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1 MATERIALS AND METHODS
1.1 MRI examinations

All mpMRI examinations were performed using a 1.5 T MR scanner equipped with an anterior pelvic
phased-array 18-channel coil and a posterior spine phased-array 16-channel coil (Magnetom Aera, Siemens
Medical Systems, Erlangen, Germany). The PI-RADS 2.0 acquisition protocol included high-resolution
T2-weighted (T2w) sequences in the axial (TR/TE = 4150/123 ms, voxel size = 0.6 × 0.6 × 3.0 mm3),
sagittal (TR/TE = 3850/101 ms, voxel size = 0.7 × 0.7 × 3.0 mm3) and coronal (TR/TE = 3210/123 ms,
voxel size = 0.7 × 0.7 × 3.0 mm3) planes; a T1-weighted sequence (TR/TE = 450/10 ms, voxel size = 0.6 x
0.6 x 3.0 mm) in the axial plane; a multi-b Diffusion Weighted Imaging (DWI) (b values = [0, 500, 1000,
1500, 2000] s/mm2), voxel size = 0.8 × 0.8 × 3 mm, three directions) echo-planar imaging (EPI) sequence
from which corresponding ADC maps were automatically calculated using software on board of the MRI
console, and a Dynamic Contrast Enhancement (DCE) assessment with time intensity curves evaluation.
The PI-RADS 2.1 acquisition protocol included high-resolution T2w sequences in the axial (TR/TE =
4790/123 ms, voxel size = 0.3 x 0.3 x 3.0 mm3), sagittal (TR/TE = 4470/101 ms, voxel size = 0.3 x 0.3 x
3.0 mm3) and coronal (TR/TE = 3520/123 ms, voxel size = 0.3 x 0.3 x 3.0 mm3) planes, automatically
interpolated from a voxel size of 0.74 x 0.63 x 3.00 mm3 by the MRI console; a T1-weighted sequence
(TR/TE = 450/10 ms, voxel size = 0.6 x 0.6 x 3.0 mm3) in the axial plane; a multi-b DWI (b values = [50,
100, 800, 1000] s/mm2, voxel size = 1.0 x 1.0 x 3.0 mm3, three directions) EPI sequence, automatically
interpolated from a voxel size of 2.60 x 2.08 x 3.00 mm3 by the MRI console, whose corresponding ADC
maps were automatically calculated using software on board of the MRI console; a high-b DWI (b values:
[1400, 1800] s/mm2, voxel size = 2.2 x 2.2 x 3.0 mm3, three directions) EPI sequence, and a Dynamic
Contrast Enhancement (DCE) assessment with time intensity curves evaluation.

