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Reviewer Reports on the Initial Version: 

Referee #1 (Remarks to the Author): 

In the current manuscript, Sammut et al performed a multiomics analyses of breast cancer 

samples obtained before treatment, and correlated to sensitivity to chemotherapy. They further 

integrated the data to develop a multiomics predictor of response to neoadjuvant 

chemotherapy. This is a very large amount of work. The text and the figures are pleasant to 

read. I have some major comments about the interpretation of the data. 

1. While pCR is validated as a surrogate of outcome in TNBC and Her2+ BC, its relevance is 

more controversial in patients with HR+ BC. It's therefore unclear whether the predictor will 

have any clinical utility. The authors should test its value to predict relapse 

2. The paper is expected to show that multi-omics data integration improves AUC. Nevertheless, 

the paper does not provide evidence that it’s the integration of multi-omics data itself that 

improves performance. Indeed, some simple, previously reported molecular characteristics (TP53, 

TILs, ESR1 expression, proliferation modules), explain in large part the AUC increase and do not 

require data integration and machine Learning. To address this comment, the authors should test 

the AUC when some standard biological parameters are added to the clinical variables. As 

example; proliferation genes, ESR1, PGR, ERBB2 expression + TIL + TP53 mutations. Authors 

should also test how PAM50 improves AUC. 

The need for multi-omics data to build the predictor is also challenged by the Figure 4d that 

clearly shows that RNA (and probably ESR1, ERBB2, proliferation, T cell markers) + clinical 

variable allows reaching an AUC>0.8 

3. Some findings are not extremely robust to enter in the data integration / ML and do not have 

major important in the final predictor. The reviewer encourages the authors to add one more layer 

of validation before the external validation, to test that some findings are robust enough to enter 

in the data integration step. 

4. Clinical phenotypes have a very limited predictive power. The authors could maybe add a Ki67 

staining in the model, since it's a standard marker in translational research performed in 

neoadjuvant setting. Also, as mentioned before, it would be important to know the value of clinical 

+ PAM50 since 1st generation genomic signatures are increasingly used in BC. The lack of 

significance for cT and Her2 is surprising because these are two major drivers of pCR. This could 

maybe mean that the FDR threshold is too stringent for clinical parameters. In general, the 

reviewer would recommend the authors to use already published clinical algorithms rather than 

developing a new one based on small number of patients. 

5. lines 142-184 : since most of these parameters highly correlate with ER status, it’s important 

to show that their predictive value is independant to ER, or the authors just report a surrogate of 

ER status 

6. Extended sup Fig 9b is extremely important but quite difficult to understand. I would 

suggest this figure moves to the main set of figures and that authors make it more simple to 

read (as example, LR, RF, SVC should be defined in the figure legend). 

 



7. Figure 1 : The flow between step 1 and 2 unclear if the reader starts the paper by reading 

figure 1. Do the authors integrate only the factors significant in univariate ? or do they integrate 

all parameters ? 

8. Figure 4e : the goal of neoadj therapy is to allow breast conserving surgery, so there is 

no reason to deny NAT if a patient is predicted to have clinical response without pCR. 

9. Variables related to therapies should be removed from the model since they can’t be used as 

a predictor in a prospective setting 

Referee #2 (Remarks to the Author): 

A. Summary of key results. 

This interesting study uses a multi-platform and multi-OMICS approach to predict complete 

pathologic response at surgery in a cohort of breast cancer patients who receive neo-adjuvant 

therapy. Data from clinical and pathological records, DNA, RNA and digital pathology were 

combined using an ensemble of machine learning algorithms to predict pathologic response. The 

results were confirmed in two test cohorts. 

B. Originality and significance. 

The study takes advantage of a novel dataset of cases that were enrolled for generation of original 

data. The significance of the study is high because it shows how high dimensionality data can be 

processed and integrated in an interpretable and logical way that will allow a future clinical 

implementation. Measurements can be generated in a CLIA clinical laboratory and the fixed 

algorithm used for clinical assay development. 

A small weakness is that the study generated many confirmatory results, but only a few novel 

insights and no conceptually novel mechanisms related to our understanding of treatment 

response/resistance in breast cancer. As such, the relatively small number of cases in the discovery 

and validation cohort is sufficient, since no new biological concepts need to be validated. 

C. Data & methodology: validity of approach, quality of data, quality of 

presentation Strengths: 

 This is a nicely designed and elegant study because of its simplicity. 

 A broad range of data are aggregated in an interpretable fashion. 

 The discovery cohort, which consists of 168 cases with frozen tissue biopsies available, is well 

balanced in terms of breast cancer subtype and response to treatment endpoint 

 The choice of variables (features) that were analyzed is based on a sound rationale and uses well 

established methodologies for both, data generation and data analysis. 

 The ensemble approach is quite interesting and innovative and the variable importance 

highlights which of the features are most informative in the outcomes prediction. 

 The systematic analysis of the impact of clinical, DNA, RNA and digital pathology features in 

the outcomes prediction can be generalized across cancer types and data sources. 

Weaknesses: 

 Cohort sizes are relatively small and it is unclear whether all the features used in the model 

can be obtained from FFPE tissues. This would be important to mention because of its clinical 

relevance. 

 Please include the rank list of features in the supplementary data to complement the color-based 

figures. 

 It would be helpful to see the performance of an ensemble model that only includes the highest 

ranking features shown in Figure 4b and that can be applied to FFPE tissues. 

D. Appropriate use of statistics and treatment of uncertainties  

Please refer to comments from statistical reviewers 

 



E. Conclusions: robustness, validity, reliability 

The conclusions from the data are valid. The machine learning models were developed using a 

cross-validation and bootstrapping approach and individual models were fixed before testing. The 

ensemble approach increases the robustness. I would be helpful to understand the difference 

between algorithms in the outcomes prediction and to address cases that reveal a large 

difference in prediction results. 

F. Suggested improvements: experiments, data for possible revision  

Please see suggestions in section C. 

G. References: appropriate credit to previous work?  

The reference section is adequate. 

H. Clarity and context: lucidity of abstract/summary, appropriateness of abstract, introduction 

and conclusions 

The manuscript is well written and balanced. It should be easy to understand by reader from 

different disciplines. The expanded data and methods sections contain enough depth to allow 

evaluation by subject matter experts. 

