
Supplementary material 

Mutation landscape of multiple myeloma measurable residual disease: identification of 

targets for precision medicine 

Supplementary results 

Copy number variation analysis and cellularity 

The copy number analysis (CNA) yielded ambiguous results, due to the variation in the sequencing depth ratio 

between tumor and normal sample (Figure S19). Cellularity results showed median 0,69 (range 0,31 – 0,99). 

However, cellularity value is influenced by the CNA estimation, thus this measure can be also biased. The only 

exception in the dataset is the sample M-16-028 where WGA amplified normal sample was used for calculations 

and resulted in clear pattern of CNAs showing gains on chromosomes 1, 4, 9, 11 and loss of chromosome 13 . 

Cellularity of the tumor sample was 0,94. 

Supplementary methods 

Sampling 

Samples of bone marrow (BM) and peripheral blood (PB) were taken from patients responding to the therapy 

and reaching complete remission, very good partial response or partial response after bortezomib based 

treatment (Table S1). MRD negative samples were not included in the analysis. Patients were followed-up for at 

least 24 months. The samples for this study were taken after treatment, in most of the cases after transplantation 

(Figure S1) in multiple myeloma centres in Ostrava, Brno, Pilsen, Hradec Králové, Olomouc (Czech Republic) and 

Bratislava (Slovakia). 22 samples were used for the final analysis. The study is in accordance with the current 

version of the Helsinki Declaration and was approved by institutional ethics boards. All the patients were 

informed about the research activities and signed an informed consent form. Patient’s clinical data are available 

in supplementary table S2. Samples of peripheral blood were frozen and DNA was later isolated by isolator 

MagCore Automated Nucleic Acid Extractor Magnesia 16 (RBC bioscience) with MagCore 101 Genomic DNA 

Whole Blood Kit (RBC bioscience) and then used for library preparation as described below. Samples of bone 

marrow were processed fresh. 

Flow cytometry assessment and fluorescence activated cell sorting (FACS) 

The level of MRD depth was evaluated in BM by flow cytometry using 2nd generation of EuroFlow panel.1 Then, 

samples of BM were processed by centrifugation with Ficoll or with red cell lysing by ammonium chloride to get 

mononuclear cells or bone marrow deprived of red blood cells. Next, A-PCs were isolated by fluorescence 

activated cell sorting according to pathological immunophenotype of A-PCs using the following markers: CD38, 

CD19, CD45, CD56, eventually CD117 (Figure S2) using FACS ARIATM III machine (BD Biosciences). Median of 

sorted cells was 2000 (Table S1). 

Whole genome amplification, library preparation and sequencing 

Sorted A-PCs were subjected to whole genome amplification (WGA) using Repli-g Single cell kit (Qiagen). Absence 

of contaminating human genomic DNA in negative control was checked by PCR of human fibrinogen gene. 

Amplified DNA was then purified by QIAquick PCR Purification Kit (Qiagen). One microgram of non-amplified DNA 

from PB and WGA DNA from A-PCs were used for library preparation with SureSelect V6 kit (Agilent Tech.) and 

sequenced on Illumina HiSeq4000 platform, 100 cycles in Macrogene Inc. company with target coverage 50x. The 

only exception was normal sample of the patient M-16-028, where WGA was applied due to the insufficient yield 

of non-amplified DNA. 



Variant calling 

The data analysis part was covered by snakemake pipeline2. The quality of fastq files was controlled by fastqc3. 

Paired-end reads were mapped to the hg19 reference genome, using BWA MEM4 with default setting, duplicates 

were marked using samblaster5 and reads in the bam file were sorted using sambamba6 (bwa mem -t {threads} 

-M -R {params.read_group} {params.genome_index} {input.reads} | samblaster -M | sambamba view -S -f

bam -l 0 /dev/stdin | sambamba sort -o {output} /dev/stdin).

Variants were called on both PB and A-PCs using FreeBayes7 with adjusted setting to capture also low frequency 

variants (freebayes -f data/external/genome/GRCh37/human_g1k_v37.fasta --strict-vcf --pooled-discrete --

pooled-continuous --genotype-qualities --report-genotype-likelihood-max --allele-balance-priors-off --no-

partial-observations --min-repeat-entropy 1 --min-alternate-fraction 0.05 --min-alternate-count 2 

data/processed/MRD-16-028/MRD-16-028_NORMAL.bam data/processed/MRD-16-028/MRD-16-

028_TUMOR.bam --region 1:0-100000).  