1.2 Experimental tests
We manually segmented tumor areas independently on T2w images and ADC maps by 3D Slicer software

v. 4.10.2 (Fedorov et al., 2012) on a Dual-Core Intel Core i5 MacBook Air with 16 GB RAM. Briefly,
we have outlined the segmentation on each DICOM slice containing the tumoral area. Then, we saved
the entire 3D lesion segmentation and the original image, i.e., T2w image and ADC map, in the .NRRD
format.
For the ML algorithms, we extracted single slices from each lesion segmentation by using custom code
in Python language (v. 3.9.2) and the following libraries: pynrrd (v. 0.4.2) (https://pypi.org/
project/pynrrd/), numpy (v. 1.21.0.dev0+1518.ge3583316c) (Harris et al., 2020), and matplotlib
(v. 3.4.2) (Hunter, 2007). The workstation used is a Dual-Core Intel Core i7 MacBook with 16 GB
RAM. We extracted radiomics features through pyradiomics (v. 3.0.1) (Griethuysen et al., 2017), on
a Linux virtual machine (Ubuntu v. 18.04.3) with 4 CPU cores and 8 GB RAM, hosted on a Dell
PowerEdge R540 workstation equipped with 32 logical Intel(R) Xeon(R) Silver 4108 CPU cores. In
particular, we forced a customized 2D extraction (details in Table S1). The ML frameworks’ training,
validation, and test were carried out using a custom code in Python language using the following modules:
imbalanced-learn (v. 0.8.0) (Lemaitre et al., 2017), matplotlib (v. 3.4.2) (Hunter, 2007), numpy (v.
1.21.0.dev0+1518.ge3583316c) (Harris et al., 2020), pandas (v. 1.2.4) (Reback et al., 2021), scikit-learn
(v. 1.0.dev0) (Pedregosa et al., 2011), xgboost (v. 1.4.2) (Chen et al., 2016). In particular, we used
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BaggingClassifier, RandomForestClassifier, and ExtraTreeClassifier estimators for the ensemble averaging
methods, while AdaBoostClassifier, GradientBoostingClassifier, and XGBClassifier as boosting algorithms.
A different combination of hyperparameters for each estimator was tuned in the validation set. The total
computation time for the training, validation, and test was about three days on a single core of a Dual-Core
Intel Core i7 MacBook with 16 GB RAM.
Regarding the DL experimentation, we performed DICOM slice selection using 3D Slicer software
(Fedorov et al., 2012), and the PNG input images were retrieved from DICOM files using pydicom (v.
2.1.2) (Mason, 2011) and pillow (v. 8.3.2) (Clark, 2015) libraries. Images containing the tumor lesion alone
were obtained exploiting pynrrd module (v. 0.4.2), and the rotated, translated, and flipped version of each
image was generated using torchvision library (v. 0.9.1) (Paszke et al., 2019). The workstation used is an
Intel Core i7 ASUS Laptop with 8 GB RAM.
As for ML frameworks, DL ones were developed in Python language using a custom code based on the
following libraries: matplotlib (v. 3.4.2) (Hunter, 2007), numpy (v. 1.22.0.dev0+4.gb283e1632) (Harris
et al., 2020), pandas (v. 1.2.4) (Reback et al., 2021), pytorch (v. 1.8.1) (Paszke et al., 2019), scikit-learn
(v. 1.0.dev0) (Pedregosa et al., 2011). Several CNN architectures were developed, and for each one,
hyperparameters tuning was carried out. Using an Intel Core i7 ASUS Desktop Computer with 32 GB
RAM and exploiting the integrated GPU NVIDIA GeForce GTX 1650, each tuning process required
between a half-day and two days, according to the architecture complexity.

1.3 Radiomics features extraction
For each slice, a total of 95 features were obtained (details in Table S2): 9 2D-shape features, 18 first-order

features, and 68 second-order features (i.e., textural features) from grey level co-occurrence matrix (GLCM,
22 features), grey level run length matrix (GLRLM, 16 features), grey level size zone matrix (GLSZM, 16
features), and grey level dependence matrix (GLDM, 14 features). Second-order features estimation was
performed according to the Chebyshev norm with a distance of 1 pixel. We have computed all radiomic
features in compliance with the Image Biomarker Standardisation Initiative (IBSI). It is worth noting that
the first-order feature of Kurtosis was IBSI-compliant except for an offset value (i.e., 3).

1.4 DL analysis: CNN architectures
A grid search approach has been adopted to test 30 different architectures. The depth of the architecture

has been evaluated by varying from three to seven convolutional blocks. Each network starts with its first
block, made of two 3x3 kernel convolutional layers, an activation, and a batch normalization layer. The
subsequent blocks consist of a sequence of a 1x1 and a 3x3 kernel convolutional layers, an activation,
and a batch normalization layer. We have placed a max-pooling layer every two convolutional blocks to
introduce spatial invariance and reduce computational time. Eventually, we tested the final layers of the
architecture using one, two, or three fully connected layers. The last block is always composed of a fully
connected layer and a dropout layer. The other block (one or two blocks before the last one) consists of a
fully connected layer, an activation layer, and a dropout layer. For each architecture, we evaluated both
ReLU and LeakyReLU activation layers. A schematic description of the grid search is provided in Table S4,
while the description of the different blocks (type and number) can be found in Table S5. We performed a
hyperparameter optimization for each architecture, searching for the learning rate values, the weights decay,
the dropout probability, the batch size, and whether to choose AMSGrad (Reddi et al., 2019), a variant of the
Adam optimizer (Kingma et al., 2014). To limit computational time, we randomly chose 50 configurations
to test, each one consisting of a specific combination of the values of the five hyperparameters mentioned
above. We have reported the values assumed by the hyperparameters during the random search in Table
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S6. Moreover, we added two Attention Gates (AGs) to the three optimal architectures trained on C-DS
T2w/ADC/T2w+ADC images (Schlemper et al., 2019). According to (Schlemper et al., 2019), AG modules
are more efficient when placed on layers handling higher-level and more specific features; hence, we
tested different placements for the AG modules, considering only the middle and the final layers of the
architecture. Finally, an additional hyperparameter optimization was applied to each of them.

