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Supplementary note 1. Theoretical model of the three characteristic shapes 

Deformation of the discrete ribbons. The torsional energy of the boundary ribbon is small 

compared with the bending energy of discrete ribbons due to the small width of the boundary 

ribbon. Therefore, the torsion of the boundary ribbon is dominated by discrete ribbons. As such, 

the shape of the slender discrete ribbons can be derived based on large deflections of buckled 

ribbons1 and is expressed as 

       𝑦തௗ ൌ
ଶ

ఒ
𝐸ሺ𝐴𝑀ሺ𝜆𝑠ௗ ,𝑚ሻ,𝑚ሻ െ 𝑠ௗ                                        [1a] 

𝑧ௗ̅ ൌ
ଶ௠

ఒ
𝐶𝑁ሺ𝜆𝑠ௗ ,𝑚ሻ                                                  [1b] 

where 𝑦തௗ  and 𝑧ௗ̅  are normalized coordinate functions; 𝑠ௗ  denotes the normalized arc length 

coordinate of the discrete ribbons; the discrete ribbon is parametrized by its arc length and these 

variables are normalized with the half-width of the precursor, R; the origins are located at the 

midpoint of ribbons as shown in Supplementary Fig. 2; E, AM, and CN are elliptic functions; 

𝑚ሺ𝑠௕, 𝜀ሻ  is the modulus characterizing the deformation of the discrete ribbons and can be 

calculated using Eq. (6) in the main text. The angle 𝜑  between the plane Tb containing the 

boundary ribbon and the normal plane Tn of the discrete ribbon at this point (Supplementary Fig. 

3) is dependent on 𝑚 and is expressed as  

𝜑 ൌ tanିଵሺെ ଶ√௠మି௠ర

ଵିଶ௠మ ሻ ൅ గ

ଶ
                                                 [2] 

Deformation of the boundary ribbons. The applied strain of the three characteristic shapes 

(Supplementary Fig. 2) is given by  

𝜀 ൌ ௟  ̅ି௟బ̅
௟బ̅

                                                                [3] 

where 𝑙଴̅ ൌ 2 and 𝑙 ̅are the normalized lengths of the shapes by the half-width of the precursor,𝑅, 

before and during deformation, respectively. 

       First, for the cylindrical shape, it is obvious that 𝑠௕, 𝑠ௗ ∈ ሾെ1,1ሿ, where 𝑠௕ ൌ
௦್
ோ

, 𝑠ௗ ൌ
௦೏
ோ

. The 

explicit expression of the boundary ribbon is in the form of  
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                                                            𝑓ሺ𝑠௕, 𝜀ሻ ൌ 𝑠௕                                                     [4a] 

𝑔ሺ𝑠௕, 𝜀ሻ ൌ √1 െ 𝜀ଶ                                                [4b] 

where ሺ𝑓ሺ𝑠௕, 𝜀ሻ,𝑔ሺ𝑠௕, 𝜀ሻ, 0ሻ denotes the normalized Cartesian coordinates of the boundary ribbon. 

As shown in Supplementary Fig. 2, the strain 𝜀  is expressed as 𝜀 ൌ ௟  ̅ି௟బ̅
௟బ̅

ൌ
ඥሺ௟ೞሻమିሺ௟ೢ/ଶሻమ 

ோ
ൌ

ඥ1 െ 𝑔ଶ , where 𝑙௦  and 𝑙௪  are the length of the stretching ribbon and the width of the shape, 

respectively; the maximum strain is given by maxሺ𝜀ሻ  𝜀_𝑚𝑎𝑥 ൌ ଶ௟ೞ
௟బ
ൎ 1. 

      Also, the rotation of the boundary ribbon does not change the plane containing the discrete 

ribbon. The tilting angle 𝛼ଵ between the discrete ribbon and the 𝑥𝑦 plane keeps unchanged in the 

cylindrical case (Supplementary Fig. 4) and is given by 

𝛼ଵ ൌ 𝛼ଶ௦ ൌ 𝛼ଶ ൌ
గ

ଶ
                                                       [5] 

      Second, for the spheroidal structure, it is obvious 𝑠௕ ∈ ቂെ
గ

ଶ
, గ
ଶ
ቃ and 𝑠ௗ ∈ ሾെ cos 𝑠௕ , cos 𝑠௕ሿ. 

The shape of the boundary ribbon in the 𝑥𝑦 plane is expressed as 

𝑓ሺ𝑠௕, 𝜀ሻ ൌ ሺ1 െ𝑤ഥሻ sin𝜃 ൅ 𝑣̅ cos 𝜃                                  [6a] 

𝑔ሺ𝑠௕, 𝜀ሻ ൌ ሺ1 െ𝑤ഥሻ cos 𝜃 െ 𝑣̅ sin𝜃                                  [6b] 

where ሺ𝑓ሺ𝑠௕, 𝜀ሻ,𝑔ሺ𝑠௕, 𝜀ሻ, 0ሻ denotes the normalized Cartesian coordinates at 𝑠௕ of the boundary 

ribbon. 𝑤ሺ𝑠௕, 𝜀ሻ and 𝑣ሺ𝑠௕, 𝜀ሻ denote the normalized radial and tangential displacement of the 

boundary ribbon, respectively. 𝜃 is expressed as 𝜃 ൌ 𝑠௕ and there exists a mismatching between 

𝜃 and 𝑠௕ at a large strain, which needs to be modified using the arclength, or it will cause an error 

of 6% near the end of the boundary curve. The applied strain 𝜀  is expressed as 𝜀 ൌ ௟  ̅ି௟బ̅
௟బ̅

ൌ

𝑓ሺగ
ଶ

, 𝜀ሻ െ 1 and the maximum strain is given by max ሺ𝜀ሻ𝜀௠௔௫ ൌ
గିଶ

ଶ
ൎ 0.57. 