Referee #3 (Remarks to the Author): 

This submission from Sammut et al. details the development, training, and independent 

validation of a multi-omic machine learning (ML) predictor of neoadjuvant therapeutic response 

across the major subtypes of breast cancer (ER+, HER2+, triple negative). The key finding is that 

the fully integrated model that incorporates clinical/pathological, DNA, RNA, digital pathology, 

and treatment data yielded the best performance (precision-recall AUC=0.87 in the validation set 

from the ARTemis trial), although the importance of treatment data was not weighted as highly 

by the model. Other important results include the finding that although the training set 

considered response as binary (pathological complete response (pCR) versus residual disease), 

the fully integrated model could subdivide residual disease into three categories of residual cancer 

burden (RCB). 

Originality and significance are deemed high. ML prediction of neoadjuvant therapeutic response 

has long needed a rigorous incorporation of tumor microenvironment variables, including (and 

perhaps especially) the immune response, and to do so here through precision-recall approaches 

to account for imbalanced observations is a strength. An additional strength is the inclusion of an 

ensemble classification approach. The work is of excellent quality, results are clearly explained, 

the manuscript is well-written, and for the most part the study is statically robust. 

Three points for the authors which, if addressed, would improve understanding and perhaps 

uptake of this ML predictor are as follows. One, it is a little perplexing that treatment 

parameters/features appear to be less important to the overall integrated training model 

(Figure 4b, Extended Data Figure 9b), as they are omitted from the description of the results on 

manuscript page 12. Two, the importance and signed importance z-scores for model features in 

these same figures suggest that clinical/pathological data such as HER2 status, ER status, and 

histological grade also contribute relatively little to overall classification, although this varies 

between individual models. Three, while the overall classifier takes an average of the three 

algorithms, across the board the random forest approach appears to discount immune features. 

What is the reason for this? 

 



Referee #4 (Remarks to the Author): 

The authors collected clinical, digital pathology, genomic and transcriptomic profiles pre-

treatment biopsies of breast tumors from 168 patients treated with chemotherapy +/-HER-

targeted therapy prior to surgery. First, they performed statistical analysis to identify features 

associated with pathological complete response (pCR) using each modality separately. Then, they 

developed machine learning models to predict pathological complete response (pCR) using all 

modalities. They also validated their results using an independent dataset. The statistical and 

machine learning methods used seem sound. Overall, the manuscript is clear and accessible. 

This work would be of interest to breast cancer research community. Novelty of results are 

outside the scope of my expertise, and I was unable to assess fully. 

Specific comments 

-Please define the abbreviation the first time you use it in the text (e.g., OR, CI, FDR line 

135) -When tested using the external cohort, models built with clinical+RNA, 

clinical+DNA+RNA, clinical+DNA+RNA+digital pathology and fully integrated didn’t show 

significant performance difference. Can authors comment on this in discussion section? -

https://github.com/cclab-339brca/neoadjuvant-therapy-response-predictor -> The link was 

broken. I couldn't review. 

-Figures: 

--All error bars and test statistics are not defined in several corresponding figure 

legends. --Fig 4d what does dotted line represent? Marker for training is missing. 

 

https://github.com/cclab-339brca/neoadjuvant-therapy-response-predictor


Author Rebuttals to Initial Comments: 

Referee 1: 

In the current manuscript, Sammut et al performed a multiomics analyses of breast cancer 

samples obtained before treatment and correlated to sensitivity to chemotherapy. They 

further integrated the data to develop a multiomics predictor of response to neoadjuvant 

chemotherapy. This is a very large amount of work. The text and the figures are pleasant to 

read. I have some major comments about the interpretation of the data. 

We would like to thank the referee for taking the time to go through our manuscript and for 

their positive and thorough comments. We are pleased this referee found the text and figures 

pleasant to read and also recognizes the large amount of work we have done. Indeed, this is 

the largest neoadjuvant breast cancer series that integrates pre-therapy shallow whole 

genome sequencing, deep whole exome sequencing, whole transcriptome and digital 

pathology data and correlates these with a spectrum of post-therapy tumour response. 

1. While pCR is validated as a surrogate of outcome in TNBC and Her2+ BC, its relevance is 

more controversial in patients with HR+ BC. It's therefore unclear whether the predictor will 

have any clinical utility. The authors should test its value to predict relapse 

Clinical Utility: We agree that the pCR/RCB classification has been previously validated as a 

surrogate of long-term survival, with the strongest association observed in ER-HER2-(TNBC) 

and HER2+ breast cancer1. However, since the submission of this manuscript, a further 

manuscript that we have co-authored has been accepted in Lancet Oncology (Yau et al, 

Lancet Oncology, in press), which performed the largest RCB meta-analysis to date (5,161 

patients from 12 international cancer centres), to definitively show that both pCR and the RCB 

classification are strongly predictive of relapse free survival across the full spectrum of the 

disease, including in ER+HER2-. We have provided a copy of the manuscript for reference (we 

would like to ask this is kept strictly confidential until Lancet Oncology embargo is over). 

In our current manuscript we have shown that the multi-omic machine learning predictor we 

developed: 

1. Predicts pCR prior to commencing therapy (which is strongly predictive of relapse free 

survival as per the Lancet Oncology paper). 

2. Predicts chemoresistance prior to commencing therapy, as it statistically correlates with 

the degree of residual disease post-therapy (Extended Fig 10). RCB is strongly predictive 

of relapse free survival across the spectrum of breast cancer, including ER+HER2- cases. 
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Given these two observations, the potential clinical utility lies on the multi-omic predictor’s 

ability to direct therapy selection in: 

1. Patients with chemosensitive tumours who will respond well to standard cytotoxic and 

targeted therapies and should receive current protocol regimens as they are more likely 

to have breast conserving surgery2 and their prognosis (relapse free survival) is 

excellent1. 

2. Patients with chemoresistant tumours who are unlikely to respond to standard cytotoxic 

therapies and have a poorer prognosis (relapse free survival)1 and lower rates of breast 

conserving surgery2. These patients should be identified early, and instead directed 

towards neoadjuvant clinical trials as standard therapies are not as effective. Arguably, 

these are the patients that benefit most from participation in clinical trials. 

Action taken: This comment is related to comment 8 below, and we have addressed both 

comments by amending the text on page 13 lines 328-331 as well as amending Figure 4e. 

