Cleavage sites	P6	P5	P4	P3	P2	P1	P1'
P3-6K1	Q220*, S1	V221	V221	V207, L12	H221	Q221	S220, N1
6K1-CI	Q195, H22, R4	T114, A97, S8, P2	V221	H217, Q2, R2	H221	Q221	S217, N4
CI-6K2	E221	C221	V221	H220, Q1	H221	Q221	T210, S7, N4
6K2-VPg	E220, D1	E218, G3	V220, A1	V177, A24, T12, I8	H221	Q220, P1	G221
VPg-Pro	E163, G54, D1, V1, K1, R1	E221	V221	D189, G32	H221	E220, D1	S220, G1
Pro-NIb	E206, D14, G1	F185, T21, I11, V4	V221	Y219, H2	N114, T106, A1	Q221	S217, A4
NIb-CP	N220, D1	1130, V91	V221	V162, I40, T9, M9, A1	H221	Q221	A217, V2, T2
Consensus sequence**	E, q, n	e, v, c, f, t, i	V	v, h, y, d	<u>H</u> , n, t	<u>Q</u> , e	S, g, a, t

Table S1. Consensus cleavage site sequence recognized by the PPV NIa protease derived from analysis ofseven polyprotein cleavage sites

* 221 full PPV genome sequences were used to assess the conserved sequence at the seven cleavage sites of the polyproteins that are processed by the NIa protease. Numbers indicate how many sequences have a specific amino acid at the corresponding position of the cleavage site (e.g. 220 of 221 sequences have Q in the P6 position of the P3-6K1 cleavage site).

** Amino acids in uppercase letters are predominant at this position for all or most cleavage sites, underlined amino acids are the most conserved at this position.

Cleavage sites	P6	P5	P4	P3	P2	P1	P1'
P3-6K1	K468*, R5, E4, Q1	A330, V91, E18, T13, S12, L8, P4, M1, I1	V478	V427, T16, I16, A18, G4, K4, E2, M1	H478	Q477, D1	A470,
6K1-CI	P478	T461, N10, A4, S3	V478	Y472, H6	H478	Q478	T375, A103
CI-6K2	E477, G1	A478	V478	H478	H478	Q478	N346, S132
6K2-VPg	E478	P474, S3, H1	V478	T379, V72, I21, A6	H478	E478	A476, S2
VPg-Pro	V342, I116, T10, A6	P446, S25, Q4, L3	V478	D476, G2	H478	E478	S478
Pro-NIb	T474, M4	A474, P2, V2	V478	Y478	A478	Q478	T476, M2
NIb-CP	V342, A110, M18, T7, I4, E1	C452, R21, G3, S1, F1	V475, A3	Y475, C3	H475, S3	Q475, R3	A477, T1
Consensus sequence**	e, p, v, k, t	a, p, t, c	<u>v</u>	Y, v, h, t, d	<u>Н</u> , а	<u>Q</u> , e	A, t, n, s

Table S2. Consensus cleavage site sequence recognized by the TuMV NIa protease derived from analysis of seven polyprotein cleavage sites

* 478 full TuMV genome sequences were used to assess the conserved sequence at the seven cleavage sites of the polyprotein that are processed by the NIa protease. Numbers indicate how many sequences have a specific amino acid at the corresponding position of the cleavage site (e.g., 468 of 478 sequences have a K in the P6 position of the P3-6K1 cleavage site).

**Amino acids in uppercase letter are predominant at this position for all or most cleavage sites, underlined amino acids are the most conserved at this position.

Cleavage sites	P6	P5	P4	P3	P2	P1	P1'
P3-6K1	E13*	D13	L13	V10, I3	E13	Q13	A13
6K1-Cl	E13	I10, V3	112, V1	Y13	T13	Q13	S13
CI-6K2	E13	T13	112, V1	Y13	L13	Q13	S13
6K2-VPg	E13	P13	V13	Y13	F13	Q13	G13
VPg-Pro	E13	D10, E3	L13	T12, M1	F13	E13	G13
Pro-NIb	E13	L13	V13	Y13	S13	Q13	G13
NIb-CP	E13	T6, N4, A3	L13	Y13	F13	Q13	S12, G1
Consensus sequence**	<u>E</u>	d, t, p, l, i	L, V, I	<u>Y</u> , v, t	F, e, l, s, t	<u>Q</u> , e	G, S, a

Table S3. Consensus cleavage site sequence recognized by the TEV NIa protease derived from analysis of seven polyprotein cleavage sites

* 13 full TEV genome sequences were used to assess the conserved sequence at the seven cleavage sites of the polyprotein that are processed by the NIa protease. Numbers indicate how many sequences have a specific amino acid at the corresponding position of the cleavage site (e.g., 13 of 13 sequences have a E in the P6 position of the P3-6K1 cleavage site).

**Amino acids in uppercase letter are predominant at this position for all or most cleavage sites, underlined amino acids are the most conserved at this position