1.5 Training, validation, and test of ML/DL frameworks
The ML/DL frameworks have been trained, validated and tested following a patient-based nested

validation scheme: data of 87% of patients formed the development set and data of 13% of patients were
included in the test set. In the development set only, we adopted a 5-fold cross-validation (CV) (4 folds were
used as training set while the other one as the validation set), because it offers a favorable bias-variance
trade-off (Hastie et al., 2009; Lemm et al., 2011) and is also adequate for frameworks selection (Breiman
et al., 1992). In creating the CV folds, images splitting was done on a patient basis, i.e., a unique fold
contained a patient and all his images. Following a stratified-group procedure, the relative proportion of LG
and HG data was preserved within each fold. For DL architectures, the training set was further randomly
divided (90% to train the network and 10% to validate the early stopping criterion). The criterion was as
follows: when the loss during the validation phase exceeded the loss during the training phase for more
than three consecutive epochs, the training is stopped. We trained the network for a maximum number
of epochs equal to 100 to limit the computational complexity of the training process. The CV procedure
has been repeated ten times using different random splits to deal with the variability in framework and
hyperparameters selection derived from a specific data split (Krstajic et al., 2014). We have computed
the average and standard deviation of the Area Under the Receiver Operating curve (AUROC) across all
repetitions to get the final scores. The best frameworks were chosen based on the average AUROC scores in
the validation set and retrained on the whole development set. For the DL retraining, to prevent overfitting,
we retrained the best architectures (one for each acquisition modality), keeping a 10% of the development
set as validation, maintaining patient separation and stratification across classes. We applied early stopping
when validation loss did not decrease or change for five consecutive epochs. Since the retraining is less
time-consuming than the grid search optimization, the number of epochs was increased to 1000.
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Table S1. YAML parameter file for the radiomics features extraction through pyradiomics.

Category Parameter Value
imageType Original {}

featureClass shape2D []
firstorder []
glcm - ’Autocorrelation’

- ’JointAverage’
- ’ClusterProminence’
- ’ClusterShade’
- ’ClusterTendency’
- ’Contrast’
- ’Correlation’
- ’DifferenceAverage’
- ’DifferenceEntropy’
- ’DifferenceVariance’
- ’JointEnergy’
- ’JointEntropy’
- ’Imc1’
- ’Imc2’
- ’Idm’
- ’Idmn’
- ’Id’
- ’Idn’
- ’InverseVariance’
- ’MaximumProbability’
- ’SumEntropy’
- ’SumSquares’

glrlm []
glszm []
gldm []

Setting normalize False
normalizeScale 1
removeOutliers None
force2D True
force2Ddimension 0
binWidth 25
label 1
interpolator ’sitkBSpline’
resampledPixelSpacing None
weightingNorm None
minimumROIDimensions 2
minimumROISize None
preCrop False
padDistance 5
distances [1]
resegmentRange None
additionalInfo True
correctMask True
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Table S2. Radiomics features. Glcm: Gray Level Co-occurrence Matrix; glrlm: Gray Level Run Length Matrix; glszm: Gray Level Size Zone Matrix; gldm:
Gray Level Dependence Matrix.