      The boundary ring is under the effect of both the applied tensile force 𝑃 and the reaction force 

generated by buckled discrete ribbons. Because the moment produced by reaction force in the 

boundary ring is small compared with that generated by critical buckling pressure of circular rings2 , 
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we assume that the effect of the reaction force is equivalent to that of the equivalent force 𝑃௘ along 

the 𝑦 axis at 𝑠௕ ൌ 0. Also, we assume that 𝑃௘ linearly increases with increasing 𝑃 based on the 

relationship among 𝑃௘, 𝑃, and the radial displacement. Therefore, the normalized tangential and 

radial displacement are in the form of  𝑤ഥ ൌ െ𝑐ሼቀcos 𝜃 ൅ 𝜃 sin𝜃 െ ସ

గ
ቁ ൅ 𝑟௕ ቀcosሺ గ

ଶ
െ 𝜃ሻ ൅ ሺగ

ଶ
െ

𝜃ሻ sinሺగ
ଶ
െ 𝜃ሻ െ ସ

గ
ቁሽ , 𝑣̅ ൌ െ𝑐 ቊቀ2 sin𝜃 െ 𝜃 cos 𝜃 െ ସఏ

గ
ቁ ൅ 𝑟௕ ቆ2 sin ቀగ

ଶ
െ 𝜃ቁ െ ቀగ

ଶ
െ 𝜃ቁ cos ቀగ

ଶ
െ

𝜃ቁ െ
ସቀഏ

మ
ିఏቁ

గ
ቇቋ , where 𝑟௕ ൌ

గே௪೏௧మ

ସ௪್
య  is the ratio of the equivalent force generated by buckled 

discrete ribbons and the applied stretching force. 𝑤ௗ , 𝑤௕ , and 𝑡  denote the width of discrete 

ribbons, the width of boundary ribbons, and the thickness of the ribbons. 𝑁 is half the number of 

discrete ribbons due to the symmetry of structures. 𝑐 is a dimensionless variable related to the 

magnitude of the normalized tensile force. Additionally, the model uses the linear inextensibility 

condition and neglects higher-order terms, which needs to be modified using high order terms 

under large strain.  

      It is also worth noting that the morphology is independent of the width of the discrete ribbon 

if 𝑤ௗ ≪ 𝑙଴ . The width of the cuts is neglected， and 𝑁𝑤ௗ  does not change， leading to the 

constant 𝑟௕ . Moreover, during deformation, the angle 𝛼ଶ௦ ൌ 𝛼ଶ  does not change due to the 

conformal mapping. As shown in Supplementary Fig. 4, it is obvious |𝐴𝑂|ଶ ൅ |𝑀𝑂|ଶ െ

|𝐴𝑀|ଶ ൌ2|𝐴𝑂||𝑀𝑂| cos𝛼ଵ. Accordingly, the angle 𝛼ଵ is expressed as 

𝛼ଵሺ𝑠௕,𝑚ሻ ൌ cosିଵ ሼtanሺ𝜑ሻ ቂ ଵ

ଶ୲ୟ୬ሺఏభሻ
െ ୲ୟ୬ሺఏభሻ

ଶ
െ ଵ

ୱ୧୬ሺଶఏభሻ
൅ ୡ୭ୱሺఈమೞሻ

ୱ୧୬ሺఝሻ ୡ୭ୱሺఏభሻ
ቃሽ           [7] 

where 𝛼ଶ௦ ൌ 𝛼ଶ is the angle between the tangent line of the boundary ribbon and the tangent line 

of the discrete ribbon (Supplementary Fig. 4). 𝜃ଵ denotes the angle between the tangent line of the 

boundary ribbon and the 𝑥 axis. 𝜃ଵ can be simplified as 𝜃ଵ ൌ 𝑠௕ at a small strain and the general 

equation of  𝜃ଵ is expressed as 𝜃ଵ ൌ  ௗ௚
ሺ௦್,ఌሻ

ௗ௙ሺ௦್,ఌሻ
. 