Table S4. Primers used in this study

Genes	Primer name	Primer sequences (5' to 3')	Purpose		
TuMV NIa-Pro	TuMV7236F-Ncol	TACCATGGCTAGTAACTCCATGTTCAGAGG	Cloning of cDNA fragment into		
	TuMV7960R-Xhol	ATTACTCGAGTGCGTAGACTGCCGTGCTG	the Ncol-Xhol sites of pET21d(+)		
			for expression of recombinant		
			protease		
PPV NIb-CP PPV8019F-Mscl		TTATTATGGCCAAGCTTGGATACCATCCGGATAC	Cloning of cDNA fragments into		
	PPV9566R-XhoI	TTATTACTCGAGCACTCCCCTCACACCGAG	pCITE-4a for <i>in vitro</i> cleavage of		
TuMV NIb-CP	TuMV8960F-Mscl	TTATTATGGCCAAAAGCGGAATTCCAAGTGAG	partial viral polyproteins or		
	TuMV10381-Sacl	TTCGAGCTCTCACAACCCCTGAACGCCCA	putative target plant proteins.		
TEV NIb-CP	TEV7965F	ATATGGCCACCACCATTACACATGTGAGAAGTGTG	The cloning site into pCITE-4a		
	TEV9305R	TGGTGGTGGTGGTGCTCACTGGCGGACCCCTAAT	were MscI and XhoI for PPV NIb-		
AtEML2	EML2-284F-Mscl	TTATTATGGCCATGGAAGCGCAGATTCATATAC	CP, TuMV NIb-CP, AtEML2,		
	EML2-1225R-Xhol	ATTACTCGAGTCACCCCAGCAGCATTGGAAG	AtDUF707, AtGPI-AALP and		
AtDUF707	DUF707-682F-Mscl	TTATTATGGCCATGAAGATCATTGCAACGGCA	PpSLK2 cDNA fragments; Ndel		
	DUF707-1848R-Xhol	ATTACTCGAGTTAAATGGTTGTGGCTGTTG	and Xhol for AtKAN1, AtPIF7,		
AtKAN1	KAN1-675F-Ndel	GTACATATGTCTATGGAAGGTGTTTTTC	AtFbKr and AtPRC; MscI and EcoRI for PpDDB and PpP100.		
	KAN1-1886R-Xhol ATTACTCGAGTCATTTCTCGTGCCAATCTG		PpRHLP, PpCESA2 and TEV NIb-		
AtPIF7	AtPIF7-327F-Ndel	GTACATATGTCGAATTATGGAGTTAAAGAG	CP were cloned into pCITE4a		
	AtPIF7-1427R-Xhol	ATTACTCGAGCTAATCTCTTTTCTCATGATTCG	using NEBuilder HiFi DNA		
Atgpi-aalp	GPI1386F-Mscl	TTATTATGGCCGCAACAGGAACCAGCTACTG	Assembly Master Mix.		
	GPI2429R-Xhol	ATTACTCGAGGGCTGCAGATGGCTTTGTAT			
AtFbKr	FbKr165F-Ndel	GTACATATGAAGAGATTACCTTTGCATC]		
	FbKr1472R-Sacl	TTCGAGCTCCAACTCTTTCTTCGCACCCTT]		
AtPRC	PRC147F-Ndel	GTACATATGTGCAATTGCTCATCTTCCTTC]		
	PRC1133R-Xhol	ATTACTCGAGCTAGCGGAATATGTCCCATTCT]		
PpDDB	PpDDB678F-Mscl	TTATTATGGCCATGGATTCTGGTAGTGGAAG]		
	PpDDB2087R-EcoRI	CAGAATTCCTAATCTGAGGAGCAAATCC]		
PpSLK2	PpSLK2-474F-Mscl	TTATTATGGCCATGCCGCCTAAAAGGAAGCAA]		
	PpSLK2-2447R-Xhol	ATTACTCGAGTCAGACCTTCCAACCATAAC]		
PpP100	PpP100-194F-Mscl	TTATTATGGCCATGATCGTCATCAGCAGAGCAG	1		
	PpP100-1561R-EcoRI	CAGAATTCTTAGCACCACTCCCCATATAAAAC	1		
PpCESA2	CSAs2-946F	ATATGGCCACCACCCATATGGATACCAAAGGAAGACTTG	1		
-	CSAs2-2307R	TGGTGGTGGTGGTGCCTATACTTTGTCTCTCAAATAGTC	1		
PpRHLP	PpRHLP1F	ATATGGCCACCACCCATATGACGGTACCTAAGACGGTC	1		
	PpRHIP1452R	TGGTGGTGGTGGTGCTCAGTGTGGAGCGATGGCCA	1		
AtKAN1	KAN1QA-F	GTTCATCATGCATCATCGACG	Mutation of the P1 residue in		
	KAN1QA-R	TTCGTTTCCATTTATGCCCA	the cleavage site (Q to A		
AtDUF707	DUF-QA-F	GTCGTTCATGCATCTTTTCCTTC	mutation)		
	DUF-QA-R	CCATTGAGAATCAACTACTCC	1		
AtEML2-s	EML2QA-F	GTTAGACATGCGTCCCTCGATG	1		
	EML2QA-R	AACCTGGTTTCCACCTCTTGG	1		
AtEML2-s	attB1-EML2-F284 GGGGACAAGTTTGTACAAAAAGCAGGCTTCATGGAAGCG		Gateway cloning to pSITE-MYC		
		CAGATTCATATAC	vector		
	attB2-EML2-R1225-flag	GGGGACCACTTTGTACAAGAAAGCTGGTGCTTA			
		CTTGTCGTCATCGTCTTTGTAGTCCCCCAGCAGCATTGGAAG			
AtDUF707	attB1-DUF-F682	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAAGATCA	1		
		TTGCAACGGCA			
	attB2-DUF-R1848-flag	GGGGACCACTTTGTACAAGAAAGCTGGTGCTTA	1		
	Ĭ	CTTGTCGTCATCGTCTTTGTAGTCAATGGTTGTGGCTGTTG			
PPV NIa-Pro	PPV6294F-Ncol	TGTCCATGGCTAGTAAATCACTGTTCAGAGG	Cloning into vector pBBI5252		
	PPV7022R-	and pBINplus			
		AAATTCC			

