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Supplementary Text 

Dynamical warming 

To explore the contribution of Arctic surface air temperature changes, we adopt the 

thermodynamic energy equation in pressure coordinates (54) which can be written as,  

0 =  
𝜕𝑇

𝜕𝑡
≈ 𝛾𝑇 = −𝑉ℎ ∙ ∇ℎ𝑇 +  𝑆𝑝𝜔 + 𝑄 

 𝑆𝑝 = −
𝑇

𝜃

𝜕𝜃

𝜕𝑝
 , 

where  𝑇  is the temperature, 𝑡  is the time, 𝛾  is the radiative relaxation time scale, 𝑉ℎ  is the 

horizontal velocity vector, ∇ℎ is the horizontal gradient operator. The first term on the right-hand 

side is the horizonal temperature advection. 𝑆𝑝 is a static stability parameter, 𝜃 is the potential 

temperature, 𝑝 is the pressure, and 𝜔 is the vertical 𝑝 velocity. The second term accounts for 

adiabatic warming (downward motion) or cooling (upward motion). The third term, Q represents 

the remaining diabatic heating contribution including latent heating, infrared radiation (IR) 

warming by clouds, and surface heat fluxes. We compare the relative contribution of above three 

terms to account for the surface air temperature changes in the Arctic.  

  



 

 

 

 

 

Fig. S1. Spatial differences of the tropical SST anomalies for major El Niño events. SST 

(shading; °C) anomalies during 1997/98 DJFM from (a) OISST and (b) the ensemble-mean of the 

CESM2 pacemaker simulation. Difference of SSTA between 1997/98 and 1982/83 from (c) OISST 

and (d) CESM2 simulation. (e, f) Same as (c, d) but 2015/16.  

 

 



 

 

 

 

 

 

Fig. S2. Anomalous diabatic heating and precipitation in observations/reanalysis and the 

CESM2 pacemaker experiments. Vertically integrated diabatic heating (Shading; W m-2) from 

1000 hPa through 200 hPa and precipitation anomalies (contours; 2 mm/day interval) from (left; 

a, c, d) ERA5 reanalysis and GPCP, respectively, and (right: b, d, f) ensemble mean of the 

CESM2 simualtions for (top) 1982/83 DJFM, (middle) 1997/98 DJFM, and (bottom) 2015/16 

DJFM. 

  



 

 

 

 

 

Fig. S3. Impacts of Niño3.4 SST anomalies on the Northern Hemisphere extratropics. (a, b) 

Surface air temperature (°C) anomalies over the Arctic Ocean and (c, d) tropical (15°S-15°N) SST 

anomalies (bottom panels; °C) and extratropical (15°N-90°N) non-zonal component of 200 hPa 

geopotential height anomalies (top panels; m) during boreal winter (DJFM) of (a, c) 1982/83 and 

(b, d) 1997/98 from CESM2 pacemaker simulation, in which Niño3.4 SST anomalies are restored. 

Statistically significant values (p<0.05) are stippled in (a, b).  

 

  



 

 

 

 

 

Fig. S4. Attribution of changes in the Arctic SAT in ERA5. (a, b, c) Anomalous surface air 

temperature (°C), verically integrated (d, e, f) horizontal temperature advection (W m-2) and (g, h, 

i) adiabatic warming (W m-2) from 1000 hPa through 850 hPa, and (j, k, l) downward infrared 

radiation (IR; W m-2) from ERA5 reanalysis during (left; a, d, g, j) 1982/83, (middle; b, e, h, k) 

1997/98, and (right; c, f, i, l) 2015/16 DJFM. Solid pink lines denote the climatological sea ice 

edges that correspond to 15% of sea ice concentration in observation. 



 

 

 

 

 

Fig. S5. Attribution of changes in the Arctic SAT in CESM2 simulation. (a, b, c) Anomalous 

surface air temperature (°C), verically integrated (d, e, f) horizontal temperature advection (W m-

2) and (g, h, i) adiabatic warming (W m-2) from 1000 hPa through 850 hPa, and (j, k, l) downward 

infrared radiation (IR; W m-2) from CESM2 ensemble-mean simulation during (left; a, d, g, j) 

1982/83, (middle; b, e, h, k) 1997/98, and (right; c, f, i, l) 2015/16 DJFM. Statistically significant 

values (p<0.05) are stippled in (a, b, c, j, k, l). Solid pink lines denote the sea ice edges that 

correspond to 15% of sea ice concentration in the CESM2 control simulation.  