      Third, for the saddle shape, the domain of the explicit expression is given by 𝑠௕ ∈

ሾെ1.32,1.32ሿ and 𝑠ௗ ∈ ሾcos 𝑠௕ െ 1.5, 1.5 െ cos 𝑠௕ሿ; note that the normalized maximum boundary 

arc length is smaller than 
గ

ଶ
 and the actual limit of 𝑠ௗ is smaller due to the width of the stretching 
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ribbon (Supplementary Fig. 2). After the critical strain (𝜀௖ ൌ 1.42), the boundary ribbon keeps a 

straight line and the shape of the boundary ribbon is expressed as 

                                                            𝑓ሺ𝑠௕, 𝜀ሻ ൌ 𝑠௕                                                   [8a] 

𝑔ሺ𝑠௕, 𝜀ሻ ൌ ඥሺ𝑙௦̅ሻଶ െ ሺ𝜀 െ 0.32ሻଶ                                  [8b] 

where ሺ𝑓ሺ𝑠௕, 𝜀ሻ,𝑔ሺ𝑠௕, 𝜀ሻ, 0ሻ denotes the normalized  Cartesian coordinates of the boundary ribbon; 

𝑙௦̅  is the normalized length of the stretching ribbon; the strain 𝜀  is given by 𝜀 ൌ

ට௟ೞ
మିሺ௟ೢ/ଶሻమ ାቀഏ

మ
ି଴.ଶହቁோିோ

ோ
=ට𝑙௦̅

ଶ
െ 𝑔ଶ ൅ 0.32 as shown in Supplementary Fig. 2; the maximum 

strain is given by max ሺ𝜀ሻ ൌ 𝑙௦̅ ൅ 0.32 ൎ 1.53. 

      During deformation, the angle 𝛼ଶ௦ changes due to the contact between the discrete ribbons. 

The tilting angle 𝛼ଵ exhibits a near-linear dependence on 𝑠௕ and is expressed as 

𝛼ଵሺ𝑠௕,𝑚ሻ ൌ ሺఈమ೎ାఈమሻ 

ଶ
                                            [9] 

where 𝛼ଶ௖ ൌ  tanିଵሺ ୱ୧୬ఏ

ଵିୡ୭ୱఏ
ሻ. 

      Additionally, we note that before the critical strain 𝜀௖ ൌ 1.42 , the structure shows the 

sequential deformation (Supplementary Fig. 6); the discrete ribbons buckle from the border to the 

center sequentially. The physical origin of the sequential buckling can be explained from both the 

differential geometry and mechanics perspectives. Geometrically, the boundary ribbon is gradually 

straightened from the border (𝑠௕ ൌ 1.32) to the center (𝑠௕ ൌ 0) accompanied by the sequential 

variation in the curvature of the boundary ribbon. Also, the straight segment (the border) is tangent 

to the curved segment (the center) of the boundary ribbon. The flattened regions of the boundary 

curve induce the corresponding discrete ribbons to pop up. This is consistent with the Gauss-

Bonnet theorem, where the variation of the geodesic curvature induces the change in the Gaussian 

curvature. In contrast, for the spheroidal shape, the curvature variation along the circular boundary 

ribbon happens at the same time. For the cylindrical shape, there is no curvature variation in the 

boundary ribbon. Mechanically, considering the force equilibrium of the boundary ribbon along 

the 𝑦  axis, the sequential deformation is controlled by a dimensionless variable 𝛿 ൌ
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௉ ୱ୧୬ሺଶఉሻ

ଶ∑ ௉಴
೔೙

೔సభ
,   where 𝑃 and ∑ 𝑃஼

௜௡
௜ୀଵ  denote the applied tensile force and the summation of the critical 

buckling force of the discrete ribbon and  𝛽 ൌ sinିଵሺ௚
௟ೞ̅
ሻ. For a concave boundary, we have 𝛿 ൏ 1, 

leading to a sequential buckling. While for the circular and the rectangular boundaries, we have 

𝛿 ൌ 1, which means that all the discrete ribbons pop up simultaneously and the sequential buckling 

behavior ends.  

General equation of the morphed shape. Considering the surface foliated by continuously 

varying discrete ribbons along the boundary ribbon, Eqs. (2-4) in main text are derived by 

sweeping the varying discrete ribbons (modeled by elastica) along the boundary ribbon. First, 

given the deformation of the boundary ribbon described above, the deformation of the discrete 

ribbons characterized by m is derived by combining Eq. (6) in main text, supplementary Eq. (4b), 

Eq. (6b), and Eq. (8b). Then, based on the known explicit expressions of all ribbons, the morphed 

shape is parameterized by the arc length of the discrete and boundary ribbons. Remarkably, this 

general equation can be applied to all the morphed shapes in this work, including the tessellated 

structures (Fig. 4).  

Supplementary note 2. Gaussian curvature dependence on the boundary curvature 

Principal curvatures at the central point. Based on the validated theoretical model, we 

further investigate how to manipulate the Gaussian curvature K of the morphed topologies by 

varying the initial boundary curvature kbo of the 2D circular precursors at a given applied strain. 

For simplification, we focus on the variation of K at the representative center point 

 0, 0b dC s s   (Figs. 3a-b). The normalized Gaussian curvature at this point is expressed as 

1 2( )K K C k k  , where 1k  and 2k  denote the normalized principal curvatures at point C. 𝑘തଵ  lies 

in the plane formed by N and v1; and 𝑘തଶ  lies in the plane formed by N and v2 as shown in 

Supplementary Fig. 8. 𝑘തଶ is proportional to the height (𝑧̅) of the point and 𝑘തଵ is approximated by 

ellipse curve based on the similarity to demonstrate the global backbone curve instead of the local 

discontinuity due to the contact between discrete ribbons. Additionally, the principal curvatures 

are normalized by the half length of the central discrete ribbon. 1k  and 2k  are given by  
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                                               [10a] 

                                                  
2 2 ,

2
k mF m

   
                                                                            [10b] 

where γ denotes half of the central angle of the boundary curve and bok  denotes the normalized 

initial boundary curvature of the 2D precursor.   