A >PPV VPg-Pro-NIb-CP partial polyprotein

GFNRRQRQKLKFRQARDNRMAREVYGDDSTMEDYFG<u>SAYSKKGKSGKTRGMGTKTRKFVNMYGYDPTDYNFVRFVDPLTGHTLDENPLMD</u> INLVQEHFSQIRNDYIGDDKITMQHIMSNPGIVAYYIKDATQKALKVDLTPHNPLRVCDKTATIAGFPEREFELRQTGHPVFVEPNAIPKI NEEGD<mark>EVDHES</mark>KSLFRGLRDYNP<u>IASSICQLNNSSGARQSEMFGLGFGGLIVTNQHLFKRNDGELTIRSHHGEFVVKDTKTLKLLPCKGR</u> DIVIIRLPKDFPPFPKRLQFRTPTTEDRVCLIGSNFQTKSISSTMSETSATYPVDNSHFWKHWISTKDGHCGLPIVSTRDGSILGLHSLAN <u>STNTQNFYAAFPDNFETTYLSNQDNDNWIKQWRYNPDEVCWGSLQLKRDIP</u>QSPFTICKLLTDLDG<mark>EFVYTQS</mark>KTTHWLRDKLEGNLKAVG ACPGQLVTKHVVKGKCTLFETYLLTHPEEHEFFRPLMGAYQKSALNKDAYVKDLMKYSKPIVVGAVDCDQFERAVDVVISMLISKGFEECN YVTDPDDIFSALNMKAAVGALYSGKKRDYFKNVSDQDKESFVRASCKRLFMGKKGVWNGSLKAELRPKEKVEANKTRSFTAAPIDTLLGGK VCVDDFNNQFYSLNLHCPWSVGMTKFRGGWDKLLRALPEGWIYCDADGSQFDSSLSPYLINAVLNIRLAFMEEWDIGEQMLSNLYTEIVYT PIATPDGTIVKKFKGNNSGQPSTVVDNTLMVILAMTYSLLKLGYHPDTHDCICRYFVNGDDLVLAVHPAYESIYDELQEHFSQLGLNYTFA TKTENKEELWFMSHKGVLYDDMYIPKLEPERIVSILEWDRSNEPIHRLEAICASMVEAWGYKELLREIRKFYSWVLEQAPYNALSKDGKAP YIAETALKKLYDTEASETEIERYLEAFYDDINDGESNVVVQADEREDEEVDAGKPIVVTAPAATSPILQPPPVIQPAPRTTAPMFNP IFTPATTQPATKPVPQVSGPQLQTFGTYGNEDASPSNSNALVNTNRDRDVDAGSIGTFTVPRLKAMTSKLSLPKVKGAIMNLNHLAHYSP AQVDLSNTRAPQSCFQTWYEGVKRDYDVTDDEMSIILNGLMVWCIENGTSPNINGMWVMMDGETQVEYPIKPLLDHAKPTFRQIMAHFSNV AEAYIEKRNYEKAYMPRYGIQRNLTDYSLARYAFDFYEMTSTTPVRAREAHIQMKAAALRNVQNRLFGLDGNVGTQEEDTERHTAGDVNRN

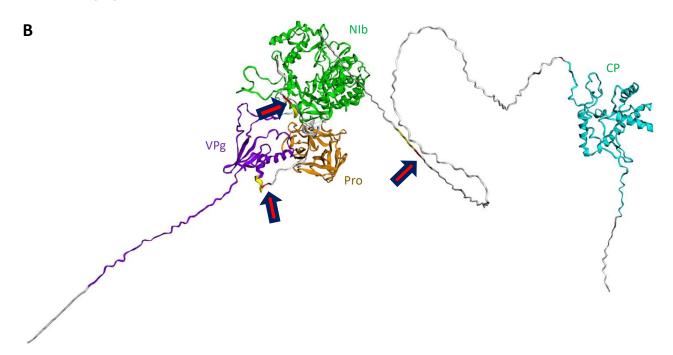


Figure S1. Structural model of the partial viral polyprotein including the NIa-VPg, NIa-Pro, NIb and CP domains (A) Sequence of the partial polyprotein. Regions of the polyprotein with 3D structure predicted with a high degree of confidence are underlined (VPg in purple, Pro in brown, NIb in green and CP in blue). Letters highlighted in yellow correspond to the P6 to P1' positions of the predicted cleavage sites with the P1 and P1' positions underlined in red. (B) Structural model of the partial polyprotein predicted using Phyre2 (see Materials and Methods). The degree of confidence in the model varied with the region of the polyprotein. The VPg domain (highlighted in purple) was modeled with a very high degree of confidence (100%) based in part on the solved structure of the VPg from potato virus Y (pdb: 6NFW). The Pro and NIb domains (highlighted in brown and green, respectively) were also modeled with a very high degree of confidence (100%) based in part on the solved structure of the 3CD (Pro-Pol) of poliovirus (pdb: 2IJD). The CP domain (highlighted in brown) was modeled with a medium degree of confidence (74%) based in part on the solved structure of the CP from turnip mosaic virus (pdb: 6T34). The position of the predicted cleavage sites (P6 to P2 position highlighted in yellow; P1 and P1' positions highlighted in red) are shown with the red arrow. They are contained in flexible region of the polyprotein linking the different domains. Please note that the exact positioning of these linkers within the 3D structure of the protein could only be modeled *ab silico* with a low degree of confidence.

A >AtKan1

MSMEGVFLEKTKTNTTTTLPDLSLHISLPDIHQYHHNESSKESSRRSSQLENNNRSSNFELSLSHHNHPTARIFHCPDRR TLNLPHQQHYNNFIINGVHQRVDESEISNLHRPIRGIPVYHNRSFPFHQQNSSLPSLGGGDMDQISILNSSSGYNNAYRS LQSSPRLKGVPLHHHHHHNQYGVVGSSDSSSPHHHNHHHGMIRSRFLPKMPTKRSM<u>RAPRMRWTSSLHARFVHAVELLG</u> <u>GHERATPKSVLELMDVKDLTLAHVKSHLOMYRTVKT</u>TNKPAASSDGSGEEEMGING<mark>NEVHHQS</mark>STDQRAQSDDTSLHQET DISSTQPRWSNSSRETWPLSNNCSSDIDTMIRTSSTSMISHYQRSSIQNQEQRSNDQAKRCGNLSCENPSLEFTLGRPDW HEK