Category Feature
shape 2D Elongation, MajorAxisLength, MaximumDiameter,

MeshSurface, MinorAxisLength, Perimeter,
PerimeterSurfaceRatio, PixelSurface, Sphericity

first order 10Percentile, 90Percentile, Energy, Entropy,
InterquartileRange, Kurtosis, Maximum,
MeanAbsoluteDeviation, Mean, Median, Minimum,
Range, RobustMeanAbsoluteDeviation,
RootMeanSquared, Skewness, TotalEnergy,
Uniformity, Variance

glcm Autocorrelation, JointAverage, ClusterProminence,
ClusterShade, ClusterTendency, Contrast, Correlation,
DifferenceAverage, DifferenceEntropy,
DifferenceVariance, JointEnergy, JointEntropy, Imc1,
Imc2, Idm, Idmn, Id, Idn, InverseVariance,
MaximumProbability, SumEntropy, SumSquares

glrlm GrayLevelNonUniformity,
GrayLevelNonUniformityNormalized,
GrayLevelVariance, HighGrayLevelRunEmphasis,
LongRunEmphasis, LongRunHighGrayLevelEmphasis,
LongRunLowGrayLevelEmphasis,
LowGrayLevelRunEmphasis, RunEntropy,
RunLengthNonUniformity,
RunLengthNonUniformityNormalized,
RunPercentage, RunVariance, ShortRunEmphasis,
ShortRunHighGrayLevelEmphasis,
ShortRunLowGrayLevelEmphasis

glszm GrayLevelNonUniformity,
GrayLevelNonUniformityNormalized,
GrayLevelVariance, HighGrayLevelZoneEmphasis,
LargeAreaEmphasis,
LargeAreaHighGrayLevelEmphasis,
LargeAreaLowGrayLevelEmphasis,
LowGrayLevelZoneEmphasis,
SizeZoneNonUniformity,
SizeZoneNonUniformityNormalized,
SmallAreaEmphasis,
SmallAreaHighGrayLevelEmphasis,
SmallAreaLowGrayLevelEmphasis, ZoneEntropy,
ZonePercentage, ZoneVariance

gldm DependenceEntropy, DependenceNonUniformity,
DependenceNonUniformityNormalized,
DependenceVariance, GrayLevelNonUniformity,
GrayLevelVariance, HighGrayLevelEmphasis,
LargeDependenceEmphasis,
LargeDependenceHighGrayLevelEmphasis,
LargeDependenceLowGrayLevelEmphasis,
LowGrayLevelEmphasis, SmallDependenceEmphasis,
SmallDependenceHighGrayLevelEmphasis,
SmallDependenceLowGrayLevelEmphasis
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Table S3. ML frameworks’ hyperparameters.

Estimator Hyperparameters
AdaBoostClassifier n estimators=[10, 50, 100], learning rate=[0.1, 1.0, 10],

algorithm=’SAMME.R’, random state=0

BaggingClassifier n estimators=[10, 50, 100, 1000], max samples=[0.5,
0.8, 1.0], max features=[0.5, 0.8, 1.0], bootstrap=False,
bootstrap features=False, oob score=False,
warm start=False, n jobs=None, random state=None,
verbose=0

ExtraTreeClassifier n estimators=[10, 50, 100], criterion=’gini’,
max depth=[None, 2, 3, 4, 5], min samples split=2,
min samples leaf=1, min weight fraction leaf=0.0,
max features=’auto’, max leaf nodes=None,
min impurity decrease=0.0, min impurity split=None,
bootstrap=False, oob score=False, n jobs=None,
random state=None, verbose=0, warm start=False,
class weight=None, ccp alpha=0.0,
max samples=None

GradientBoostingClassifier loss=’deviance’, learning rate=[0.1, 1.0, 10],
n estimators=[10, 50, 100], subsample=1.0,
criterion=’friedman mse’, min samples split=2,
min samples leaf=1, min weight fraction leaf=0.0,
max depth=3, min impurity decrease=0.0,
min impurity split=None, init=None, random state=0,
max features=None, verbose=0, max leaf nodes=None,
warm start=False, validation fraction=0.1,
n iter no change=None, tol=0.0001, ccp alpha=0.0

RandomForestClassifier n estimators=[10, 100, 1000], criterion=’gini’,
max depth=[None, 2, 3, 4, 5], min samples split=2,
min samples leaf=1, min weight fraction leaf=0.0,
max features=’auto’, max leaf nodes=None,
min impurity decrease=0.0, min impurity split=None,
bootstrap=False, oob score=False, n jobs=None,
random state=None, verbose=0, warm start=False,
class weight=None, ccp alpha=0.0,
max samples=None

XGBClassifier gamma=[0, 0.1, 1, 10, 100], learning rate=[0.01, 0.1,
0.3], max depth=[2, 3], n estimators=[10, 50, 100],
importance type=’gain’, objective=binary:logistic,
verbosity=0, subsample=0.5
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Table S4. Composition of blocks used in Grid Search to select the most promising DL network architecture.