Modification due to the variation in the initial boundary curvature. The maximum 

applied strain max ሺ𝜀ሻ for 2D precursors depends on initial boundary curvature bok . We use the 

normalized applied strain   to unify precursors with different bok , which is expressed as 

𝜀̅ ൌ ቐ

ఌ

୫ୟ୶ ሺఌሻ
, 𝑘ത௕௢ ൐ 0

ఌିఌ೎
୫ୟ୶ ሺఌሻ

,   𝑘ത௕௢ ൏ 0
                                                       [11] 

where 𝜀௖ is the critical strain of the saddle shape. Note 𝐾ഥሺ𝐶ሻ ൌ 0 when 𝜀 ൏ 𝜀௖. 

      The deformation of the structures with various initial boundary curvature can still be modeled 

using the generalized Eq. (2) in main text, but the 𝜃 needs to be modified due to the variation of 

the initial boundary curvature and the modified 𝜃ᇱ  is expressed as 𝜃′ ൌ 𝜋𝜃/ሺ2𝛾ሻ according to 

Ref.2, where 𝜃 ∈ ሾ0, 𝛾ሿ and 𝜃′ ∈ ሾ0, గ
ଶ
ሿ. 𝛾 denotes the half central angle of the boundary curve. 

Relationship between the Gaussian curvature and the boundary curvature. For the 

spheroidal shapes, the normalized variation ቚ ௱௄ഥ

௄ഥ೘ೌೣ
ቚof the Gaussian curvature is expressed as 

ቚ ௱௄ഥ

௄ഥ೘ೌೣ
ቚ ൌ

ଶ௠ிሺഏ
మ

,௠ሻ௭̅ሺ଴,଴ሻ

௄ഥ೘ೌೣ௫̅మሺ
ം

ೖഥ್೚
,଴ሻ

, where 𝑧̅ሺ0,0ሻ ൌ ଶ௠

ிሺഏ
మ

,௠ሻ
. The normalized variation ቚ௱௞

ത್
௞ത್బ
ቚof the boundary 

curvature is in the form of ቚ௱௞
ത್
௞ത್బ
ቚ ൌ

௞ത್೚௫̅మሺ
ം

ೖഥ್೚
,଴ሻି௬തሺ଴,ଵሻ

௞ത್೚௫̅మሺ
ം

ೖഥ್೚
,଴ሻ

. We use that ellipse curve to approximate the 
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curves to simplify the calculation based on the similarity. For saddle shapes, we have 

ቚ ௱௄ഥ

௄ഥ೘ೌೣ
ቚ / ቚ௱௞

ത್
௞ത್బ
ቚ ൎ 1 because of the sudden jump in the Gaussian curvature at the critical strain. For 

the cylindrical shape, the Gaussian curvature keeps zero, as shown in Fig. 3c. The nonlinearity of 

the experimental results comes from the change of direction of the geodesic vector.        

Analysis of the error induced by the holes. First, 𝐶 ൌ 2𝜋𝜒ሺΩሻ െ ∑ 𝜃௜
௣
௜ୀଵ , keeps zero during 

shape shifting due to the unchanged Euler characteristic and the summation of the exterior angles 

based on the Gauss-Bonnet theorem3. Second, 𝐶  can also be expressed as 𝐶 ൌ ஐ𝐾𝑑𝐴׬ ൅

 பஐ𝑘௚௕𝑑𝑠 are calculated by Eqs. (2)-(4) in main text based on the׬ ஐ𝐾𝑑𝐴 and׬ பஐ𝑘௚௕𝑑𝑠, where׬

solid mechanics. To demonstrate the variation of 𝐶 from these two equations during shape shifting, 

we use 𝐶 as a function of the normalized geodesic curvature 𝑘ത௚௕ along the boundary ribbon. As 

shown in Supplementary Fig. 9, 𝐶 ൌ ஐ𝐾𝑑𝐴׬ ൅ பஐ𝑘௚௕𝑑𝑠 is slightly larger than 𝐶׬ ൌ 2𝜋𝜒ሺΩሻ െ

∑ 𝜃௜
௣
௜ୀଵ  due to the hollow spaces. However, the discrepancies between the red (from solid 

mechanics) and orange (from differential geometry) curves are small compared with ׬ஐ𝐾𝑑𝐴 and 

can be neglected.      

              

Supplementary note 3. Effect of the boundary curve smoothness in combinatorial 

designs  

Shape dependence on the smoothness of the boundary curve. The smoothness of the 

backbone in the morphed shape depends on the smoothness of the boundary in the 2D precursor. 

𝐶଴ continuity represents curves without continuous first derivative; 𝐶ଵ continuity represents the 

curve and the first derivative are continuous (i.e., continuous in tangent vector); 𝐶ଶ continuity 

represents the curve, the first derivative, and the second derivative are continuous (i.e., continuous 

in curvature). For instance, the eyes and mouth in the form of holes (Figs. 4a-d) are formed and 

controlled by its C0continuous boundaries, arising from the variation of the exterior angles at the 

joints based on the Gauss-Bonnet theorem. Note that for C0 continuous boundaries, the decrease 

of the exterior angles results in a hole, while the increase of the exterior angles leads to the contact 

of discrete ribbons. The 𝐶ଶ and 𝐶ଵ continuous boundary segments generate the sections with 𝐶ଶ 
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and 𝐶ଵ continuity in the backbone, respectively, as shown in the waterdrop and vase shape (Figs. 