In a clinical workflow the predictive models could be applied to patients who are candidates for 

neoadjuvant therapy: any predicted to have chemoresistant tumours should be considered for 

enrolment into investigational neoadjuvant clinical trials of novel therapies, as their prognosis is likely 

to be poor if they are treated with standard of care therapies (Fig. 4e). 

e 

Standard of care Consider enrolment 
neoadjuvant to neoadjuvant 

therapy clinical trials 

Figure 4e: Amended to address Reviewer 1’s comments (1 and 8) 

Predicting relapse: The model we describe was specifically trained to predict response and 

not relapse. We have not undertaken an analysis of relapse as the median follow-up across 

all datasets is short (four years) and few patients have relapsed within that time frame 

(n=21). As ER+ tumours often relapse beyond five years, a survival analysis on immature 

follow-up data would not accurately capture the dynamics of relapse in ER+ disease3. We 

would like to highlight nevertheless that, of the 21 patients who relapsed, 20 had residual 

disease post-chemotherapy, in keeping with pCR being a strong predictor of outcome 

(p=0.02 Fisher's Exact Test). 
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2. The paper is expected to show that multi-omics data integration improves AUC. 

Nevertheless, the paper does not provide evidence that it’s the integration of multi-omics 

data itself that improves performance. Indeed, some simple, previously reported molecular 

characteristics (TP53, TILs, ESR1 expression, proliferation modules), explain in large part 

the AUC increase and do not require data integration and machine Learning. To address this 

comment, the authors should test the AUC when some standard biological parameters are 

added to the clinical variables. As example; proliferation genes, ESR1, PGR, ERBB2 

expression + TIL + TP53 mutations. Authors should also test how PAM50 improves AUC. 

The need for multi-omics data to build the predictor is also challenged by the Figure 4d that 

clearly shows that RNA (and probably ESR1, ERBB2, proliferation, T cell markers) + clinical 

variable allows reaching an AUC>0.8 

Multi-omic data point 1: The reviewer highlights a very important point. When developing 

multi-omic prediction models it is important to show, in a data driven way, that integration 

improves the discriminatory power of a classifier. 

In this manuscript we show that both the quantification of biologically relevant features, as 

well as their integration, are key to the performance of our predictor. We disagree that multi-

omic features are not required. Indeed, the features which the referee points out that explain 

the large part in the AUC increase are obtained from multi-omic data: TP53 (DNA), TILs 

(digital pathology), ESR1 expression and proliferation (RNA). 

Crucially, given the large number of features available, testing ‘ad-hoc’ combinations is not a 

statistically robust approach: the process of testing one combination after the other to find the 

optimal model would lead to multiple-testing errors. The machine learning framework is 

required because it combines/integrates these biologically relevant features by identifying the 

optimum combination of features and their weights (coefficients) to predict response. 

Rather than adding biological parameters ‘ad hoc’ to the clinical model, we present a 

systematic approach in which layers of data categorised by profiling modality are added to the 

baseline clinical model (+DNA, +RNA, etc) as shown in Figure 4d. This unbiased approach is 

statistically robust and objective. It is a data-driven approach with robust statistical significance 

within the training dataset and then rigorous external validation. This is the accepted and 

universally recommended way of developing a new predictor. By using an ensemble machine 

learning approach, the algorithms identified the optimum multivariable combinations that result 

in the best prediction. The description of ‘standard’ biological features is very subjective, 

especially when it comes to molecular data, which is why we opted to use a more objective 
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data-driven approach to model generation that is not influenced by human bias and multiple 

testing problems. Additionally, because of the approach used the reader can easily appreciate 

which interaction of features provides the greatest contributions to response. We feel that is 

best exemplified by Extended Figure 9b, which highlights the benefit of this approach, as the 

Reviewer mentions in comment 6. Indeed, this figure (along with Figure 4b) has allowed the 

referee to quickly check which variables are the most important in comparison to the rest and 

correlate these with the biology of the disease. 

In summary, machine learning provides the ideal framework to derive a multivariable model in 

which the most important features are found and combined in an unbiased, data-driven way. 

The main challenge for machine learning is to ensure that the derived multivariable model is 

robust. The gold standard to demonstrate robustness and reliability is to freeze the model after 

training and validate it on an external, independent dataset. This is exactly the procedure that 

we followed, successfully validating the performance of the model on an independent dataset. 

PAM50: There is very little heterogeneity between clinical ER/HER2 status and PAM50 

subtypes, with the majority of ER+HER2- tumours being luminal A and B and the majority of 

ER-HER2- tumours being basal-like. We tested if the addition of the PAM50 subtypes (RNA) 

to our full model (logistic regression for illustration) would increase its predictive ability. The 

likelihood ratio test showed that the PAM50 classification did not add value to the model 

(p=0.2). We have chosen not to include PAM50 (RNA) as we feel that the biology of the 

disease is better modelled by more granular RNA features. Furthermore, the commercial 

Prosigna test (PAM50) is not routinely used in most centres and is only indicated for post-

operative (not neoadjuvant) therapy decisions in post-menopausal women with ER+ early-

stage breast cancer. 

Multi-omic data point 2: Indeed, as the reviewer rightfully notes the greatest increase in AUC 

occurs when RNA features are added to the (training) model. However, the performance of the 

model in the training dataset also clearly shows an increase in AUC as successive levels of 

multimodal data are added. We do not observe the same magnitude of increase in the 

validation set as it is smaller in sample size. Furthermore, it is not surprising to see that some 

features contribute more than others: for example, the RNA-seq data comprises features from 

both the cell-autonomous compartment and the tumour microenvironment, as well as their 

functional states, whilst the DNA data predominantly captures tumour-specific features. 

Additionally, Extended Figure 9b shows that the three machine learning classifiers use features 

from all modalities to generate a prediction. While the greatest increase is contributed after 

adding RNA features, the work we have done shows that there is benefit in adding 

4 



incremental levels of data, with the fully integrated model using data from all modalities, 

rather than just one modality. 

Action taken: We have added the following sentence on page 12, lines 319 - 320: The fully 

integrated model relied on features obtained from all modalities of data, with RNA features 

having the largest contribution (Fig. 4b, Extended Data Fig. 9b). 

3. Some findings are not extremely robust to enter in the data integration / ML and do not 

have major importance in the final predictor. The reviewer encourages the authors to add 

one more layer of validation before the external validation, to test that some findings are 

robust enough to enter in the data integration step. 

