is twice more probable (either allele can change) than from ab to aa (change can occur only in allele b).
Considering this asymmetry would result in a non-reversible Q matrix, which would yield the calculation
of the tree likelihood much more complex and prohibitively slow, as it would require rooted trees. As a
compromised, approximate solution, we implemented a GT10 model based on a reversible Q matrix
(here called Q10):

In this case, we need to estimate five nucleotide exchangeabilities (𝛼 = r(A↔C), 𝛽 = r(A↔G), 𝛾= r(A↔T), 𝜅
= r(C↔G), 𝜆 = r(C↔T); let 𝜇 = r(G↔T) = 1) and nine stationary unphased genotype frequencies (πA/A, πA/C,
πA/G, πA/T, πC/C, πC/G, πC/T, πG/G, πG/T; πT/T= 1 - ∑πa/b). Regarding the error model, the definitions of ADO, ERR
and P (N | M) are the same as for the GT16, except for P (a|b | aa) = (1 – δ) * ⅓ ε.

In simulations, this (wrong) reversibility assumption did not affect performance; there was no decrease
in accuracy, and the calculations were ~2X faster than for the GT16 model (see Fig. S22).
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Supplementary Note 3. Standard phylogenetic likelihood calculations on DNA sequence
alignments

Let us consider how we compute the phylogenetic likelihood on a standard multiple DNA sequence
alignment (MSA). For further details, we refer the reader to Felsenstein [51,52] and Yang [73]. The
calculation of the phylogenetic likelihood for our genotype model (see Section “phylogenetic
likelihood” in the main text) is precisely analogous. Given an MSA comprising the sequences under
study, a 4x4 instantaneous rate matrix Q, the ability to compute the corresponding 4x4 transition
probability matrix Pt, and the stationary frequency vector π for the four nucleotides, we calculate the
likelihood as follows.

We assume that MSA sites evolve independently of each other. Hence, given the MSA, the overall
likelihood of the tree is the product over the per-site likelihoods. Thus, it suffices to consider how to
compute the likelihood for a single MSA site. Given a fixed tree topology, with fixed branch lengths and
known inner/ancestral states for one MSA site, we simply compute the per-site likelihood as the
product over all transition probabilities along the tree branches, times the stationary frequency of the
root state. While the ancestral nucleotide states are typically not known, we can still calculate the
likelihood of the site as the sum over the per-site likelihoods for all possible assignments of nucleotides
(i.e., sum over all possible evolutionary histories that could have generated the data, given the tree) to
the ancestral states of the given tree topology.

While this, at first glance, appears to be computationally intense (e.g., for a tree with two ancestral
nodes, there already exist 4^2 distinct possible assignments of nucleotides to inner nodes of the tree),
the likelihood on such a tree can be efficiently computed via the so-called Felsenstein pruning
algorithm. The key idea of this algorithm is to calculate the likelihood bottom-up, that is, from the tips
toward the root of the tree, and to store intermediate results, so-called conditional likelihood vectors
(CLVs), at each inner node of the tree (Fig. S16). CLVs essentially summarize the signal stemming from
the subtree they root. That is, they tell us how likely it is to observe an A, C, G, or T, given (conditional
on) the subtree they represent. Thus, every inner state in our calculations for one single MSA site
consists of a vector containing four conditional likelihoods for, A, C, G, and T, respectively. At the tips,
we initialize this vector to (1.0, 0.0, 0.0, 0.0) if we have an A, to (0.0, 1.0, 0.0, 0.0) if we have a C, etc. as
the nucleotide state is known and assuming that we are not uncertain about its state.

However, under a single, uniform sequencing error ε, for instance, we can initialize the CLV for A at the
tip of the tree as (1.0 - 3ε, ε, ε, ε). This flexibility is used for modeling genotype errors as presented in
Section ‘single-cell genotype errors’ of the main text. The Felsenstein pruning algorithm allows us to
compute the likelihood of a given tree, with given branch lengths, and given evolutionary rates
specified in Q. Now, to obtain the maximum likelihood (ML) score for such a fixed tree topology, we
need to optimize the free parameters of the model, that is, the branch lengths and the rates in Q
concerning the likelihood using appropriate numerical optimization routines.

Finally, we also need to find the tree topology with the best ML score, which constitutes an NP-hard
optimization problem (i.e., there are no algorithms for finding the ML tree in polynomial runtime as a
function of the number of sequences involved) [100]. In layman's terms, this means that we are simply
not able to find the globally best ML tree, as there are too many possible tree topologies that would
have to be scored. For example, for 50 sequences, there already exist 2.84 x 1074 distinct alternative
tree topologies. Therefore, to find the tree with the best ML score, we use ad hoc heuristic search
strategies that search through this enormous tree space in a “clever” way and return a tree with a
“good” score. Most ML tree search strategies imply constructing an initial tree and then apply
successive changes (“moves”) to the tree topology to find a tree with a better ML score. The three
fundamental types of tree moves are Nearest Neighbour Interchange (NNI), Subtree Pruning and
Re-grafting (SPR), and Tree Bisection and Reconnection (TBR). Indeed, these heuristics do not offer a
guarantee that we find the ML tree, although we typically refer to the best tree found as the ML tree.
We refer the reader to Stamatakis et al. [101] for further details.

Furthermore, suppose our matrix Q is time-reversible. In that case, we can root our tree at any branch
or node and will always obtain the identical analytical likelihood score for all possible rooting locations.
This is computationally convenient, as, for a given tree, we do not need to determine the optimal root
placement to compute its ML score. Hence, the output of phylogenetic inferences under
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time-reversible models is always an unrooted binary tree, as any rooting will be mathematically
meaningless.

Adapting the nucleotide substitution model to a model with more states is, in essence, straight-forward,
as precisely the same computational procedure can be used to analyze protein data with 20 states, or
our model with ten states here (see corresponding sections on the genotype error and likelihood
model in the main text).
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