4l, 4n).  

Supplementary note 4. Actuated ribbon bistability by remote magnetic field 

We note that each ribbon in the buckled shapes of the three kirigami sheets with different boundary 

curvatures is bistable, i.e., it can pop up or pop down energetically equivalent. By manually 

flipping the popping directions in the three buckled spheroidal, cylindrical, and saddle shapes 

under the stretched state, it can transform to more different shapes, as shown in Supplementary 

Fig. 10 as an example.  

      In addition to the contact-based mechanical actuation for shape morphing, we also demonstrate 

the capability of achieving bistability in kirigami sheets through remote magnetic actuation. By 

attaching magnetic thin polymeric stripes to the discrete ribbons (Supplementary Fig. 11), we 

could use a remote translational magnetic field to fast switch the bistable states in the ribbons to 

reconfigure the kirigami structure. Supplementary Fig. 11a shows a sequential snapping of the 

discrete ribbons in the spheroidal structure, where its sequence could be tuned via the distribution 

of the magnetic polymers in the 2D kirigami precursor. Supplementary Fig. 11b illustrates the 

pattern of the magnetic polymer attached to the discrete ribbons. We harness the distribution of 

the polymers changing the direction and the magnitude of the magnetic forces and torques acting 

on the discrete ribbons to tune the snapping sequence of the discrete ribbons. It is obvious that 

with the increasing strength of the magnetic field, ribbon one snaps first and then the ribbon two 

because the magnetic forces acting on them are larger. The ribbon three snaps last because the 

magnetic forces acting on it are smaller.  

 

Supplementary note 5. Inverse design strategy  

Inverse design of the waterdrop and vase shape. We first use curves to approximate and 

represent the target shape. Given the shape of the geodesics G and the principal curvatures at the 

midpoint of discrete ribbons, we use the elastica curves to approximate the geodesics. Based on 

the generalized equation (Eqs. (2)-(4) in main text) for morphed kirigami structures, the 

information of one representative geodesic curve is enough for the inverse design. This 

significantly simplifies the calculation and makes the precise control unnecessary. The 
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deformation of each geodesic is characterized by the elliptic modulus m; the modulus m for the 

representative geodesic curve in the waterdrop and vase shape is 0.55 and 0.71, respectively. 

Accordingly, the target surface is represented by a set of geodesic curves G, two boundary curves 

Г, and a backbone curve B. 

      The parameterization of the backbone curve B is expressed as 𝐫𝐁 ൌ ሺ𝑥, 0 , 𝑧ሻ. The explicit 

expression of B (waterdrop) is in the form of  

𝑧 ൌ  ൜
0.323𝑥, 0 ൑ 𝑥 ൑ 2

െ0.326𝑥଻ ൅ 6.79𝑥଺ െ 59.9𝑥ହ ൅ 291𝑥ସ െ 842𝑥ଷ ൅ 1446𝑥ଶ െ 1365𝑥 ൅ 546, 2 ൏ 𝑥 ൑ 4.1
                 [12] 

where z and x are the Cartesian coordinates of the points in the backbone curve B. 

      The explicit expression of the backbone curve B (vase) is in the form of  

𝑧 ൌ  

⎩
⎪
⎨

⎪
⎧

2.32, 0 ൑ 𝑥 ൑ 0.43
0.0944𝑥ଷ ൅ 0.628𝑥ଶ െ 0.0773𝑥 ൅ 2.33, 0.43 ൏ 𝑥 ൑ 1.7

െ0.000468𝑥ସ ൅ 0.0138𝑥ଷ െ 0.214𝑥ଶ ൅ 1.68𝑥 ൅ 0.561, 1.7 ൏ 𝑥 ൑ 10.9
0.000326𝑥ସ െ 0.0185𝑥ଷ ൅ 0.456𝑥ଶ െ 5.52𝑥 ൅ 29.9, 10.9 ൏ 𝑥 ൑ 18

0.0210𝑥ଷ െ 1.39𝑥ଶ ൅ 30.1𝑥 െ 211, 18 ൏ 𝑥 ൑ 19.8

                           [13] 

where z and x denote the Cartesian coordinates of the points in the backbone curve B. 

      The parameterization of the boundary curve is expressed as 𝐫Г ൌ ሺ𝑥,𝑦 ,0ሻ . The explicit 

expression of Г (waterdrop) is given by  

𝑦 ൌ  ൜
0.347𝑥, 0 ൑ 𝑥 ൑ 2

െ0.351𝑥଻ ൅ 7.29𝑥଺ ൅ 64.4𝑥ହ ൅ 313𝑥ସ െ 905𝑥ଷ ൅ 1553𝑥ଶ െ 1466𝑥 ൅ 587, 2 ൏ 𝑥 ൑ 4.1
                       [14] 

where y and x are the Cartesian coordinates of the points in the boundary curve Г. 