Layer name Composition

Convolutional Block 1
3x3 conv layer
3x3 conv layer
activation layer
batch normalization layer

Convolutional Block 2

1x1 conv layer
activation layer
3x3 conv layer
activation layer
batch normalization layer

Fully Connected Block 1
fully connected layer
activation layer
dropout layer

Fully Connected Block 2 fully connected layer
dropout layer

Table S5. Number and type of the experimented blocks used in Grid Search to select the most promising DL network architecture.

Layer name Number and type
Convolutional Block 1 1 (always present at the beginning)
Convolutional Block 2 2 to 7
Fully Connected Block 1 1 to 2
Fully Connected Block 2 1 (always present at the end)
Activation ReLU and Leaky ReLU

Table S6. DL networks hyperparameters values in the Random Search to select the most promising DL network architecture.

Hyperparameter Values

Learning rate
0.01
0.001
0.0001

Weight decay
0.1
0.01
0.001

Dropout probability
0.5
0.6
0.7
0.8

Amsgrad True
False

Batch size 4
8
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Table S7. AUROC values of ML and DL analyses for T2w/ADC/T2w+ADC. The AUROC values in the validation set are reported as mean (standard deviation),
while the AUROC values in the test set 2.1 are reported as median [5th percentile, 95th percentile]. AG: attention gate; C-DS: cropped dataset; DL: deep learning;
L-DS: lesion dataset; ML: machine learning.

Framework Set T2w ADC T2w+ADC

ML Validation 0.728 (0.02) 0.776 (0.02) 0.748 (0.01)
Test 2.1 0.357 [0.200,

0.495]
0.385 [0.231,

0.529]
0.558 [0.375,

0.712]

AG-free DL on L-DS Validation 0.709 (0.03) 0.645 (0.02) 0.658 (0.02)
Test 2.1 0.670 [0.492,

0.815]
0.517 [0.410,

0.634]
0.650 [0.434,

0.855]

AG-free DL on C-DS Validation 0.716 (0.03) 0.637 (0.03) 0.694 (0.04)
Test 2.1 0.299 [0.216,

0.467]
0.380 [0.324,

0.479]
0.406 [0.239,

0.607]

AG DL on C-DS Validation 0.634 (0.03) 0.607 (0.06) 0.584 (0.09)
Test 2.1 0.234 [0.155,

0.382]
0.463 [0.311,

0.675]
0.480 [0.310,

0.633]

Table S8. Best performing ML frameworks selected on the average AUROC value in the PI-RADS 2.0 validation set.

T2w ADC T2w+ADC
Data standardizer Standard scaler

(with mean=True,
with std=True)

Standard scaler
(with mean=True,
with std=True)

Standard scaler
(with mean=True,
with std=True)

Data augmentizer SVMSMOTE
(random state=9)

SVMSMOTE
(random state=9)

BorderlineSMOTE
(random state=9)

Data classifier AdaBoost classifier
(hyperparameters:
base estimator= None,
n estimators=50,
learning rate=0.1,
algorithm=
’SAMME.R’,
random state=0)

XGBoost classifier
(hyperparameters:
gamma=10,
learning rate=0.01,
max depth=2,
n estimators=100,
importance type=
’gain’, objective =
’binary:logistic’,
verbosity=0,
subsample=0.5)

Extra Trees classifier
(hyperparameters:
n estimators=100,
criterion=’gini’,
max depth=2,
min samples split= 2,
min samples leaf= 1,
min weight
fraction leaf= 0.0,
max features= ’auto’,
max leaf nodes=
None,
min impurity decrease=
0.0,
min impurity split=
None, bootstrap=
False, oob score=
False, n jobs= None,
random state= None,
verbose= 0,
warm start= False,
class weight= None,
ccp alpha= 0.0,
max samples= None)
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Table S9. Best performing DL frameworks selected on the average AUROC value in the PI-RADS 2.0 validation set. BS = batch size; DP = dropout probability;
LR = learning rate; WD = weight decay.