We agree with the reviewer that it is important to make sure that the feature selection process 

is made clear in the manuscript. The molecular and digital pathology features used to train the 

machine learning model were selected due to being significantly associated with response in 

the training dataset on a univariable level. We then adopted a standard machine learning 

approach where subsequent feature selection was done in an unbiased fashion by the 

pipeline with collinearity removal and k-best feature selection, with all hyperparameters 

optimised using 5-fold cross-validation in the training set to maximise the AUC-ROC as 

described within the Methods. This allowed the three classification pipelines to independently 

select which feature combinations best predict response and optimise feature weightings, and 

as a result greatly decreased the risk of model overfitting. The fact that some features 

contribute less to the overall model is reassuring, as it shows that the machine learning 

pipeline is performing as expected. The integration of multiple features and the explicit 

modelling of interactions (for example, in the Random Forest) between features are the 

reasons why some features that look promising in univariable models are down weighted by 

the final model, highlighting the value of data integration. 

The intermediate layer of validation step that the referee suggests is naturally provided by the 

cross-validation procedure. Moreover, the model validates very well in external datasets, 

which is the ultimate gold standard of validation, so we disagree that an additional layer of 

validation needs to be added. 
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4. Clinical phenotypes have a very limited predictive power. The authors could maybe add a 

Ki67 staining in the model, since it's a standard marker in translational research performed in 

neoadjuvant setting. Also, as mentioned before, it would be important to know the value of 

clinical + PAM50 since 1st generation genomic signatures are increasingly used in BC. The 

lack of significance for cT and Her2 is surprising because these are two major drivers of 

pCR. This could maybe mean that the FDR threshold is too stringent for clinical parameters. 

In general, the reviewer would recommend the authors to use already published clinical 

algorithms rather than developing a new one based on small number of patients. 

We agree with the reviewer that clinical phenotypes have limited predictive power. 

Ki67: We did not include Ki67 IHC staining in the model as: (1) it is not currently routinely 

performed in the majority of labs in the UK and (2) it is not currently recommended in the US 

(NCCN, ASCO/CAP), UK (RCPath) and international guidelines because of a lack of 

consensus on scoring, definition of low versus high expression and an appropriate cut point 

for positivity (International Collaboration on Cancer reporting guidelines: http://www.iccr-

cancer.org/getattachment/Datasets/Published-Datasets/Breast/Invasive-Carcinoma-of-the-

Breast/ICCR-Invasive-breast-1st-edn-v1-1-bookmark.pdf, page 28). Working groups that 

advocate the use of Ki67 also state in their guidelines that it is not accurate between 5% and 

30% (where the majority of ER positive cancers fall)4. Ki67 staining was not routinely 

performed in the NHS and tissue availability would make it impossible to obtain it now. The 

model, however, incorporates the Genomic Grade Index5 (RNA), which has been shown to 

correlate well with Ki67 IHC status and has a better performance as an outcome predictor6. 

PAM50: As we discussed in comment 2, the addition of more granular features derived from 

RNA data (rather than the categorical RNA-based PAM50 classification) is favoured by the 

full model. We have also shown that PAM50 did not add discrimination power to the overall 

predictor. We would like to stress that the intrinsic subtypes were not generated as a 

prognostic tool but were the result of an unsupervised cluster analysis of gene expression 

data. In addition, the commercial assay (Prosigna) is not universally used and does not have 

a licence for use in neoadjuvant therapy decisions. It is worth noting that, as we are releasing 

our code and all the raw data, readers can build models using permutations of different 

commercial assays if they wish to do so (eg Prosigna, OncotypeDX, etc). 

Development of clinical model: In our pre-FDR corrected logistic regression model 

(Extended Data Figure 2c), the association with clinical tumour size (cT) was borderline 

significant (p=0.04), though following FDR correction this increased to 0.1, which was above 

6 

http://www.iccr-cancer.org/getattachment/Datasets/Published-Datasets/Breast/Invasive-Carcinoma-of-the-Breast/ICCR-Invasive-breast-1st-edn-v1-1-bookmark.pdf,
http://www.iccr-cancer.org/getattachment/Datasets/Published-Datasets/Breast/Invasive-Carcinoma-of-the-Breast/ICCR-Invasive-breast-1st-edn-v1-1-bookmark.pdf,
http://www.iccr-cancer.org/getattachment/Datasets/Published-Datasets/Breast/Invasive-Carcinoma-of-the-Breast/ICCR-Invasive-breast-1st-edn-v1-1-bookmark.pdf,


 

 

100 

8 0  

Discovery dataset Validation dataset 

AUC = 0.69 

S
en

si
tiv

ity
 (%

) 

4 0  

6 0  

AUC = 0.65 

S
en

si
tiv

ity
 (%

) 

6 0  

4 0  

2 0  

0 

100 80 60 40 20 0 

Specificity (%) 

2 0  

0 

100 80 60 40 20 0 

Specificity (%) 

100 

8 0  

our pre-specified significance cut-off (<0.05). Regarding the performance of our clinical model: 

the AUC obtained was 0.77 in training and 0.7 in validation, which is comparable to the AUCs 

of clinical models developed from larger series, which we have summarised in Table R1.1. 

Table R1.1 Reported AUCs for published neoadjuvant clinical nomograms 

Study Number of cases Predictor AUC 

Rouzier et al, 20057
  496 0.77 

Lee at al, 20108
  100 0.72 

Jin et al, 20169
  815 0.70 

Pu et al, 202010
  165 0.76 

 

As a comparison, we assessed the performance of the NHS Predict calculator11
 

(https://breast.predict.nhs.uk/), which uses established clinical variables to predict survival in 

the adjuvant (rather than neoadjuvant) setting (Figure R1.1). While the scope of this 

calculator is very different from the clinical predictor we use, it is worth noting that the AUCs 

obtained were slightly lower than those obtained by our predictor. 

NHS Predict v2 overall survival at 10 years 

Figure R1.1 Performance of the NHS Predict algorithm across discovery and validation datasets. 

The fact that all clinical models provide a similar performance level, including the one derived 

using our own framework, suggests that the bottleneck is indeed in the clinical features 

themselves and not the statistical methods. As a consequence, we could potentially use any 

of these models as a benchmark. We have decided to use the one derived using our 

machine learning framework as that way we ensure that the improvements observed after 

integration are purely due to the addition of new features and not caused by the use of a 

different statistical framework. 

