Current Biology, Volume 32

Supplemental Information

Direct inhibition of phosphate transport

by immune signaling in *Arabidopsis*

Julian Dindas, Thomas A. DeFalco, Gang Yu, Lu Zhang, Pascale David, Marta Bjornson, Marie-Christine Thibaud, Valéria Custódio, Gabriel Castrillo, Laurent Nussaume, Alberto P. Macho, and Cyril Zipfel

Figure S1: Electrophysiological characterization of PHT1-mediated P_i transport. Related to Figure 1. (A) Boxplot of resting E_M values averaged over the 5 s before P_i application. Values correspond to measurements shown in Figure 2A and B. (B) Illustration highlighting the genomic locus of PHT1;4 and the position of analysed T-DNA insertion mutants. (C) Transcript analysis of PHT1:1 (right panel) and PHT1:4 (left panel) in Col-0 and the homozygous PHT1;4 T-DNA insertion mutants SALK_138643 and SAIL_1225_F08 grown on media supplemented without or with 312 µM Pi. (D) Averaged responses of the PM potential to application of 1 mM inorganic Pi at pH 6. The response was tested in Col-0 and the homozygous PHT1;4 T-DNA insertion mutants SALK_138643 and SAIL_1225_F08 grown on media supplemented without Pi. Curves are normalized and aligned to the point of P_i application (Δt = 2). Error bars show \pm SEM (n = 6). (E) Boxplot of resting E_M values for seedlings grown at the indicated P_i conditions. Values were averaged over the 5 s before P_i application. Values correspond to measurements shown in Figure 2D. (F) Straight lines connect average resting E_M values averaged over the 5 s before P_i application for external pH values of 4.5, 6 and 7.5 and seedlings grown on media supplemented without or with 312 µM Pi. Values correspond to measurements shown in Figure 2E. Light colored points highlight individual measurements. Error bars show ±SEM. (G). Averaged responses of the PM potential to application of 2.5 mM Pi, phosphite, sulfate and 10 mM nitrate at pH 6. The measurements correspond to Figure 2G and H. The responses were tested in Ws-2 and in the double mutant pht1;1 pht1;4. Curves are normalized and aligned to the point of P_i application ($\Delta t = 2$). The inset in the left panel shows the tested nitrate concentrations <10 mM on Ws-2 seedlings. Error bars show ±SEM (n = 6 to 8). Boxes indicate the 25 and 75 percentile, the horizontal line shows the median, error bars represent ±SD. Closed circles show individual measurements. When indicated significance was tested with a one-way ANOVA and a post-hoc Tukey test. Equal letters at the top of the panel indicate p > 0.05.

Figure S2: Effect of elicitor treatment on P_i transport. Related to Figure 2. (A) Dose response curves for P_i-induced depolarization of Col-0 root hairs in dependence of the P_i concentration in the growth media. Applied P_i concentration was 1 mM, 0.1 mM or 0.01 mM, as indicated. Responses were measured without or after a 15 to 30 min pretreatment with an elicitor mix of 1 μ M flg22, elf18 and AtPep1. Values correspond to the average ΔE_M values at $\Delta t = 4.5$ to 5.5 Error bars show ±SEM. Solid lines show fits of sigmoidal dose-response curves. Error bars show ±SEM (n = 5 to 11). (B) Averaged responses of the PM potential to application of 1 mM, or 0.01 mM P_i in Col-0 root hairs grown at 1 μ M P_i. Curves are normalized and aligned to the point of phosphate application ($\Delta t = 2$). Measurements correspond to those in (A). Error bars show ±SEM (n= 5 to 11). (C) Biologically-independent replicates of radioactive P_i-uptake experiments corresponding to Figure 2B. Boxes indicate the 25 and 75 percentile, the horizontal line shows the median, error bars represent ±SD. Closed circles show individual measurements. Significance was tested with a one-way ANOVA and a post-hoc Tukey test. Equal letters at the top of the panel indicate p >0.05.

Figure S3: PHT1;4 and PHT1;4 are substrates for BIK1 and PBL1. Related to Figure 3. (A) Predicted topology of PHT1;4 with the large cytosolic loop and C-terminus highlighted in magenta. Prediction with: <u>https://wlab.ethz.ch/protter</u>. (B and C) ³²P kinase assay showing *in vitro* transphosphorylation of the PHT1;4 and PHT1;1 cytosolic loops by BIK1 (B) and PBL1 (C). Asterisk indicates kinase-dead variant. Kinase assays were repeated at least twice with similar results.