      The explicit expression of boundary curve Г (vase) is given by  

𝑦 ൌ  

⎩
⎪
⎨

⎪
⎧

1.39, 0 ൑ 𝑥 ൑ 0.43
0.0566𝑥ଷ ൅ 0.376𝑥ଶ െ 0.0463𝑥 ൅ 1.40, 0.43 ൏ 𝑥 ൑ 1.7

െ0.000280𝑥ସ ൅ 0.00824𝑥ଷ െ 0.129𝑥ଶ ൅ 1.01𝑥 ൅ 0.336, 1.7 ൏ 𝑥 ൑ 10.9
0.000195𝑥ସ െ 0.0111𝑥ଷ ൅ 0.273𝑥ଶ െ 3.31𝑥 ൅ 17.9, 10.9 ൏ 𝑥 ൑ 18

0.0126𝑥ଷ െ 0.830𝑥ଶ ൅ 18.1𝑥 െ 127, 18 ൏ 𝑥 ൑ 19.8

                         [15] 

where y and x denote the Cartesian coordinates of the points in the boundary curve Г. 
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      Next, the boundary curve ГP of the precursors is derived based on the isometry of the geodesics 

G and boundary curve Г, where the parameterization of ГP is given by 𝒓Г𝑷 ൌ ሺ𝑥௉,𝑦௉ ,0ሻ. The 

transformation is expressed as 

൜
𝑥௉ሺ𝑠௕ሻ
𝑦௉ሺ𝑠௕ሻ

ൠ ൌ ൤
𝜂௫ሺ𝑠௕ሻ 0

0 𝜂௬ሺ𝑠௕ሻ
൨ ൜
𝑥ሺ𝑠௕ሻ
𝑦ሺ𝑠௕ሻ

ൠ                                      [16] 

where 𝜂௬ሺ𝑠௕ሻ ൌ
௅ಸ
௬
ൌ

ிሺഏ
మ

,௠ሻ

ଶாሺഏ
మ

,௠ሻିிሺഏ
మ

,௠ሻ
 and 𝜂௫ሺ𝑠௕ሻ ൌ

௅Г
ᇲ

௅Г 
. 𝐿ீ, 𝐿Г ,and 𝐿Г

ᇱ  denote the half length of the 

geodesic curve G and the length boundary curve Г, and the length of the boundary curve after the 

transformation of the y coordinates, respectively. sb denotes the arc length coordinate along the 

boundary curve Г. E and F denote the incomplete elliptic integral of the second kind and the first 

kind, respectively. For the axially symmetric shape, we can also assume that the boundary and 

backbone have the same arc length. The parameters ሺ𝜂௫, 𝜂௬ሻ  of the waterdrop and vase are, 

respectively, (0.86, 1.5) and (0.92, 2.2). Here, ሺ𝜂௫, 𝜂௬ሻ does not change with 𝑠௕ because we only 

use the information of one representative geodesic curve, which simplifies the calculation.  

      The boundary curve ГP in the waterdrop precursor is expressed as  

𝑦௉ ൌ ൜
0.575𝑥௉, 0 ൑ 𝑥௉ ൑ 1.76

െ0.923ሺ𝑥௉ሻ଻ ൅ 16.6ሺ𝑥௉ሻ଺ െ 126ሺ𝑥௉ሻହ ൅ 529ሺ𝑥௉ሻସ െ 1314ሺ𝑥௉ሻଷ ൅ 1939ሺ𝑥௉ሻଶ െ 1569ሺ𝑥௉ሻ ൅ 538, 1.76 ൏ 𝑥௉ ൑ 3.6
     [17] 

where 𝑦௉ and 𝑥௉ are the Cartesian coordinates of the points in the boundary curve ГP. 

      The boundary curve ГP in the vase precursor is expressed as  

𝑦௉ ൌ  

⎩
⎪
⎨

⎪
⎧

3.04, 0 ൑ 𝑥௉ ൑ 0.4
0.547ሺ𝑥௉ሻଶ െ 0.529𝑥௉ ൅ 3.17, 0.4 ൏ 𝑥௉ ൑ 1.59

0.00346ሺ𝑥௉ሻଷ െ 0.173𝑥ሺ𝑥௉ሻଶ ൅ 1.88𝑥௉ ൅ 1.22, 1.59 ൏ 𝑥௉ ൑ 10.2
0.103ሺ𝑥௉ሻଶ െ 2.71𝑥௉ ൅ 23.0, 10.2 ൏ 𝑥௉ ൑ 16.9
െ0.290ሺ𝑥௉ሻଶ ൅ 10.7𝑥௉ െ 91.2, 16.9 ൏ 𝑥௉ ൑ 18.5

                                  [18] 

where 𝑦௉ and 𝑥௉ are the Cartesian coordinates of the points in the boundary curve ГP. 

      The strain of the boundary ribbon in 2D precursors to form the target shape is in the form of 

     max( ) max( ) max( )P P
r b b bx s x s x s      and the strain to form the waterdrop and vase are 

0.14 and 0.07, respectively. 
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Supplementary note 6. Performance of the modified kirigami grippers 

Effect of the number of parallel cuts. Supplementary Fig. 13 shows the front and side views 

of the stretched grippers with different numbers NC of parallel cuts at the maximum applied strain. 

For the grippers with small numbers NC of cuts, as shown in Supplementary Fig. 13a (NC = 5), the 

variation of the boundary curve (yellow curves) is constrained by the large width wd of the discrete 

ribbon resulting from the small number NC of cuts, which further, prohibits the formation and the 

closure of the two encapsulating hemisphere petals. With increasing number NC of cuts and 

decreasing ribbon width, the boundary curves are straightened gradually (Supplementary Figs. 