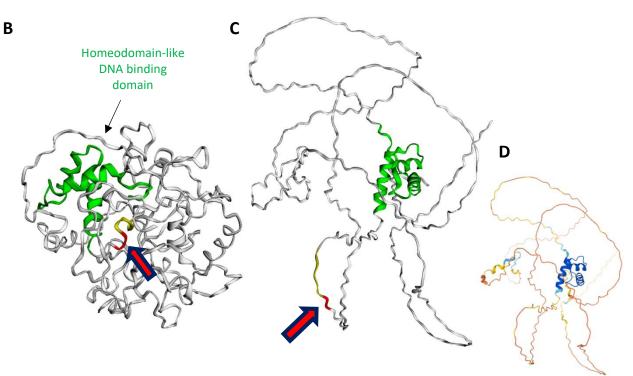


Figure S2. Structural models of the AtKan1 protein (A) Sequence of AtKan1. A predicted homeodomain-like DNA binding domain is underlined in green. Letters highlighted in yellow correspond to the P6 to P1' positions of the predicted cleavage site with the P1 and P1' positions underlined in red. (B-D) Structural model of AtKan1 predicted using Phyre2 (B, see Materials and Methods) or Alphafold (C, PDB file of the model available at https://www.alphafold.ebi.ac.uk/). For both models, the color scheme is as follows: homeodomain-like DNA binding domain in green, P6 to P2 positions of the predicted cleavage site in yellow and P1 to P1' position of the cleavage site in red. The position of the cleavage site is highlighted with the red arrow. The degree of confidence in the Phyre 2 model (B) varied with the domains of the protein. The predicted homeodomain-like DNA binding domain was modeled with a very high degree of confidence (99.9%) based in part on the solved structure of a similar domain from the myb2 domain of phosphate starvation response regulator 1 (pdb: 6J5B). Other regions of the protein were predicted to be mostly disorganized and the 3D structure of these regions could only be modeled ab silico with a low degree of confidence. The degree of confidence in the Alphafold model (C) also varied with the region of the protein, as shown in (D) and using the following color scheme: dark blue (more than 90 %), light blue (70-90 %), yellow (50-70%) and orange (less than 50%). In both models, the cleavage site is in a region of the protein predicted to be disorganized.

A >PpP100

MIVISRAAEDDLSVPVGFRFHPTDEELVTHYLKKKLKGMDSHVSNIIREIDILKFEPWDLPERSLLKSDDENWFFFSRPEYNKHK KNRTTOEGFWKITGREHOIKARDSRSVIGRKRILTFYRGRVRSSERTNWVMHEYYIPNDNPNAORDFVLCRLKKNVKKSDENADV AATCDEGETHNASDVENQQVNDMNMEDNRPPENLDYFERERDRLLANSLSNNDHNAFPTEFSANDQEFLRTLIVEPQSRETSDTD REPVYHOS LQMRCEPQIPYELLQYGSSQSRRDTDVILHNQLSRQASSSVNVASKAGTYQREHRPQQQSGPIIVFRDTSADEYYTR EKTRRITYPPEKPKEPEKPKPEKPKEPPYPRTAADFPPKQISITKSSIDKKVPQGSMEQTQNRTTPRNWKGSFITWQTSPLTS PPSVYIFNTVLGAILFLFCVREVVLYGEWC

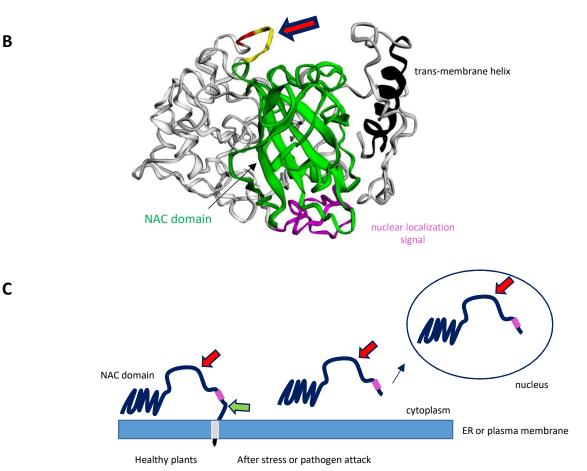
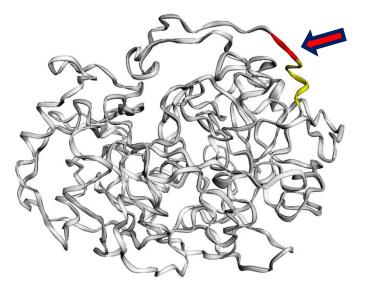



Figure S3. Structural model of the PpP100 protein (A) Sequence of PpP100. A predicted NAC domain is underlined in green. Predicted nuclear localization signal and trans-membrane helix are highlighted in pink and grey, respectively. Letters highlighted in yellow correspond to the P6 to P1' positions of the predicted cleavage site with the P1 and P1' positions underlined in red. (B) Structural model of Pp100 predicted using Phyre2 (see Materials and Methods). The degree of confidence in the model varied with the region of the protein. A predicted NAC domain (highlighted in green) was modeled with a very high degree of confidence (100%) based in part on the solved structure of the stress-induced transcription factor nac1 of rice (pdb: 3ULX). With the exception of the putative trans-membrane helix, other regions of the protein (including the putative nuclear localization signal in pink) were predicted to be mostly disorganized and the 3D structure of these regions could only be modeled ab silico with a low degree of confidence. The position of the predicted cleavage site (P6 to P2 position highlighted in yellow; P1 and P1' positions highlighted in red) is shown with the red arrow. The cleavage site is in a region of the protein predicted to be disorganized. (C) Topology model of the PpP100 protein in association with the plasma or ER membrane. A putative trans-membrane helix is shown in grey and a putative nuclear localization signal is shown in pink. The protein is predicted to be anchored to the membrane under normal conditions. Cleavage by a plant protease (shown with the green arrow) under stress conditions (including pathogen attack) would release the protein which would then be translocated into the nucleus. The putative NIa protease cleavage site is located between the NAC domain and the nuclear localization signal and may prevent translocation to the nucleus. Alternatively, cleavage of PpP100 could also occur in the nucleus.

A >PpDDB

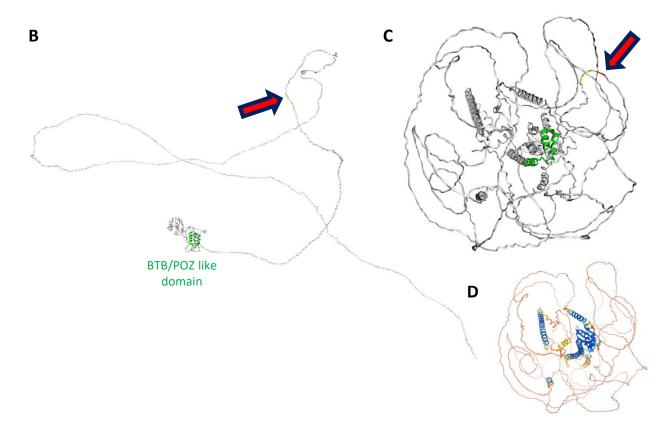

MDSGSGSMQSSSGGDDEYDSRAESISALLSNPPSQLGHMSSHAPPHHHHHHHHQQTHHHLDPLSNMFDPLSSRLTNPNP LLNFDMAWSKTLRSDPNPTDLGGLSQPFLTNPNINQLGQSRGGGGGGGSSTFAALQIPHDHQNVSASSSAPNNQTHNI NSNSNNNNSNSNGVVRNPKKRSRASRRAPTTVLTTDTTNFRAMVQEFTGIPAPPFTSSSPFPRSRLDLFSSAAAASALM RSAGGGGGGGGGGGGGGGLGLEPSPPSYLLRPFAHKVSHQPPSSSSILDHPNLPSTNSSATNHHNNLLNMQQNPSPSSSAVLN FQSLFQPQHQQQQPKYSLPINSPNDLLASKTPHHHHHQGSLDHFGLTQQQLNVLPNNIVSSSDAALSRHDSNSNWGNGT GPSNNNKTNIDN<mark>NNVDHQG</mark>LMRSINGNYGNGKLNYSAGSSSNNIIHGDKAQDQNVAAAAARSEGMVESWICSSD