Figure S4: Biologically-independent replicates corresponding to Figure 3D and E. (A) Averaged responses of the PM potential to application of 0.1 mM P_i at pH 6 without or after a 15 to 30 min pretreatment with an elicitor mix of 1 μ M flg22, elf18 and AtPep1. The response was tested in Col-0 and the *bik1 pbl1* double mutant. Curves are normalized and aligned to the point of P_i application ($\Delta t = 2$). Error bars show ±SEM (n = 18 to 32). (B) Boxplot of ΔE_M values at $\Delta t = 5.5$ to 6.5 from curves in (A). (C) Boxplot of resting E_M values averaged over the 5 s before P_i application. Values correspond to measurements shown in Figure 3A and B. Boxes indicate the 25 and 75 percentile, the horizontal line shows the median, error bars represent ±SD. Closed circles show individual measurements. When indicated significance was tested with a one-way ANOVA and a post-hoc Tukey test. Equal letters at the top of the panel indicate p >0.05.

Name	Sequence 5`to 3`	purpose
PHT1;4_fwd	GCGCAAAGCATGAACGCAATTC	qPCR
PHT1;4_rev	CGTGCTACACAAGGCGATTAGC	qPCR
PHT1;1_fwd	GGAGCCATTGTTGGAGCCTTTG	qPCR
PHT1;1_rev	CGTCTACCTTGGCCTTGTCTTGTG	qPCR
ACTIN2_fwd	CTTGTTCCAGCCCTCGTTTGTG	qPCR
ACTIN2_rev	CCTTGGAGATCCACATCTGCTG	qPCR
Ubox_fwd	TGCGCTGCCAGATAATACACTATT	qPCR
Ubox_rev	TGCTGCCCAACATCAGGTT	qPCR
ZAT12_fwd	TTGGTTACACGCGCTTTGTTGC	qPCR
ZAT12_rev	ACAAGCCACTCTTCCCACTG	qPCR
PLP2_fwd	AACCCGGCTTTGTTGGCCATTG	qPCR
PLP2_rev	TTCCGGTTCCAAGCGAAAGCAC	qPCR
PHT1;4_234_Sall-f	TAGTCGACtctcaaggtcgaagatgcc	pGEX cloning
PHT1;4_294_NotI-r	TAGCGGCCGCTTAATGGCGACTCATGAATTC	pGEX cloning
PHT1;4_503_Sall-f	TAGTCGACtcgtacctgaatctaaagg	pGEX cloning
PHT1;4_NotI-r	TAGCGGCCGCTTAAACTATTGGGACCGTTC	pGEX cloning
PHT1.1_233_Sall-f	TAGTCGACtccgtatgaagatgcctg	pGEX cloning
PHT1.1_293_NotI-r	TAGCGGCCGCTTAatggcgtctaaggaattc	pGEX cloning
PHT1.4_B1-f	GGGGACAAGTTTGTACAAAAAAGCAGGCTTTatggcaagggaacaattac	pDONR cloning
PHT1.4-B2-r	GGGGACCACTTTGTACAAGAAAGCTGGGTCAACTATTGGGACCGTTC	pDONR cloning
338F	ACTCCTACGGGAGGCAGCA	16s rRNA seq
806R	GGACTACHVGGGTWTCTAAT	16s rRNA seq
Illumina-PCR-F	AATGATACGGCGACCACCGAGATCTACACGCCTCCCTCGCGCCATCAGAGATGTG	16s rRNA seq

Table S1. Primers used in this study	y. Related to STAR Methods.
--------------------------------------	-----------------------------