13b-c), with the constraint induced by the large ribbon width released. When NC = 37 

(Supplementary Fig. 13c), the two grasping petals become hemispheres, and the formation of the 

central saddle shape leads to the closure of the two hemispheres. Upon the closure of the 

encapsulating hemispheres, the grasping mode transfers from pinching to encapsulating, which 

results in a sudden jump of the pulling-out force (Supplementary Fig. 13f). It is also noteworthy 

that after the critical point (NC = 37), increasing NC (Supplementary Fig. 13e) barely changes the 

final deformed shape of the gripper, and the pulling-out force remains the same (6 N). 

 

 

Supplementary note 7. Maximum tensile strain in the ribbons  

The discrete ribbons buckle and suffer the maximum tensile strain 𝜀௠௔௫  at the top point. We 

demonstrate the maximum tensile strain of the representative discrete ribbon dependence on the 

applied strain in spheroidal, cylindrical, and saddle shapes (For the spheroidal and cylindrical 

shape, the representative ribbons are the discrete ribbons at the center of the morphed shape; for 

the saddle shape, we use the discrete ribbon at the border as the representative ribbon because there 

is no deformation in the central discrete ribbon before the critical strain). As shown in 

Supplementary Fig. 16, 𝜀௠௔௫ is less than 0.01 when the shapes are subject to the maximum applied 

strain. The maximum applied strain for the spheroidal, cylindrical, and saddle shape is 0.57, 1, and 

1.53, respectively. The maximum tensile strain is given by 𝜀௠௔௫ ൌ 𝑡𝑘ଶ/2, where t is the thickness 

of the ribbon, k2 is the principal curvature (Supplementary Fig. 8) at the top point of the discrete 

ribbon.  
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Supplementary note 8. Extending the strategy to other cut patterns.  

Supplementary Fig. 17 shows 2D precursors composed of periodic hexagonal cuts enclosed by a 

circular (Supplementary Fig. 17a. i), rectangular (Supplementary Fig. 17b. i), and a biconcave 

(Supplementary Fig. 17c. i) boundary, respectively. Stretching the precursors leads to spheroidal 

(Supplementary Fig. 17a. ii), cylindrical (Supplementary Fig. 17b. ii), and saddle (Supplementary 

Fig. 17c. ii) shapes, respectively. First, the decreasing boundary curvature as shown in the top view 

(Supplementary Fig. 17a. iv) causes nonuniform expansions (rotations around the hinges relative 

to the neighboring units) of different unit cells leading to the formation of a spheroidal shape with 

positive Gaussian curvature. Second, the straight boundary (Supplementary Fig. 17b. iv) 

compresses the surface to induce the global out-of-plane buckling resulting in a cylinder. Third, 

the flattened boundary curve (Supplementary Fig. S17b. iv) leads to a saddle shape, where the 

local out-of-plane buckling of the unit cells at the center of the morphed shape is attributed to the 

geometric frustration. It is noteworthy that the local out-of-plane buckling disturbs the smoothness 

during the expansion of the hexagonal cuts, as shown in Supplementary Fig. 17a. iii and 

Supplementary Fig. 17c. iii. Also, the length of the hinge of the unit cells in the saddle shape needs 

to be small to reduce the bending rigidity and facilitate both the in-plane expansion and the out-

of-plane buckling. These proof-of-concept results show that applying our approach to other 

patterns requires an additional program due to the coupling between geometric frustration and 

elasticity. 
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Supplementary Figures 

 

Supplementary Fig. 1. Schematics of the surface formed by neighboring discrete ribbons. a-c 
Spheroidal shape. d-f Cylindrical shape. g-i Saddle shape. c, f, i show, schematically, the morphed 
shapes formed by neighboring discrete ribbons. Red and yellow lines are boundary and discrete 
ribbons, respectively. 𝛼ଶ and 𝛼ଶ௦ are the angles between the tangent line of the boundary ribbon 
and the tangent line of the discrete ribbon before and after the deformation, respectively.   
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Supplementary Fig. 2. Schematics of the coordinates (top-down view). a-b Spheroidal shape. c-

d Cylindrical shape. e-f Saddle shape. a, c, e are 2D precursors and b, d, f are morphed shapes. 𝑠௕ 

and 𝑠ௗ denote the arc length coordinate of the boundary and discrete ribbons, respectively. The 

boundary and discrete ribbons are parametrized by arc length and the origins are located at the 

midpoint of ribbons. 𝑙଴  and 𝑙  are the length of the shapes before and during deformation, 

respectively; 𝑙௦  and 𝑙௪  are the lengths of the stretching ribbon and the width of the shape, 

respectively. Green lines represent the stretching ribbons. 