Somatic variants were then called using a modified version of vcfsamplediff tool. We further filtered the resulting 

data by bedtools8 and vcflib9 to get variants located in baits + 100 bp, in high confidence intervals of the reference 

sequence and with high somatic score (bedtools intersect -header -a 

data/raw/${SAMPLE_ID}.variants.all.vcf.gz -b data/external/S07604514_Padded_noChr.bed | bedtools 

intersect -header -v -a - -b data/external/AllRepeats_lt51bp_gt95identity_merged.bed | mmseqtk somatic -t 

${SAMPLE_ID}_TUMOR -n ${SAMPLE_ID}_NORMAL | vcffilter -f "MMTKLOD > 3.5" > ${OUTPUT}); with respect 

to expected artefacts introduced by WGA, we decided to use a more lenient approach compared to other 

standard pipelines, and to build a set of high-confidence mutations by applying ad-hoc hard filters. To do that, 

we first annotated somatic mutations using variant effect predictor10, then converted this data to mutation 

annotation format (MAF) using vcf2maf11 and finally applied the following filters created with pandas library to 

select variants: 

1) not located in homopolymers longer than 5nt

2) not present in PB (0 alternative reads in PB)

3) not present with frequency above 1 % in the databases of human genome variation (gnomAD, ExAC)

4) not present in immunoglobulin genes

5) not identified as tolerated/benign simultaneously in SIFT and PolyPhen databases

6) having Moderate/High impact as predicted by default maftools filter based on

http://asia.ensembl.org/Help/Glossary?id=535.

7) Mutations with evidence of expression in our MM cohort (Table S2) were chosen for presentation in the

main text.

The basic data visualisation was done by maftools12, lollipops13 and lifelines14. 

Copy number variation analysis and cellularity 

Copy number variation and cellularity was estimated with Sequenza package15 by running following sequenza-

utils commands: 

sequenza-utils gc_wiggle -w 50 –fasta human_g1k_v37.fasta -o human_g1k_v37.gc50Base.wig.gz 

sequenza-utils bam2seqz -n NORMAL.bam -t TUMOR.bam --fasta .human_g1k_v37.fasta -gc 

human_g1k_v37.gc50Base.wig.gz -o out.seqz.gz 

sequenza-utils seqz_binning --seqz out.seqz.gz -w 50 -o binned.seqz.gz and Sequenza R package with default 

settings. 

Pathway analysis 

The pathway analysis was done with the Fisher's Exact test for the merged list of all mutated genes non-filtered 

for frequency below 1% in general population and separately for sets of genes from individual MM MRD patients 

to find out whether some of the pathways were extensively enriched in mutations and to depict potential 

patterns of mutated genes which were otherwise only rarely shared within the patients cohort. We used 7 gene 

set collections from MSigDB16 (gene ontology (GO) biological processes (4436 gene sets), GO cell components 

(580 gene sets), GO molecular function (901 gene sets), KEGG (186 gene sets), Reactome 1200 gene sets), 

http://asia.ensembl.org/Help/Glossary?id=535


Oncogenic signatures (189 gene sets)) and GO slim dataset (135 gene sets) that was generated using the 

map2slim utility of the OWL tools. Results were corrected for multiple-hypothesis testing using the Benjamini-

Hochberg procedure and significance threshold was set to FDR < 0.05 (Table S4).  

Survival analysis 

Progression free survival (PFS) for individual mutated genes and genesets with at least 1 mutated gene resulting 

from the previously mentioned pathway analysis were tested by logrank test using lifelines library14. Resulting p-

values were corrected with benjamini hochberg correction. 

Annotation with pharmacological information 

OncoKB17 database and Drug genome interaction database18 were used to get a list of drugs associated with 

genes.  

Drivers and MM associated genes 

Because of small cohort size, we called drivers those genes identified as important in multiple myeloma in 

previous publications (Bolli et al., 2014; Kortüm et al., 2016; Lohr et al., 2014; Walker et al., 2018 19–22), table S3. 

The frequency of mutations in genes identified in this study was also compared with CoMMpass data available 

via GDC portal.23 

Evidence of expression 

The mutation data were complemented with the expression value from our unpublished 10 MM patient dataset, 

not overlapping with patients and samples used in this study (Table S2) and only genes with average baseMean 

expression > 8 were chosen for presentation in the final results. 

Data availability 

Data are stored in EGA under number EGAS00001004855. 

 

  

  



Supplementary figures 

 

Figure S1: Timeline of patient’s treatment. Time of sampling is represented by red ractangle with number 

showing reached MRD level. Left panel – patien’t identification numbers. Treatment regime and its duration is 

represented by white ractangles (VP –  Bortezomib, Prednisone; CVD – Cyclophosphamide, Bortezomib, 

Dexamethasone; VTD – Bortezomib, Thalidomide, Dexamethasone; VMP – Bortezomib, Melphalan, Prednisone; 

BAD – Bortezomib, Doxorubicin, Dexamethasone; KRD – Carfilzomib, Lenalidomide, Dexamethasone; Tx – 

autologous stem cell transplantation; TxTx – tandem autologous stem cell transplantation). Numbers in grey 

rectangles indicate disease progression and time to progression in months. 

  



A             B 

Figure S2: Sorting strategy for A-PCs. (A) PC – identification of PCs in BM; (B) Q1 – normal plasma cells, Q3 and 

Q4 potential aberrant plasma cells. Q3 or Q4 was sorted after confirmation of aberrant immunophenotype by 

next generation flow cytometry lab. If needed, CD117 was involved in the analysis as well.