T2w ADC Multimodal

AG-free DL on L-DS Architecture 5 convolutional
blocks, 2 max
pooling 3 fully
connected blocks,
ReLU activation
function

3 convolutional
blocks, 1 max
pooling 3 fully
connected blocks,
ReLU activation
function

Ensemble of the two
optimal
architectures fed
with T2w images
and ADC maps,
respectively

Hyperparameters LR = 0.0001, WD =
0.01, Amsgrad =
False, DP = 0.5, BS
= 4

LR = 0.0001, WD =
0.01, Amsgrad =
False, DP = 0.8, BS
= 8

LR = 0.0001, WD =
0.01, Amsgrad =
False, DP (t2
branch) = 0.5, DP
(adc branch) = 0.8,
BS = 8

AG-free DL on C-DS Architecture 4 convolutional
blocks, 2 max
pooling 3 fully
connected blocks,
ReLU activation
function

3 convolutional
blocks, 1 max
pooling, 3 fully
connected blocks
and ReLU
activation function

Ensemble of the two
optimal
architectures fed
with T2w images
and ADC maps,
respectively

Hyperparameters LR = 0.0001, WD =
0.01, Amsgrad =
True, DP = 0.8, BS
= 4

LR = 0.0001, WD =
0.01, Amsgrad =
False, DP = 0.8, BS
= 8

LR = 0.0001, WD =
0.01, Amsgrad =
False, DP (both
branches) = 0.8, BS
= 4

AG DL on C-DS Architecture 4 convolutional
blocks, 2 max
pooling 3 fully
connected blocks,
ReLU activation
function. Two AGs
placed on the
second and third
convolutional
layers.

3 convolutional
blocks, 1 max
pooling, 3 fully
connected blocks
and ReLU
activation function.
Two AGs placed on
the last two
convolutional layers

Ensemble of the two
optimal
architectures fed
with T2w images
and ADC maps,
respectively

Hyperparameters LR = 0.0001, WD =
0.01, Amsgrad =
True, DP = 0.8, BS
= 4

LR = 0.0001, WD =
0.01, Amsgrad =
False, DP = 0.8, BS
= 8

LR = 0.0001, WD =
0.01, Amsgrad =
True, DP (both
branches) = 0.8, BS
= 8

10



Supplementary Material

(A) (B) (C) (D)

Figure S2. (A) ROC curves of ML frameworks on the test set 2.1. (B) ROC curves of DL AG-free CNN
trained on L-DS test set 2.1. (C) ROC curves of DL AG-free CNN trained on C-DS test set 2.1. (D) ROC
curves of DL AG CNN trained on C-DS test set 2.1.

Figure S3. Optimal AG-free CNN architecture, trained on C-DS T2w images.
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Figure S4. Optimal AG CNN architecture, trained on C-DS T2w images.

Figure S5. Optimal AG-free CNN architecture, trained on C-DS T2w images and ADC maps.
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(A)

(B)

(C)

T2w test set 2.0 (AUROC = 0.750)

ADC test set 2.0 (AUROC = 0.531)

T2w+ADC test set 2.0 (AUROC = 0.625)

Figure S6. Bar plots of feature importance of ML frameworks trained on development set 2.0. The ML
frameworks were trained with radiomic features extracted from T2w images (A), ADC maps (B), and T2w
images + ADC maps (C) respectively.
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(A)

(B)

(C)

T2w test set multi PI-RADS (AUROC = 0.795)

ADC test set multi PI-RADS (AUROC = 0.500)

T2w+ADC test set multi PI-RADS (AUROC = 0.682)

Figure S7. Bar plots of feature importance of ML frameworks trained on multi PI-RADS development set.
The ML frameworks were trained with radiomic features extracted from T2w images (A), ADC maps (B),
and T2w images + ADC maps (C) respectively.
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