Figure S4. Structural model of the PpDDB protein. (A) Sequence of PpDDB. Letters highlighted in yellow correspond to the P6 to P1' positions of the predicted cleavage site with the P1 and P1' positions underlined in red. (B) Structural model of PDDB predicted using Phyre2 (see Material and Methods). This protein is predicted to be highly disorganized and its 3D structure could only be modeled *ab silico* with a very low degree of confidence. The position of the predicted cleavage site (P6 to P2 position highlighted in yellow; P1 and P1' positions highlighted in red) is shown with the red arrow.

A >Atgpi-Aal

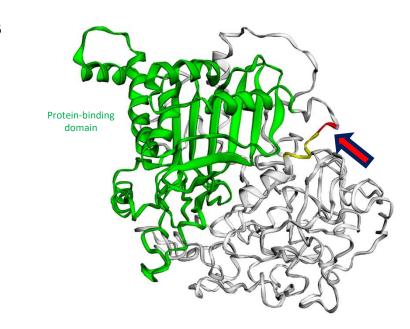

MRPAIPLDYAVFQLSPKRSRCELFVSTTGNTEKLASGLVKPFVAHLKVAEEQVSREVQSIRLEVESNKNAGTWFTKGTLERFVRFVSTPEV LELVSALDVEMSQLEAARKIYGEGTSDQRSSAKDSTDTTPAADVTKKELLKAIDLRLAAVR<u>ODLATACNRASAAGFNPITVSELSOFADRF</u> <u>GANRLNEACTKFI</u>TLCQRPELMSSWRVNQEEEAIRSSWESDMSIDDPSEDPSRDLATNRNQQHREYQTGMEEQSATGTSYCQHESKLKPQ SSHDENDEEEEKSTVQNEPLVSQPRQLTRRLSVQERISMFENKQKENSGEKTAVAKSTELKRLSSDLSSSAGMEKVVVRRWSGASDMSIDL GNDRKDDTGDSPLCTPSSSSVSKDGSGASSKQFVGYNKKEQNGLSHAANPHRNEEECTSNNGGDWGMDEVESQNSSSTFLPKDKEVDLNVP FRTN<mark>NQVRHOG</mark>NSPDRYLEKNSKYKFHEKNPRASSDYTGNANINDDANNQMSDFISNRQNQIQFRDPQSHSLSTLQQLGGTEPIITSVQSN GVTAESPRKELMPSDRQSPLLEDRQRKTPFSGGSEQMKRPHSRRPEMGSAAVNTKPSAAINSVSDISESDTLIQVSPTEQVQRARPSKGSQ ELNDELKVKANELEKLFAEHMLRVPGDQSSSVRRGKPGKPSEQAVTSQLRRPVAQDLSSVQISDQKTLAMPTLTSNDEDKFKTPPTMKMVV TKDYGDTTRQNFPEISFSDNSRGKFYEQYMQKRDAKLKEDWSCRRTEKEAKLKVMQDILDRSNAEMKTKFSQSTGRDSSARRAEKLVYFN SKLSAKKDQHPISSFQSEEDEDGSRSTQNKKLQQNKNNLLIARTTATSASRSAAKVSTLSAVRRRGQSEKHFAQSVPNFSEIKKEGMKPAS GVGKNGVRTQVRSSIRPKAVNEEEKLRRPKIFRKGAAEAAELATDFSQLKSEDGVSVPLYLEQEQSGRNFNSHGTGISSDNAQLKASEESE ASDDMEKEGMGEALDDTEVEAFTDAENEMPRLSQESEEWGSTGVANGESFSQLDAGSNTELPAAMASRHQTMGSILDSPGESTSPWNSRVK HRYPNEASELDASVDSPVGSPAFWNFSSLNHTESDTTQMRKKWGAAQKRAAGGNPSQNQCQQDVTKGLKRLLNFGRKNRAAESLADWISAT TSEGDDDTDDGRDLANRSSEDLRKSRMGFLQSHPSGDSFNESELFTEHVQTTGTPLSFKLKEDQTTGASVKAPRSFFSLSNFRSKGK

Figure S5. Structural models of the AtGPI-AAL protein (A) Sequence of AtGPI-AAL. A predicted BTB/POZ-like domain is underlined in green. Letters highlighted in yellow correspond to the P6 to P1' positions of the predicted cleavage site with the P1 and P1' positions underlined in red. (B-D) Structural models of AtGPI-AAL predicted using Phyre2 (**B**, see Materials and Methods) or Alphafold (**C**, PDB file of the model available at <u>https://www.alphafold.ebi.ac.uk/</u>). For both models, the color scheme is as follows: BTB/POZ like domain in green, P6 to P2 positions of the predicted cleavage site in yellow and P1 to P1' position of the cleavage site in red. The position of the cleavage site is highlighted with the red arrow. The degree of confidence in the Phyre 2 model (**B**) varied with the domains of the protein. The predicted BTB/POZ-like domain (in green) was modeled with a very high degree of confidence (94.8%) based in part on the solved structure of the human speckle-type poz protein btb domain (pdb: 4J8Z). Other regions of the protein were predicted to be mostly disorganized and the 3D structure of these regions could only be modeled *ab silico* with a low degree of confidence. The degree of confidence in the Alphafold model (**C**) also varied with the region of the protein, as shown in (**D**) and using the following color scheme: dark blue (more than 90 %), light blue (70-90 %), yellow (50-70%) and orange (less than 50%). In both models, the cleavage site is in a region of the protein predicted to be disorganized.