 

Figure S3: Variant summary. Graphs colored according to Variant Classification. TNP – triple nucleotide 

polymorphisms, SNP – single nucleotide polymorphism, ONP – Oligo-nucleotide polymorphism, INS – insertion, 

DNP – Double nucleotide polymorphism, DEL – deletion. 

  



 PATHWAY ANALYSIS RESULTS – PATHWAYS WITH AT LEAST 1 MUTATED GENE 

 

Figure S4: Involvement of pathways form go slim dataset, involved in at least 9 patients (41%). 



 

Figure S5: Pathways involved in at least 7 samples in go slim dataset, exhibited for particular patients. 

 

 



 

Figure S6: Pathways involved in at least 7 samples in KEGG dataset. 

 

 

Figure S7: Pathways involved in at least 7 samples in KEGG dataset, exhibited for particular patients. 

 

Figure S8: Pathways involved in at least 5 samples in oncogenic signatures dataset. 



 

Figure S9: Pathways involved in at least 5 samples in oncogenic signatures dataset, exhibited for particular 

patients. 

 

 

Figure S10: Pathways occurred in at least 9 samples in Reactome dataset. 

 



 

Figure S11: Pathways involved in at least 9 samples in reactome dataset, exhibited for particular patients.  



Association of shared pathways on survival 

 

Figure S12: Kaplan-Meier curves showing impact of at least one mutated gene in pathways from GO all dataset 

on survival. 0 – no gene with mutation, 1 – at least one gene with mutation, name of pathway and resulting 

false discovery rate (FDR) of log-rank test, adjusted by Benjamini-Hochberg correction.  

 

Figure S13: Kaplan-Meier curves showing impact of at least one mutated gene from pathways from GO biological 

processes dataset at survival. 0 – no gene with mutation, 1 – at least one gene with mutation. FDR – false 

discovery rate, adjusted by Benjamini-Hochberg correction. 



 

 

Figure S14: Kaplan-Meier curves showing impact of at least one mutated gene in pathways from GO cellular 

components dataset at survival. 0 – no gene with mutation, 1 – at least one gene with mutation. FDR – false 

discovery rate, adjusted by Benjamini-Hochberg correction. 

 

Figure S15: Kaplan-Meier curves showing impact of at least one mutated gene in pathways from GO slim dataset 

at survival. 0 – no gene with mutation, 1 – at least one gene with mutation. FDR – false discovery rate, adjusted 

by Benjamini-Hochberg correction. 

 

Figure S16: Kaplan-Meier curves showing impact of at least one mutated gene in pathways from KEGG dataset 

at survival. 0 – no gene with mutation, 1 – at least one gene with mutation. FDR – false discovery rate, adjusted 

by Benjamini-Hochberg correction. 



 

Figure S17: Kaplan-Meier curves showing impact of at least one mutated gene in pathways from oncogenic 

signalization dataset at survival. 0 – no gene with mutation, 1 – at least one gene with mutation. FDR – false 

discovery rate, adjusted by Benjamini-Hochberg correction. 

 

 

Figure S18: Kaplan-Meier curves showing impact of at least one mutated gene in pathways from reactome 

dataset at survival. 0 – no gene with mutation, 1 – at least one gene with mutation. FDR – false discovery rate, 

adjusted by Benjamini-Hochberg correction. 
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Figure S19: Copy number analysis of all samples in the dataset. Red bars indicate chormosome gain/losses.
Dots mark allele frequency distribu�on and depth ra�o distribu�on between normal and tumor sample.



Supplementary tables in excel file 

S1: Clinical data and genes. This table shows patients’ clinical data and presence of mutations in genes in 

particular patients. 

S2: All variants. The MAF file showing all variants after filtering mentioned in supplementary methods. 

S3: MM associated genes. Overlap of our dataset with genes previously identified as relevant for MM. 

S4: All pathways. All pathways with at least 1 mutated gene, all 9 datasets merged. 

S5: Significant pathways. All significantly mutated pathways. Tested by Fisher test, corrected by Benjamini-

Hochberg procedure as mentioned in supplementary methods. 

S6: MM associated pathways. Details for mutated positions in genes involved in pathways previously associated 

with multiple myeloma. 

S7: Genes survival. Association of mutated genes and survival according to log-rank test. Both normal and 

Benjamini-Hochberg adjusted p-values shown. 

S8: Pathways survival. Association of shared pathways with at least 1 mutated gene with progression free 

survival according to log-rank test. P-value and Benjamini-Hochberg adjusted p-value shown. 

S9: DGIdb. Intersection of our results with The Drug-Gene Interaction Database. 

S10: Drugability. Three tables showing intersection of our results with OncoKB database, TARGET v3 database 

and Intersection of our genes marked MM associated with records in DGIdb database. 

S11: Drugable genes: Genes with known drug associations and expression evidence selected for further 

preclinical investigation. 
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