 

 

 

 

 

 

Fig. S6. Hovmöller plots of the equatorial eastern Pacific SST anomalies. Hovmöller 

(Longitude-Time) diagrams of observed weekly SST anomalies, averaged over 5°S to 5°N, for (a) 

1982/83, (b) 2015/16, and (c) 1997/98 across the equatorial Pacific Ocean, from 170°E to 80°W. 

(d) Same as (c) except for the SST anomalies in the ‘dEP’ experiment. 

 



 

 

 

 

 

Fig. S7. Impacts of EP SSTs on extratropical stationary waves. 300 hPa eddy (i.e., zonally 

asymmetric) streamfunction anomalies (color shading; 106 m2s-1) with the climatological eddy 

streamfunction (contours), where solid contours indicate positive values and dashed contours 

negative values (contour interval is 3 x 106 m2s-1 and the zero contour is omitted) during the winter 

of 1997/98 from (a) ENSO pacemaker simulation, (b) “dEP” simulation, and (c) their difference.  

  



 

 

 

 

 

Fig. S8. Arctic SAT response during La Niña events. Surface air temperature (°C) anomalies 

over the Arctic Ocean in the winter (DJFM) for (a, c) 2007/08 and (b, d) 2017/18 from (top) ERA5 

reanalysis and (bottom) CESM2 simulation. Statistically significant values (p<0.05) are stippled 

in (c, d).  



 

 

 

 

 

 

Fig. S9. Impacts of far-eastern equatorial Pacific SST anomalies on the Northern 

Hemisphere extratropics during the 2017/18 La Niña. (a, b) Surface air temperature (°C) 

anomalies over the Arctic Ocean and (c, d) extratropical (15°N-90°N) 200 hPa geopotential height 

anomalies (top panels; m) with tropical (15°S-15°N) SST anomalies (bottom panels; °C) in 

2017/18 winter (DJFM) from (a, c) the original CESM2 pacemaker simulation and (b, d) ‘iEP’ 

simulation, in which the far equatorial eastern Pacific SST anomalies are increased. Statistically 

significant values (p<0.05) are stippled in (a, b).  

 



 

 

 

 

 

 

Fig. S10. The pacemaker region in the CESM2 simulation. SST (shading; °C) and SLP (contour; 

2 hPa interval) anomalies during 1997/98 DJFM from the ensemble mean of the CESM2 

pacemaker simulation over the (a) pan-tropics and (b) Niño3.4 region. The green boxes in (a) and 

(b) indicate the pacemaker region over 15°S – 15°N, 0 – 360°E and the Niño3.4 region over 10°S 

– 10°N, 160°E – 90°W, respectively. 



 

 

 

 

Table S1. Time periods of CESM2 pacemaker simulations over Niño3.4. The two different 

periods of for each El Niño pacemaker simulation and the corresponding averaging periods for 

calculating the climatological-mean SSTs. 

Experiments Target SST 1982/83 El Niño 1997/98 El Niño 

El Niño 

pacemaker 

simulations 

Observed SSTs in the 

Niño3.4  

1982.04 – 1983.03 1997.04 – 1998.03 

Control 

simulation 

Climatological-mean 

SSTs in the Niño3.4  

Avg. (1981 – 1999) Avg. (1986 – 2005) 

  



 

 

 

 

Table S2. Idealized pacemaker simulations over pan-tropics. Idealized pacemaker experiments 

for 1997/98 El Niño 

Experiments cIO dEP 

El Niño pacemaker 

simulations 

Observed SSTs in the deep 

tropics 

+  

Climatological SST over the 

Indian Ocean 

 (1997.04 – 1998.03) 

Observed SSTs in the deep 

tropics 

+ 

Decreased SST over the 

equatorial Eastern Pacific 

(1997.04 – 1998.03) 

Control simulation Climatological-mean SSTs in 

the deep tropics 

 (1986 – 2005) 

Climatological-mean SSTs in 

the deep tropics 

(1986 – 2005) 

 

 

  



 

 

 

 

Table S3. Idealized pacemaker simulation for the 2017/18 La Niña.  

Experiments iEP 

La Niña pacemaker 

simulations 

Observed SSTs in the deep 

tropics 

+ 

Increased SST over the 

equatorial Eastern Pacific 

(2017.04 – 2018.03) 

Control simulation Climatological-mean SSTs in 

the deep tropics 

(2000 – 2018) 
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