Action taken: We have added the following sentence at page 12 lines 310 - 312 to reflect 

this: “The baseline clinical model as implemented using our machine learning algorithms 

performed similarly to other clinical predictors reported in larger datasets8,9”. 
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5. lines 142-184 : since most of these parameters highly correlate with ER status, it’s 

important to show that their predictive value is independent to ER, or the authors just report a 

surrogate of ER status 

Biological features associated with response are often correlated with ER and HER2 status 

(eg: proliferation is associated with response in ER+HER2- and ER-HER2- tumours, immune 

activation in ER+HER2- and HER2+ tumours). We show this clearly in a feature correlation 

heatmap (Extended Data Figure 9a). However, the association of a biological feature with 

ER/HER2 status does not make it any less important. 

We must stress that the analyses we have performed in that section aimed to identify 

candidate features that might be relevant because of their association to pCR. Furthermore, 

the final predictor model considers the effect of ER and shows that the rest of the features 

have a predictive ability that is independent of ER. As shown in Extended Data Figure 9b, 

within the integrated model, the machine learning algorithms still rely heavily on the 

contribution of these ‘surrogate’ features, with the random forest particularly preferring other 

metrics than HER2 expression. 

However, we have looked at the genomic correlations in our univarable analysis from lines 

142-184 and show that in most cases the significance we observe is maintained even when 

ER is added to the model, as shown in Table R1.2 

Table R1.2 Genomic features associated with response in a logistic model 

  
PIK3CA TP53 TMB 

Subclonal 
TMB Neoantigens HRD 

Chromosomal 
instability 

ER p 0.00054 0.0037 0.00023 0.0008 0.00022 0.0031 0.013 
Feature p 0.17 0.21 0.021 0.0095 0.17 0.0027 0.033  

We chose to describe the univariable associations with genomic landscape across HER2 

status as: (a) we show in the RNA analysis that metagenes of proliferation are associated with 

response in HER2- but not HER2+ tumours (Extended Data Figure 6) and (b) we subsequently 

show that RNA proliferation metagenes are associated with features related to DNA genomic 

instability (Extended Data Figure 9a). We hoped that the manuscript would be more accessible 

to a less expert audience if we presented response across the genomic landscape by 

stratifying by HER2 status, thereby allowing the reader to rapidly make an association between 

the DNA mutational and RNA proliferative landscape. 
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6. Extended sup Fig 9b is extremely important but quite difficult to understand. I would 

suggest this figure moves to the main set of figures and that authors make it more simple to 

read (as example, LR, RF, SVC should be defined in the figure legend). 

We agree that this supplementary figure conveys a very important point. We placed this 

figure in the supplementary section as we feel that it would predominantly be of interest to a 

specialist readership and chose to present the summary version as a main figure instead 

(Figure 4b), which we feel is more accessible to a broader audience. Both related figures 

(Figure 4b and Extended data Figure 9b) are always referred to in tandem in the text. 

Action taken: We have removed all abbreviations within Extended data Figure 9b. 

7. Figure 1: The flow between step 1 and 2 unclear if the reader starts the paper by reading 

figure 1. Do the authors integrate only the factors significant in univariate ? or do they 

integrate all parameters ? 

We have generated an updated version of Figure 1 to show the reader that we integrated the 

molecular and digital pathology features found associated with response to neoadjuvant 

therapy in the first part of the manuscript. 

Action taken: We have altered the title of Step 2 from: “Step 2: Data integration using a multi-

omic machine learning model” to: “Step 2: Data integration of features identified in Step 1 

using a multi-omic machine learning model” to ensure that there is a clear connection between 

the discovery of associations in step 1, and their subsequent integration in step 2. We have 

also amended the corresponding figure legend as shown below. 

 

Revised Figure 1 and figure legend: Overview of the study design. Pre-therapy breast tumours from 168 

patients were profiled using DNA and RNA sequencing and digital pathology analysis. Response was 
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assessed on completion of neoadjuvant therapy using the Residual Cancer Burden (RCB) 

classification. Individual pre-therapy clinical, molecular and digital pathology features associated with 

pathological complete response (pCR) were identified (step 1) and then integrated within machine 

learning models to predict response, which were then validated in an independent dataset (step 2). 

8. Figure 4e: the goal of neoadj therapy is to allow breast conserving surgery, so there is no 

reason to deny NAT if a patient is predicted to have clinical response without pCR. 

We concur that neoadjuvant therapy increases the rate of breast conserving surgery but in 

addition it also has significant prognostic value as discussed in comment 1 (Yau et al, Lancet 

Oncology, in press). 

Action taken: We have addressed this point in comment 1 and altered Figure 4e and 

rephrased the corresponding main text, as follows (page 13 lines 328-331): 

In a clinical workflow the predictive models could be applied to patients who are candidates for 

neoadjuvant therapy: any predicted to have chemoresistant tumours should be considered for 

enrolment into investigational neoadjuvant clinical trials of novel therapies, as their prognosis is likely 

to be poor if they are treated with standard of care therapies (Fig. 4e). 

e 

Standard of care Consider enrolment 
neoadjuvant to neoadjuvant 

therapy clinical trials 

Figure 4e: Amended to address Reviewer 1’s comments (1 and 8) 

9. Variables related to therapies should be removed from the model since they can’t be used 

as a predictor in a prospective setting 

We trained a data integration model that does not include therapy features, in addition to the 

one that does (Figure 4d). Chemotherapy sequence (taxane>anthracycline vs 

anthracycline>taxane vs anthracycline-free regimens) and number of chemotherapy cycles 

were used to train the framework to see whether treatment effects improve model AUC. We 
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have included these variables to show the reader that the framework can also model treatment 

effects, and is in keeping with other available predictors, which allow the user to specify 

chemotherapy backbone (eg the NHS Predict calculator11). We note that the treatment type 

that the patient is going to receive is commonly known at the moment of the prediction, and 

therefore it can be used in a prospective setting. We also note that other referees considered 

that the inclusion of treatment effects was a strength of the model. 
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Referee 2: 

A. Summary of key results. 

This interesting study uses a multi-platform and multi-OMICS approach to predict complete 

pathologic response at surgery in a cohort of breast cancer patients who receive neo-adjuvant 

therapy. Data from clinical and pathological records, DNA, RNA and digital pathology were 

combined using an ensemble of machine learning algorithms to predict pathologic response. 