A >PpSLK2

MPPKRKQYQWHFGAAPQPALKNHHSLLNGGEQEPLTSSQRHNKPRIDVKKEASLNKHAIQQLLQSQDSEELQRNKLQIQELFH YNMSQNQDQPKILHPSLQLKGDDKEKQQQPMRHVVTQ<mark>QEVVHQA</mark>SVMQLPD<u>EGVCSRRLMOYIYHLRNRPADNNLSYWRKFVA</u> EYYAPSAKKRWCLSSYDEVGRDALGILPHLTMVPWQCNICGCKSRRGFEAYFEVLPRLNEITFGSGVIDELLFLDLPREIRFP SGVMMLEYGRAVQESVYQOLHVVHEGOLRIVFSHDLKILSWEFCVCSHEVFFRRTAVAPQVVQLVHAVQDYKCSIDDRGSDGV LFODVQANCNRILAAGGOLAKTVDQQLVDDLGFSKRYTRCLQIAEIVYTMKDLMILCQDNVTGPIESLESYCRGAAMTKLQKQ EIKGKEQLESARDPPKDNNKLMAASCGFRSNTNESSPMSHKGLSTSAELAASLLRGSHHKLMGQSNLTSIVSRASQEPHIQDT SSEPFQGPRTSNPGLIKSSVENGLSSLDSSMKQYAIQKLVQEMINNNSRSANKHDREEPIWGSGKGSVIELPSGVWGCPTAAA AQGNVFNSIAGRTSSSKAAFNGNSSEVHTNNCFINGEPNLSGKLCLPESIVNISHGYHDHNSIYGNGNDVGYGWKV

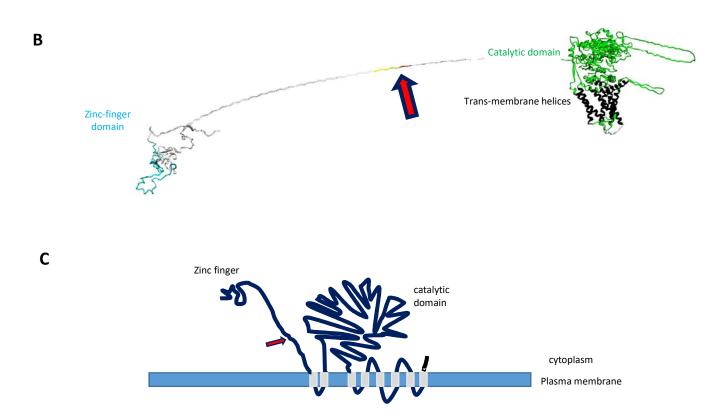


Figure S6. Structural model of the PpSLK2 protein (A) Sequence of PpSLK2. A predicted protein-binding domain is underlined in green. Letters highlighted in yellow correspond to the P6 to P1' positions of the predicted cleavage site with the P1 and P1' positions underlined in red. (B) Structural model of PpSLK2 predicted using Phyre2 (see Material and Methods). The degree of confidence in the model varied with the region of the protein. A predicted protein-binding domain (in green) was modeled with a very high degree of confidence (100%) based in part on the solved structure of the human ldb1 protein in complex with ssbp2 (pdb: 6TYD). Other regions of the protein were predicted to be mostly disorganized and the 3D structure of these regions could only be modeled *ab silico* with a low degree of confidence. The position of the predicted cleavage site (P6 to P2 position highlighted in yellow; P1 and P1' positions highlighted in red) is shown with the red arrow. The cleavage site is in a region of the protein predicted to be disorganized.

В

A >PpCESA2

MDTKGRLVAGSHNRNEFVLINADEVSRVTSVK<u>ELSGOICOICGDEIEITVDGEPFVACNECAFPVCRSCYEYERREGNOACPOCKTRYKRLKGSPRVEG</u> DEEEDDIDDLENEFD</u>ISSNDRRDPHHIAEAVLAARLNIGRGSHVHGSGISTPAEFDSASIASEIPLLTYGQEDVGIASDKHALIIPPFMSRGKRVHPMP TTDSSMSFPPRPMDPKKDLAVYGYGTVAWKERMEDWKKKQNEKL<mark>QVVKHQG</mark>GNDGGNNNGNEPDDPDLPKMDEGR<u>OPLSRKLPIPSSKIN</u>PYRMIILLR LAILGLFFHYRILHPVNNAYGLWLTSIICEIWFGLSWILDQFPKWYPIERETYLDRLSLRYEKEGKPSELADLDVFVSTVDPLKEPPLITANTVLSILS VDYPVDKVACYVSDDGAAMLTFEALSETSEFARKWVPFCKKYSIEPRAPEWYFAOKVDYLRDKVDPTFVRERRAIKREYEEFKVRINGLVATAOKVPEE GWTMQDGTPWPGNNVRDHPGMIOVFLGONGVRDVEGNELPRLVYVSREKRPGFDHHKKAGAMNSLVRVSAIISNAPYILNVDCDHYINNSRALREAMCF MMDPTSGKKICYVOFPORFDGIDRHDRYSNRNVVFFDINMKGLDGIOGPIYVGTGCVFROALYGYDAPTKKKPPGKTCNCLPKWCCWCCGSRKKNKKA KSNDKKKKNKDASKOIHALENIOEGIEGIDNEKSSLIPOIKFEKKFGOSPVFIASTLMEDGGVPKGTSSASLLKEAIHVISCGYEDKTEWGKEVGWIYG SVTEDILTGFKMHCHGWRSVYCMPKRPAFKGSAPINLSDRLHQVLRWALGSVEILLSRHCPIWYGYGCGLKWLERFSYINSVVYPLTSIPLLAYCSLPA VCLLTGKFIVPEISNYASILFMALFLSIAATSILEMOWGHVGIHDWWRNEOFWVIGGASSHFFALIOGLLKVLGGVNTNFTVTSKAADDGEFSDLYLFK WTSLLIPPMTLLIINIIGVVVGISDAINNGYDSWGPLFGRLFFAIWVIVHLYPFLKGLVGROERLPT