Name	Sequence 5' to 3'
PCR_R_bc1	CAAGCAGAAGACGGCATACGAGAT TTACCGACG GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc2	CAAGCAGAAGACGGCATACGAGAT ATTGGACAC GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc3	CAAGCAGAAGACGGCATACGAGAT TCGCATGGA GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc4	CAAGCAGAAGACGGCATACGAGAT AGCGAACCT GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc5	CAAGCAGAAGACGGCATACGAGAT AGCTTCGAC GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc6	CAAGCAGAAGACGGCATACGAGAT GTCAGCCGT GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc7	CAAGCAGAAGACGGCATACGAGAT TCCAGATAG GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc8	CAAGCAGAAGACGGCATACGAGAT GAGAGTCCA GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc9	CAAGCAGAAGACGGCATACGAGAT GCTCACAAT GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc10	CAAGCAGAAGACGGCATACGAGAT TTGACGACA GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc11	CAAGCAGAAGACGGCATACGAGAT CTTAGAACG GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc12	CAAGCAGAAGACGGCATACGAGAT CGGTTCACA GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc13	CAAGCAGAAGACGGCATACGAGAT CGATAGGCC GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc14	CAAGCAGAAGACGGCATACGAGAT GCTATATCC GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc15	CAAGCAGAAGACGGCATACGAGAT GTCTTCAGC GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc16	CAAGCAGAAGACGGCATACGAGAT TAGACACCG GTGACTGGAGTTCAGACGTGTGCTC

PCR_R_bc17	CAAGCAGAAGACGGCATACGAGAT	TCAGCTGAC	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc18	CAAGCAGAAGACGGCATACGAGAT	TAAGTCGGC	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc19	CAAGCAGAAGACGGCATACGAGAT	GCTCCTTAG	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc20	CAAGCAGAAGACGGCATACGAGAT	ATGGCCTGA	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc21	CAAGCAGAAGACGGCATACGAGAT	TTGCAAGTA	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc22	CAAGCAGAAGACGGCATACGAGAT	CCTAGTAAG	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc23	CAAGCAGAAGACGGCATACGAGAT	CTAGGATCA	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc24	CAAGCAGAAGACGGCATACGAGAT	TATGAACGT	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc25	CAAGCAGAAGACGGCATACGAGAT	CTTGTGCGA	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc26	CAAGCAGAAGACGGCATACGAGAT	CACGATGGT	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc27	CAAGCAGAAGACGGCATACGAGAT	ACGTGCCTT	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc28	CAAGCAGAAGACGGCATACGAGAT	TGAACTAGC	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc29	CAAGCAGAAGACGGCATACGAGAT	TATTCAGCG	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc30	CAAGCAGAAGACGGCATACGAGAT	TAATCGGTG	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc31	CAAGCAGAAGACGGCATACGAGAT	GCGTCCATG	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc32	CAAGCAGAAGACGGCATACGAGAT	CGTAAGATG	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc33	CAAGCAGAAGACGGCATACGAGAT	CTGTTACAG	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc34	CAAGCAGAAGACGGCATACGAGAT	ACGATCATC	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc35	CAAGCAGAAGACGGCATACGAGAT	GTAACGGCT	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc36	CAAGCAGAAGACGGCATACGAGAT	CCATGCTTA	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc37	CAAGCAGAAGACGGCATACGAGAT	GTACGCACA	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc38	CAAGCAGAAGACGGCATACGAGAT	TTAGAGCCA	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc39	CAAGCAGAAGACGGCATACGAGAT	ATAAGGTCG	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc40	CAAGCAGAAGACGGCATACGAGAT	AGTGGCACT	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc41	CAAGCAGAAGACGGCATACGAGAT	CCAGAAGTG	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc42	CAAGCAGAAGACGGCATACGAGAT	CTACTAGCG	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc43	CAAGCAGAAGACGGCATACGAGAT	TAGCGTTCC	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc44	CAAGCAGAAGACGGCATACGAGAT	GTGAGTCAT	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc45	CAAGCAGAAGACGGCATACGAGAT	TGGTCCTAC	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc46	CAAGCAGAAGACGGCATACGAGAT	TACGCGTAC	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc47	CAAGCAGAAGACGGCATACGAGAT	GAGCCATCT	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc48	CAAGCAGAAGACGGCATACGAGAT	CGTCCGTAT	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc49	CAAGCAGAAGACGGCATACGAGAT	GATACGTTC	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc50	CAAGCAGAAGACGGCATACGAGAT	CAGCTGGTT	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc51	CAAGCAGAAGACGGCATACGAGAT	TTAAGCGCC	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc52	CAAGCAGAAGACGGCATACGAGAT	CCTGCGAAG	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc53	CAAGCAGAAGACGGCATACGAGAT	TTGTAGCCG	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc54	CAAGCAGAAGACGGCATACGAGAT	TCTGTAGAG	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc55	CAAGCAGAAGACGGCATACGAGAT	CTATTAAGC	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc56	CAAGCAGAAGACGGCATACGAGAT	CTCTGAGGT	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc57	CAAGCAGAAGACGGCATACGAGAT	CAGGATTCG	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc58	CAAGCAGAAGACGGCATACGAGAT	TCACTGCTA	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc59	CAAGCAGAAGACGGCATACGAGAT	ACATGTCAC	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc60	CAAGCAGAAGACGGCATACGAGAT	ATTCTGCCG	GTGACTGGAGTTCAGACGTGTGCTC