The results were confirmed in two test cohorts. 

B. Originality and significance. 

The study takes advantage of a novel dataset of cases that were enrolled for generation of 

original data. The significance of the study is high because it shows how high dimensionality 

data can be processed and integrated in an interpretable and logical way that will allow a 

future clinical implementation. Measurements can be generated in a CLIA clinical laboratory 

and the fixed algorithm used for clinical assay development. 

We thank the referee for their very positive comments, and for acknowledging the importance 

of this translational study and for being so complimentary on our approach. We note these 

comments: “...it shows how high dimensionality data can be processed and integrated in an 

interpretable and logical way...” and “...the fixed algorithm used for clinical assay 

development...”. 

A small weakness is that the study generated many confirmatory results, but only a few novel 

insights and no conceptually novel mechanisms related to our understanding of treatment 

response/resistance in breast cancer. As such, the relatively small number of cases in the 

discovery and validation cohort is sufficient, since no new biological concepts need to be 

validated. 

We were pleased to see that known biology was recapitulated within this study, as it shows 

that the dataset we generated is truly representative of the disease, and that the analyses we 

report in the manuscript are robust. We believe that this study highlights the following novel 

discoveries and concepts: 

1. First to show that most predictive genomic, transcriptomic and digital pathology features 

are monotonically associated with the degree of residual disease post therapy: as the 

12 



features decrease/increase in enrichment, so does the degree of residual disease. This 

is a novel observation as it shows that the degree of response is determined by 

biological feature abundance within the pre-therapy landscape. 

2. First to show how the close interplay between proliferation and immune activation is 

associated with the degree of residual disease post therapy (Figure 3e and validated in 

external datasets: Extended Data Figure 7f). 

3. First to show the association between LOH HLA and response prediction (Charlie 

Swanton’s group had shown HLA LOH was prognostic in lung cancer12) and map the 

contribution of the tumour ecosystem to response by combining mechanisms of immune 

exclusion and dysfunction (and we note this is orthogonally validated by lymphocytic 

infiltration using digital pathology). 

4. Also showed how a systematic discovery of biological features associated with response 

derived from high dimensional multimodal data can be integrated using ensemble 

machine learning to create predictors of response. This overall data analysis and 

integration pipeline is readily portable to other tumour types and is adaptable to the 

available data in any given study. 

5. From a clinical point of view, the model could be used to identify which patients are 

unlikely to respond to standard cytotoxic and targeted therapies, and instead directed 

towards clinical trials, as arguably they are the ones that stand to benefit the most from 

them. 

C. Data & methodology: validity of approach, quality of data, quality of 

presentation Strengths: 

 This is a nicely designed and elegant study because of its simplicity. 

 A broad range of data are aggregated in an interpretable fashion. 

 The discovery cohort, which consists of 168 cases with frozen tissue biopsies available, is 

well balanced in terms of breast cancer subtype and response to treatment endpoint 

 The choice of variables (features) that were analyzed is based on a sound rationale and 

uses well established methodologies for both, data generation and data analysis. 

 The ensemble approach is quite interesting and innovative and the variable importance 

highlights which of the features are most informative in the outcomes prediction. 

 The systematic analysis of the impact of clinical, DNA, RNA and digital pathology features 

in the outcomes prediction can be generalized across cancer types and data sources. 

We are grateful the reviewer shares our enthusiasm for this work and finds our approach 

interesting, sound, and innovative. 
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Weaknesses: 

 Cohort sizes are relatively small and it is unclear whether all the features used in the model 

can be obtained from FFPE tissues. This would be important to mention because of its 

clinical relevance. 

Cohort size: This is the largest neoadjuvant breast cancer study we know of that integrates 

pre-therapy sWGS, deep whole exome, whole transcriptome and digital pathology data with a 

spectrum of response to therapy quantified at surgery. 

FFPE tissues: Although generating genome and transcriptome data from FFPE tissues has 

historically been challenging, there have been substantial improvements in FFPE library 

preparation protocols and analytical methods within the past few years, with studies now 

reporting high concordance for both DNA and RNA measurements between fresh frozen and 

matched FFPE tumour cores13,14. Additionally, we, along with others, have shown that the 

shorter the time period between generating FFPE tumour material and its analysis, the better 

the quality of the DNA/RNA and the higher the correlation with fresh frozen tumours15. The 

optimization of assays for FFPE and derivation of an FFPE-adjusted predictor using an 

ensemble ML approach as we described here is beyond the scope of our current manuscript. 

RNA: All the RNA-seq features obtained from fresh frozen tumours can be obtained from 

FFPE tumours: we have explored this by analysing an independent set of 31 breast cancer 

cases for which we have matched RNA sequencing data from both an FFPE core and fresh 

tissue core (unpublished data). As shown in similar studies13, the median whole 

transcriptome correlation between related samples was 0.89 (range: 0.77 – 0.98). We 

computed the correlation of all the RNA features used by the predictor in fresh frozen and the 

matched FFPE core and found a high correlation across all features (R: 0.44 – 0.75). This 

gives us confidence that the RNA features required by the predictor can reliably and 

reproducibly be extracted from FFPE tissues. 

DNA: We, and others, have also previously shown that the DNA features used by the model, 

including copy number estimation, loss of heterozygosity and mutational landscape 

characterisation, can be readily obtained from FFPE tumours14–16. We have used Mutect2 to 

call mutations in this study: this variant caller has an orientation-bias filter that is specifically 

designed to filter somatic variant calls for sequence context-dependent artifacts including 

deamination, and is therefore well suited to FFPE mutation calling. 

14 



Digital pathology: Lymphocyte density as obtained through a digital pathology analysis of 

FFPE slides has already been shown to be associated with pCR17,18. We have used the same 

digital pathology algorithms in our fresh frozen tumour cohort that were used in the FFPE 

cohort (as described in the Methods section). 

Given these observations, we are confident that all the features used by the machine learning 

model can be readily extracted from both FFPE and fresh frozen tumour cores, however, the 

performance of the model will need to be prospectively validated within the context of an 

FFPE cohort, as training was only done using a fresh frozen cohort. It is also worth noting 

that in modern clinical practice core frozen biopsies are increasingly being used to rapidly 

establish the diagnosis of malignancy and start treatment. 