Figure S7. Structural model of the PpCESA2 protein (A) Sequence of PpCESA2. Predicted zinc-finger domain and catalytic domain are underlined in blue and green, respectively. Grey shadings correspond to predicted trans-membrane helices. Letters highlighted in yellow correspond to the P6 to P1' positions of the predicted cleavage site with the P1 and P1' positions underlined in red. (B) Structural model of PpCESA2 predicted using Phyre2 (see Material and Methods). In this model, 74% of the residues were modeled at a very high degree of confidence (100 %) based in part on the solved structure of the homotrimeric poplar cellulose synthase isoform 8 (pdb: 6WLB). Regions predicted with this high degree of confidence include the zinc-finger domain (in blue), the catalytic domain (in green) and 8 transmembrane helices (in black). The position of the predicted cleavage site (P6 to P2 position highlighted in yellow; P1 and P1' positions highlighted in red) is shown with the red arrow. The cleavage site is in a flexible linker between the zinc-finger domain and the catalytic domain. (C) Topology model of the PpCESA2 protein in association with the plasma membrane. Trans-membrane helices are shown in grey. In this model, large portions of the protein (including the predicted cleavage site) are predicted to be on the cytoplasmic face of the membrane.

A >AtPIF7

MSNYGVKELTWENGQLTVHGLGDEVEPTTSNNPIWTQSLNGCETL<mark>ESVVHQA</mark>ALQQPSKFQLQSPNGPNHNYESKDGSCSRKR GYPQEMDRWFAVQEESHRVGHSVTASASGTNMSWASFESGRSLKTARTGDRDYFRSGSETQDTEGDEQETRGEAGRSNGRRGR AAAIHNESERRRRDRINQRMRTLQKLLPTASKADKVSILDDVIEHLKQLQAQVQFMSLRANLPQQMMIPQLPPPQSVLSIQHQ QQQQQQQQQQQQQQQQQQQFMSLLATMARMGMGGGGNGYGGLVPPPPPPMMVPPMGNRDCTNGSSATLSDPYSAFFAQTMNMDL YNKMAAAIYRQQSDQTTKVNIGMPSSSSNHEKRD

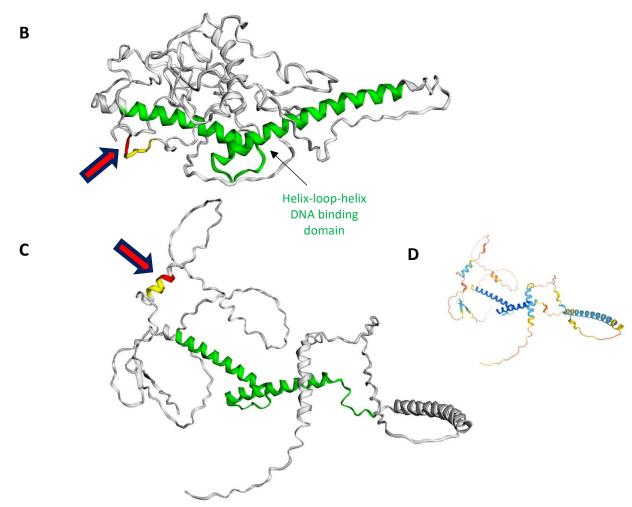
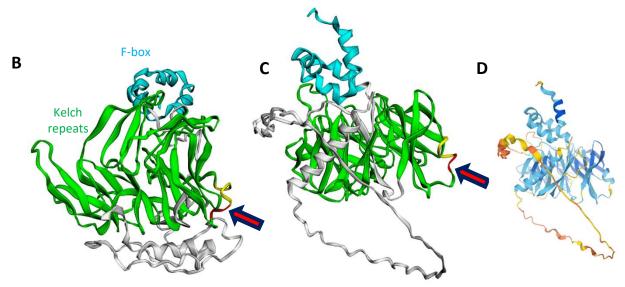



Figure S8. Structural models of the AtPIF7 protein (A) Sequence of AtPIF7. A predicted helix-loop-helix DNA binding domain is underlined in green. Letters highlighted in yellow correspond to the P6 to P1' positions of the predicted cleavage site with the P1 and P1' positions underlined in red. (B-D) Structural models of AtPIF7 predicted using Phyre2 (B, see Materials and Methods) or Alphafold (C, PDB file of the model available at https://www.alphafold.ebi.ac.uk/). For both models, the color scheme is as follows: helix-loop-helix DNA binding domain in green, P6 to P2 positions of the predicted cleavage site in yellow and P1 to P1' position of the cleavage site in red. The position of the cleavage site is highlighted with the red arrow. The degree of confidence in the Phyre 2 model (B) varied with the domains of the protein. The predicted helix-loop-helix DNA binding domain was modeled with a very high degree of confidence (99.7%) based in part on the solved structure of a similar domain from transcription factor myc2 (pdb: 5GNJ). Other regions of the protein were predicted to be mostly disorganized and the 3D structure of these regions could only be modeled ab silico with a low degree of confidence. The degree of confidence in the Alphafold model (C) also varied with the region of the protein, as shown in (D) and using the following color scheme: dark blue (more than 90 %), light blue (70-90 %), yellow (50-70%) and orange (less than 50%). The positioning of the cleavage site differed in the two models. It was located on a flexible region of the protein in the Phyre2 model, while the Alphafold model placed the cleavage site within an α-helix.