 
 

Supplementary Fig. 3. Schematics of the projection of the boundary curvature. a Spheroidal 

shape. b Saddle shape. The yellow vectors S represent the preferred normal to the boundary ribbon 

𝛼௕ in the surface S. The red vectors 𝐫𝐛
ᇱᇱ are curvature vectors of the boundary ribbon. 𝑇௕ is the plane 

containing the boundary curve; 𝑇௣  is the tangent plane to the surface S at this point; 𝑇௡  is the 

normal plane to the discrete ribbon at this point; 𝜑 denotes the angle between 𝑇௕ and 𝑇௡. 
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Supplementary Fig. 4. Schematics of the tilting angle of the morphed shapes. a-b Spheroidal 

shape. c-d Cylindrical shape. e-f Saddle shape. a, c, e The tilting angle 𝛼ଵbetween the plane 

containing the discrete ribbon and the plane containing the boundary ribbon. b, d, f Schematics of 

the relationship between angles. CM and CA are tangent to the boundary and discrete ribbons at 

point C, respectively; the plane OCMB is the horizontal plane (the 𝑥𝑦 plane); the plane OBA is the 

𝑥𝑧 plane. Red and yellow are the boundary and discrete ribbons, respectively.  
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Supplementary Fig. 5. Quantifying the 3D shape shifting of the cylindrical shape through 

analytical modeling and simulation. a-c Predicted shape changes with the applied strain ε in the 

cylindrical sample. a, b, and c is the front, side, and isometric view profile, respectively. d is the 

overlapping of FEM simulation results (contours of the maximum tensile strain εmax) with the 

experimental image at ε = 0.89. 

 

 

Supplementary Fig. 6. Experiments of sequential deformation in the saddle shape with increasing 

strain. The strains are 1.27, 1.42, and 1.47, respectively.   
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Supplementary Fig. 7. Frustration-free shape morphing in saddles. a. Reducing the number of 

parallel ribbons in the 2D biconcave precursor from 84 to 36. b. Isometric view of the morphed 

frustration-free shape without self-contacting of discrete ribbons in the center region. 

 

 

 

Supplementary Fig. 8. Schematics of the principal curvatures 𝑘തଵ and 𝑘തଶ at the central point. a-c. 

Spheroidal shape. d-f Saddle shape. a, d are the isometric view. b, e are the front view. c, f are the 

side view. v1, v2, and N are tangent vectors and normal vectors, respectively. Yellow lines 

represent the profile of the morphed shapes.  
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Supplementary Fig. 9. Theoretical results of C calculated from differential geometry (orange 
curve) and solid mechanics (red curve) model. With the black curve represents the integral of the 
Gaussian curvature over the surface.  

 

 

Supplementary Fig. 10. Experiments of bistable states in three characteristic structures. a 
Spheroidal shape. b Cylindrical shape. c Saddle shape. (Top) All discrete ribbons pop up. (Bottom) 
Some discrete ribbons pop up, with the others popping down. The applied strain is 0.35, 0.9, and 
1.52, respectively. Scale bars = 10 mm. 
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Supplementary Fig. 11. a. ii-iv A moving magnetic field triggers the sequential snapping of the 

bistable central ribbons with magnetic polymers. b Schematic of the distribution of the magnetic 

polymers attached to three discrete ribbons 1, 2, and 3. Yellow lines represent the magnetic 

polymers. Scale bars = 10 mm. The magnetic polymer glued to the discrete ribbons is conformable 

magnets for irregular surfaces (McMaster–Carr) with thickness t = 0.794 mm. 

 

 

Supplementary Fig. 12. a The side view of the final deformed grippers with initial-boundary 
curvature 𝑘ത௕௢ from 2 to 4. b Pulling-out force test with 𝑘ത௕௢ from 2 to 4. The error bars represent 
the standard errors of the mean. Scale bars = 10 mm.  
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Supplementary Fig. 13. a The front and side views of the stretched grippers with different 
numbers NC of parallel cuts at the maximum applied strain. The yellow curves represent the 
boundary curve. b Pulling-out force test with NC from 0 to 60. The error bars represent the standard 
errors of the mean. The scale bar represents 10mm.  
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Supplementary Fig. 14. Cyclic heating-cooling test of the heater with the variation of the 
resistance of the heater as a function of the temperature. After 100 cycles of heating and cooling 
from 25°C to 42°C, the resistance-temperature curve almost does not change. The maximum 
difference in the resistance between the two curves induced by the heating and cooling cycles is 
about 0.3%. 
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Supplementary Fig. 15. Experiments of using thermal treatment to fix the morphed shape. a A 

circular 2D precursor before the thermal treatment. b A spheroidal shape after the first treatment 

(120 oC and 120 min). c Recovery to a 2D precursor after a second treatment (120 oC and 120 min). 

Scale bar = 10 mm. 

 

 

 

Supplementary Fig. 16. Theoretical results of the maximum tensile strain  𝜀௠௔௫  in the 
representative discrete ribbon of three characteristic shapes as a function of the applied strain 𝜀. 
Red, orange, and black curves represent the spheroidal, cylindrical, and saddle shape, respectively. 
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Supplementary Fig. 17. Application of our method to kirigami sheets with hexagonal patterns. a, 
b, and c are the spheroidal, cylindrical, and saddle shape formed by 2D precursors with positive, 
zero, and negative boundary curvature, respectively. Scale bars = 10 mm.  

 

Legends for Supplementary Movies 

Supplementary Movie 1: Demonstration of the mechanically actuated spheroidal, saddle, and 
cylindrical shape 
Supplementary Movie 2: Demonstration of sequential snapping of the discrete ribbons in the 
circular precursor with attached magnetic polymers subject to a uniaxial tension (× 1/8 speed) 
Supplementary Movie 3: Demonstration of the kirigami gripper grasping various objects  
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