 Please include the rank list of features in the supplementary data to complement the color-

based figures. 

We agree that it is important to provide the ranked list of features and we have added a 

Supplementary Table (Table 6) which includes, for each feature, its overall ranking and 

importance zscore (illustrated in Figure 4b), as well as signed importance z-scores (illustrated 

in Extended Data Figure 9b). 

 It would be helpful to see the performance of an ensemble model that only includes the 

highest ranking features shown in Figure 4b and that can be applied to FFPE tissues. 

As we discussed in an earlier comment, all DNA, RNA and digital pathology features that the 

model uses can also be extracted from data derived from FFPE tissues, so this should not be 

a limitation to the application of the framework we present. As shown in Extended Data 

Figure 9b, all features that we have selected are used by the different classification pipelines 

within the model to predict response, so reducing the input feature set would most likely 

decrease its performance. 

The generation of an FFPE model is an aim that we will work towards in the future, though 

this will require retraining of the same machine learning architecture that we describe in this 

manuscript and further validation. The benefit of the model we report is that features from any 

type of data modality can be added or removed to generate predictions. 
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D. Appropriate use of statistics and treatment of uncertainties  

Please refer to comments from statistical reviewers 

E. Conclusions: robustness, validity, reliability 

The conclusions from the data are valid. The machine learning models were developed 

using a cross-validation and bootstrapping approach and individual models were fixed before 

testing. The ensemble approach increases the robustness. It would be helpful to understand 

the difference between algorithms in the outcomes prediction and to address cases that 

reveal a large difference in prediction results. 

We are pleased to see that the referee agrees that our approach is statistically robust. We 

chose to include three machine learning algorithms that complement each other: random 

forest, as this naturally models interactions; logistic regression, as this excels at modelling 

smooth transitions in probabilities; and support vector classifier (SVC) as this can flexibly 

model large numbers of variables. 

We agree that it is important to observe how the three different algorithms perform in outcome 

prediction. Given the space limitations in Nature we chose not to include this in the main 

manuscript. However, we have now generated a new extended data figure panel (Extended 

data Figure 9c) which shows that the output score from the three classification pipelines is 

highly correlated, with logistic regression having the highest correlation with SVC, and random 

forest having lower correlations. (Figure R2.3). 

Model average Logistic regression Random forest SVC 

 
0.2 0.4 0.6 0.00 0.25 0.50 0.75 0.0 0.2 0.4 0.6 0.1 0.2 0.3 0.4 0.5 0.6  

Figure R2.3 (Extended Data Figure 9b in manuscript) Correlation of the three classification pipeline 

scores across the training dataset (*: p<0.05, **: p<0.01, ***: p<0.001, ****: p<0.0001). 
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We determined cases in which the predictor score differed substantially from the model 

average, as suggested by the referee. We defined outliers as those in which the normalised 

pipeline score (pipeline score – model average score) was >2.5 standard deviations above the 

mean of the normalised score for the group, and for illustration highlight the top results from 

this analysis in Table R3.1, which confirms that by using three different machine learning 

algorithms, followed by model averaging, the robustness of the final predictor score increases. 

  LR score RF score SVC score 
Final model  

average 
Response  
observed 

Case 1 0.73 0.73 0.5 0.65 pCR 

Case 2 0.72 0.34 0.5 0.52 RCB-I 

Case 3 0.58 0.38 0.36 0.44 RCB-II 

Case 4 0.04 0.34 0.13 0.17 RCB-III 
 

Table R3.1 Cases with a discrepancy between pipeline predictor scores. Algorithms that give a 

result that is most in keeping with response observed shown in red. 

We also want to highlight that our ensemble approach is based on statistical model averaging, 

which has been shown under certain conditions that produce estimators that minimize the mean 

squared error (MSE) among point estimators and with an optimal predictive distribution19
 

(although we note here that we haven’t performed formal statistical model averaging). Given 

that the discrepancies within the individual classification pipeline scores lie in the differing 

features used by the models, which are showcased in Extended Figure 9b, we have chosen not 

to go through these cases individually in the manuscript. 

F. Suggested improvements: experiments, data for possible revision.  

Please see suggestions in section C. 

G. References: appropriate credit to previous work? The reference section is adequate. 

H. Clarity and context: lucidity of abstract/summary, appropriateness of abstract, 

introduction and conclusions 

The manuscript is well written and balanced. It should be easy to understand by reader from 

different disciplines. The expanded data and methods sections contain enough depth to 

allow evaluation by subject matter experts. 

We note the referee grades our manuscript as accessible to a broad audience, with experts 

able to delve into the finer detail of the analyses through a review of the expanded data and 

methods and supplementary details. 
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Referee 3: 

This submission from Sammut et al. details the development, training, and independent 

validation of a multi-omic machine learning (ML) predictor of neoadjuvant therapeutic 

response across the major subtypes of breast cancer (ER+, HER2+, triple negative). The key 

finding is that the fully integrated model that incorporates clinical/pathological, DNA, RNA, 

digital pathology, and treatment data yielded the best performance (precision-recall 

AUC=0.87 in the validation set from the ARTemis trial), although the importance of treatment 

data was not weighted as highly by the model. Other important results include the finding that 

although the training set considered response as binary (pathological complete response 

(pCR) versus residual disease), the fully integrated model could subdivide residual disease 

into three categories of residual cancer burden (RCB). 

Originality and significance are deemed high. ML prediction of neoadjuvant therapeutic 

response has long needed a rigorous incorporation of tumor microenvironment variables, 

including (and perhaps especially) the immune response, and to do so here through precision-

recall approaches to account for imbalanced observations is a strength. An additional strength 

is the inclusion of an ensemble classification approach. The work is of excellent quality, results 

are clearly explained, the manuscript is well-written, and for the most part the study is statically 

robust. 

We acknowledge the very positive and thorough review, including commenting on originality 

and significance of our study, as well as highlighting the strengths and quality of both the 

analysis and findings. 

Three points for the authors which, if addressed, would improve understanding and perhaps 

uptake of this ML predictor are as follows. One, it is a little perplexing that treatment 

parameters/features appear to be less important to the overall integrated training model 

(Figure 4b, Extended Data Figure 9b), as they are omitted from the description of the results 

on manuscript page 12. 