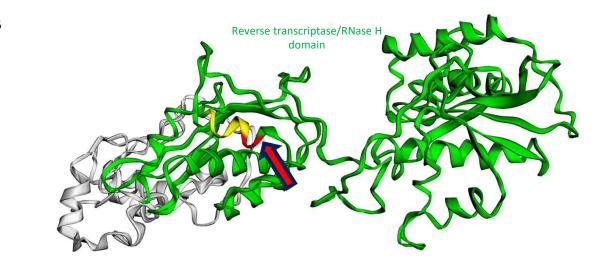

A >AtFbKr

Figure S9. Structural models of the AtFbKr protein (A) Sequence of AtFbKr. Predicted F-box and Kelch repeats are underlined in blue and green, respectively. Letters highlighted in yellow correspond to the P6 to P1' positions of the predicted cleavage site with the P1 and P1' positions underlined in red. (B-D) Structural models of AtFbKr predicted using Phyre2 (**B**, see Materials and Methods) or Alphafold (**C**, PDB file of the model available at https://www.alphafold.ebi.ac.uk/). For both models, the color scheme is as follows: Kelch repeats in green, F-box in blue, P6 to P2 positions of the predicted cleavage site in yellow and P1 to P1' position of the cleavage site in red. The position of the cleavage site is highlighted with the red arrow. The degree of confidence in the Phyre 2 model (**B**) varied with the domains of the protein. The predicted F-box and kelch repeat domains (highlighted in blue and green, respectively) were modeled with a very high degree of confidence (99.4%) based in part on the solved structure of f-box/wd repeat protein 7 within the skp1-fbw7-cyclinedegc complex (pdb: 20VQ). Other regions of the protein were modeled *ab silico* with a low degree of confidence. The degree of confidence in the Alphafold model (**C**) also varied with the region of the protein, as shown in (**D**) and using the following color scheme: dark blue (more than 90 %), light blue (70-90 %), yellow (50-70%) and orange (less than 50%). In both models, the cleavage site is located at the base of the highly structured kelch-repeat domain.

A >PpRHLP

MTVPKTVKDIOSLTGRVAALTRFISKATDRCAPFFKALKGTKRNITWTAECDTAFSELKEYMGRAPLLSTPEH GDIHVIYLSISASAVSSVLIRSKDNAEHPVHYVSKALQDAEVRYPDIEKLAFALVVSARRLRPYFQAHTIYVL TNOPLGOVLONPETSGRLVKWAIELGEFDIHYKPRPAMRGOAVADFLSEFTNPOASAATOLITEPNPPPSODO TPTEGNLDLTOPLWTLFVDGSSNAOGCGAGLVLISLDKVALEYALRFKFOASNNEAEYEALLAGLRLAKEMDA ROILIFSD<mark>SOLVVHQV</mark>NODFTAKDASMTAYLQHARHLLATFHAHSIKQVPRSENSHADALARLASALEQGMGR HIHIEFLAQPSTQAPLICTIDHSPTWMDPILQFLQNQTLPANPAEARRVRHRSARYLIINGSLYNRGFSLPYL RFLTPEEGHYVLREIHEGICGNHSGTRSLAHKGNPPRILLAIAPH

Figure S10. Structural model of the PpRHLP protein (A) Sequence of PpRHLP. A predicted reverse transcriptase/RNase H domain is underlined in green. The letters highlighted in yellow correspond to the P6 to P1' positions of the predicted cleavage site with the P1 and P1' positions underlined in red. (B) Structural model of PpRHLP predicted using Phyre2 (see Material and Methods). The degree of confidence in the model was high with 87% of residues modelled at 100% degree of confidence based in part on the solved structure of the human immunodeficiency virus-2 reverse transcriptase (pdb: 1MU2). The position of the predicted cleavage site (P6 to P2 position highlighted in yellow; P1 and P1' positions highlighted in red) is shown with the red arrow. The cleavage site is located within an α -helix in the middle of the highly structured reverse transcriptase/RNAse H domain.

В

A >AtPRC

MCNCSSSFFCSLPVLNARLVKPNSETCRWRLKRIQHSILNCFWIDSKNSPFLGQFSFIEKPRDNFICCLSSSLSNE EDVVHOT VGSDSVELPGESDLVRLVGDNDLSITGSRGFKQSTTRS<u>NLVAKOVVSIOSALSLGFISOLWVDTTSWLV</u> LVVDVKPSLLSGESERFLLTDIVRVGDVVLVDNETVLDTEFKMVGLETLVGYRVVTPGGRNIGKVRGYSFNINSGI VESLELDSFGVTIIPSSLVSTYRLDVEDIIEVLODIVVVOEDAASRKORLTKGLWDAQFDSEYPDVEDLESSSDRR RRRRNNRSNRKKRDLDDEEWDIFR

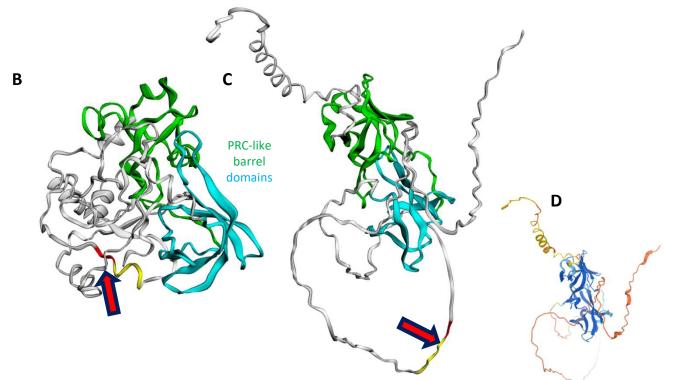


Figure S11. Structural models of the AtPRC protein (A) Sequence of AtPRC. Tandem PRC-like barrel domains are underlined in blue and green. Letters highlighted in yellow correspond to the P6 to P1' positions of the predicted cleavage site with the P1 and P1' positions underlined in red. (B-D) Structural models of AtPRC predicted using Phyre2 (B, see Materials and Methods) or Alphafold (C, PDB file of the model available at <u>https://www.alphafold.ebi.ac.uk/</u>). For both models, the color scheme is as follows: tandem PRC-like barrel domains in blue and green, P6 to P2 positions of the predicted cleavage site in yellow and P1 to P1' position of the cleavage site in red. The position of the cleavage site is highlighted with the red arrow. The degree of confidence in the Phyre 2 model (B) varied with the domains of the protein. The predicted tandem PRC-like domains were predicted with a very high degree of confidence (98.1%) based in part on the solved structure of a PRC-barrel domain protein from Rhodopseudomonas palustris (pdb: 3HTR). Other regions of the protein (including the region of the predicted cleavage site) were modeled ab silico with a low degree of confidence. The degree of confidence in the Alphafold model (C) also varied with the region of the protein, as shown in (D) and using the following color scheme: dark blue (more than 90 %), light blue (70-90 %), yellow (50-70%) and orange (less than 50%). The position of the cleavage site differed in the two models. In the Phyre2 model, the cleavage site is located within a weakly predicted putative α -helix in an otherwise disorganized region of the protein. In the Alphafold model, the cleavage site is located in a region of the protein predicted to be generally disorganized.