PCR_R_bc61	CAAGCAGAAGACGGCATACGAGAT	TACACGCTG	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc62	CAAGCAGAAGACGGCATACGAGAT	TGCATACAC	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc63	CAAGCAGAAGACGGCATACGAGAT	ACGCAATGT	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc64	CAAGCAGAAGACGGCATACGAGAT	GCTCGAAGA	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc65	CAAGCAGAAGACGGCATACGAGAT	AGACGTTGC	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc66	CAAGCAGAAGACGGCATACGAGAT	TAGAGCTGC	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc67	CAAGCAGAAGACGGCATACGAGAT	GGTAACCTC	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc68	CAAGCAGAAGACGGCATACGAGAT	GACTTCATG	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc69	CAAGCAGAAGACGGCATACGAGAT	CTGCATACT	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc70	CAAGCAGAAGACGGCATACGAGAT	TAAGGCATC	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc71	CAAGCAGAAGACGGCATACGAGAT	AGTATTCGC	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc72	CAAGCAGAAGACGGCATACGAGAT	TTCGCAGAT	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc73	CAAGCAGAAGACGGCATACGAGAT	GCACCTGTT	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc74	CAAGCAGAAGACGGCATACGAGAT	CTCATGGTA	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc75	CAAGCAGAAGACGGCATACGAGAT	ACTAGTTGG	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc76	CAAGCAGAAGACGGCATACGAGAT	GCGGACTAT	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc77	CAAGCAGAAGACGGCATACGAGAT	ATCGCTTAA	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc78	CAAGCAGAAGACGGCATACGAGAT	TCAGGACGT	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc79	CAAGCAGAAGACGGCATACGAGAT	GCATTACTG	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc80	CAAGCAGAAGACGGCATACGAGAT	GCTATGGAA	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc81	CAAGCAGAAGACGGCATACGAGAT	GATTGTGCA	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc82	CAAGCAGAAGACGGCATACGAGAT	AGCCTCATG	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc83	CAAGCAGAAGACGGCATACGAGAT	AACTCCTGT	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc84	CAAGCAGAAGACGGCATACGAGAT	TAGAAGGCT	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc85	CAAGCAGAAGACGGCATACGAGAT	GACTAGTCA	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc86	CAAGCAGAAGACGGCATACGAGAT	GGATACTCG	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc87	CAAGCAGAAGACGGCATACGAGAT	CCGACATTG	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc88	CAAGCAGAAGACGGCATACGAGAT	TCGTGACGC	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc89	CAAGCAGAAGACGGCATACGAGAT	GGCCTATAA	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc90	CAAGCAGAAGACGGCATACGAGAT	GTAGCACTC	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc91	CAAGCAGAAGACGGCATACGAGAT	CTAAGACGT	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc92	CAAGCAGAAGACGGCATACGAGAT	CGTGCACAA	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc93	CAAGCAGAAGACGGCATACGAGAT	TGTAACGCC	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc94	CAAGCAGAAGACGGCATACGAGAT	ATGCGAGAC	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc95	CAAGCAGAAGACGGCATACGAGAT	CCGTCAAGA	GTGACTGGAGTTCAGACGTGTGCTC
PCR_R_bc96	CAAGCAGAAGACGGCATACGAGAT	TAGTAGCAC	GTGACTGGAGTTCAGACGTGTGCTC

 Table S2. Reverse primers for bacterial 16s rRNA sequencing. Related to STAR Methods.