We agree with the referee that treatment parameters are less important to the overall training 

model. By including these parameters, we have shown that it is the biology of the disease that 

is predominantly driving response to therapy. It is worth noting that the significance is also 

lower due to collinearity: most HER2+ patients are treated with anthracycline followed by a 

taxane (+anti-HER2 therapy), whilst most HER2- patients are treated with taxane followed by 
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an anthracycline. As some cases were treated with anthracycline-free regimens, and there 

was heterogeneity in the number of chemotherapy cycles delivered, it was important to 

include these variables to explore whether a gain could be obtained from adding this. 

Extended Data Figure 9b shows that the ML algorithms do use these therapy features in the 

final model, showing that there is some benefit to including them. 

Two, the importance and signed importance z-scores for model features in these same figures 

suggest that clinical/pathological data such as HER2 status, ER status, and histological grade 

also contribute relatively little to overall classification, although this varies between individual 

models. 

We agree that the integrated models do not rely on clinical ER and HER2 data but rather 

preferentially use the expression of ERBB2 and ESR1 to make predictions. This has 

previously been reported by others, where expression was a stronger predictor of response 

than classical pathology phenotypes20,21. 

We explored this further by looking at ESR1 and ERBB2 expression in the discovery dataset. 

Figure R3.1a shows the distribution of ERBB2 expression across all pathology HER2+ 

tumours. Despite all being HER2+, tumours that attained pCR or RCB-I had much higher 

expression of ERBB2 than those that did not. Likewise, within clinically ER+ tumours, 

tumours that attained pCR had much lower ESR1 expression (Figure R3.1b). For this reason, 

the machine learning framework gives a much higher weighting to the continuous RNA 

expression, rather than the binarized ER/HER2 pathology status (Extended Data Figure 9b). 

Similarly, the framework prefers to use continuous variables of proliferation (eg taxane score 

based on RNA expression), rather than the categorical histopathological grade. 

a b 

 
pCR/RCB-I RCB-II/III pCR/RCB-I RCB-II/III 

Figure R3.1: Box plots showing the association between (a) ERBB2 expression and response in  
clinically HER2+ tumours and (b) ESR1 expression and response in clinically ER+ tumours. 



Three, while the overall classifier takes an average of the three algorithms, across the board 

the random forest approach appears to discount immune features. What is the reason for this? 

The random forest classification models naturally high-level interactions and, as shown in 

Extended Figure 9b, appears to be strongly and predominantly relying on lymphocyte density 

to model immune infiltration and using LOH HLA to a lesser degree to model immune 

evasion. We hypothesise that these interactions are sufficient for it to model immune 

modulation and, as a result, the algorithm relies less on expressed neoantigens, STAT1 

score, T cell dysfunction and exclusion to make predictions. 
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Referee 4: 

The authors collected clinical, digital pathology, genomic and transcriptomic profiles pre-

treatment biopsies of breast tumors from 168 patients treated with chemotherapy +/-HER-

targeted therapy prior to surgery. First, they performed statistical analysis to identify features 

associated with pathological complete response (pCR) using each modality separately. Then, 

they developed machine learning models to predict pathological complete response (pCR) 

using all modalities. They also validated their results using an independent dataset. The 

statistical and machine learning methods used seem sound. Overall, the manuscript is clear 

and accessible. This work would be of interest to breast cancer research community. Novelty 

of results are outside the scope of my expertise, and I was unable to assess fully. 

We would like to thank the referee for taking the time to go through our manuscript and for 

the positive comments. We are particularly pleased to hear that the statistical and machine 

learning methods used are sound, and that the manuscript is very clear and accessible. 

Specific comments 

-Please define the abbreviation the first time you use it in the text (e.g., OR, CI, FDR line 135) 

We have amended the manuscript and ensured that abbreviations (including OR, CI, FDR, 

HRD) are defined the first time they are used. 

-When tested using the external cohort, models built with clinical+RNA, clinical+DNA+RNA, 

clinical+DNA+RNA+digital pathology and fully integrated didn’t show significant performance 

difference. Can authors comment on this in discussion section? 

Action taken: We have added the following sentence on page 12, lines 319 - 320: The fully 

integrated model relied on features obtained from all modalities of data, with RNA features 

having the largest contribution (Fig. 4b, Extended Data Fig. 9b). 

-https://github.com/cclab-339brca/neoadjuvant-therapy-response-predictor -> The link was 

broken. I couldn't review. 

The address the reviewer has provided is slightly different from the one we included in the 

manuscript: it seems that when the URL was copied from the manuscript the line number in 

the manuscript (339) was ‘inserted’ within the web address. 
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All the R code used to identify the univariate associations and generate figures is currently 

hosted at this github site: 

https://github.com/cclab-brca/neoadjuvant-therapy-response-predictor  

Within this main github site there is another link that points to a further repository that currently 

hosts the machine learning source code: 

https://github.com/micrisor/NAT-ML  

Please do let us know if you have any further issues with access. All the R code has been 

zipped within a password protected archive, the password to which is: ecosystemsmalignant 

-Figures: 

--All error bars and test statistics are not defined in several corresponding figure legends. 

We have gone through figure legends and ensured that test statistics are appropriately 

defined: 

1. All figures with box plots now have the following entry in their legend: “The box bounds 

the interquartile range divided by the median, with the whiskers extending to a maximum 

of 1.5 times the interquartile range beyond the box. Outliers are shown as dots.” 

2. Panels that show data for which statistical significance has been computed using the 

same test have an additional grouped entry in the legend that specifies the test used. 

3. For all figures which display confidence intervals, we have included the sentence: “95% 

confidence intervals are shown.” within the legend. 

--Fig 4d what does dotted line represent? Marker for training is missing. 

The marker for training (the dotted line) in Figure 4d is missing from the figure legend and we 

have now included it as shown below: 

Amended Figure 4d: Marker for training included in legend. 
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Reviewer Reports on the First Revision: 

Referee #1 (Remarks to the Author): 

the authors have addressed my comments 

Referee #2 (Remarks to the Author): 

The comprehensive rebuttal to the concerns of this reviewer is appreciated. There are no 

further comments or concerns that need to be addressed. 

Referee #3 (Remarks to the Author): 

The authors have appropriately addressed my comments and questions from the first review. 

I have no further concerns. 

Referee #4 (Remarks to the Author): 

The authors provided a comprehensive revision of their work and all comments were addressed. 

 


