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S1 APPENDIX: 
Detailed student project descriptions as listed in Table 3. Descriptions were drafted by each 
student individually as part of the learning process at the end of the project work and were 
only marginally edited by the tutors to leave an impression on the level and diversity. 

 

 

 

P1: Engineering a synthetic pathway for maleate in Escherichia coli – Tessy Prohaska 

Introduction 

In science and research, bacteria make a useful and powerful tool for genetic research since, 
compared to eukaryotes, the size of their genome is relatively small which makes it easier to 
keep a good overview of the studied organism. One of the most commonly studied bacteria is 
Escherichia coli (E. coli) which has a genome size of around 4000 genes whereby the size of 
the human genome lies around 30000 genes. It is one of the best-studied organisms on earth 
since it has well-characterized biochemistry and physiology. E. coli is used in biomedical 
research since it is much easier to manipulate its genome without deranging the natural 
genome and its functions (1). It has become a popular candidate for metabolic engineering to 
produce chemicals, fuels, pharmaceuticals, and medicine. Maleate is an important 
dicarboxylic acid which is an essential component used for the synthesis of polymer materials 
such as pharmaceuticals. In 2017, a research team first successfully modified the genome of 
E. coli by introducing a new synthetic pathway for maleate production (2). 

Aim 

The project aimed to reproduce the results of the paper published in 2017 by Noda et al which 
engineered a synthetic pathway for maleate (2). The idea is to choose an E. coli model and 
introduce the needed reactions to recreate the metabolic remodelled E. coli model. After 
adding the new synthetic pathway, the next step would be how far one can optimize certain 
pathways to increase the maleate production without killing the bacteria. 

Material and Methods 

The first step was to choose an E. coli model for the project. The name of the used E. coli 

model is iEC1344_C which can be downloaded from the BIGG Model website. After choosing 

the model, the next step was adding all the needed reactions to create the modified E. coli. 

The idea of the article was to extend the chorismate pathway so that in the end the E. coli can 

produce maleate by itself. To add the reactions correctly to the model, the KEGG database 

was used. Eight reactions needed to be added in order that the E. coli was able to produce 

maleate. After creating the modified E. coli model, the next step was to see how far one can 

optimize the maleate production. During this process, biomass production was simultaneously 

observed, since if one wants to genetically modify an organism to produce a new molecule 

the newly added reactions mustn’t be reducing the life capacity of the organism. The organism 

should produce as much maleate as possible, but also still produce a certain amount of 
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biomass. The final research point was to see if one optimizes certain exchange reactions and 

if this would influence the maleate production.  

 

Components Counts (Original Model) Counts (Modified Model) 

Genes 1344 1349 

Metabolites 1934 1941 

Reactions 2726 2734 

S1 Table 1. Number of genes, metabolites and reactions of the E. coli model before and after 

adding the needed reactions. 

Results 

The first step was to create a model which would be survivable in real life. After adding all the 

new reactions to the original E. coli model, the first problem which needed to be solved was 

that one could not simply push all the fluxes in the direction of maleate since then the biomass 

production would be zero which means that the model is not survivable.  This problem could 

be solved by two solutions: optimise for the maleate and biomass production or fix the lower 

limit of the biomass. The first solution was giving a high biomass production but a rather 

moderate production of maleate which would not accomplish the goal of this project. The 

second solution was giving a high maleate production and the biomass production was still 

high enough which is why this solution was applied. The next step after having created the 

genetically modified E. coli model was to find further reactions which could be optimised to 

increase the maleate production. The first factor which would increase the maleate production 

would be oxygen. Increasing the oxygen supply in their living environment or overexpressing 

all the reactions which produce oxygen as a by-product or main product would increase the 

maleate production. Adding more minerals such as potassium and calcium in the medium 

would increase biomass production which would be helpful for the longer survival of E. coli but 

would not affect the maleate production directly. The most interesting finding was that 

optimizing the exchange reaction of phosphate (uptake) increased the biomass and the 

maleate production simultaneously.  

Summary  

During this project, one could see that, theoretically, it would be possible to modify the genome 

of the E. coli so that the organism would be able to produce the essential molecule maleate 

without perturbing the functioning of the organism. The metabolic modelling showed that the 

organism can produce enough maleate and still be able to have enough energy left for the life-

important biomass reactions. Additionally, further reactions were found which could be 

optimized by improving the growth and living environment of the E. coli like keeping the 

bacteria in an aerobic environment or by adding feeding supplements such as potassium or 

phosphorus into the medium of the bacteria. In summary, creating a modified metabolic model 
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helps in reproducing genetically modified organisms which already gives an idea about the 

outcome of the afterwards performed experiments. 
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P2: Impact of different diets on anxiety and depression in regards to serotonin levels - 
Daniel Guignard 
 
Introduction 

Depression and anxiety are widespread related conditions strongly impacting societies and 

families with an estimated economic cost of about €170 billion per year in the EU (WHO) (1). 

Although being multifactorial complex disorders, reduced level serotonin was identified as 

inducing a causative relationship (2). Surprisingly, this molecule is mainly produced by 

enterochromaffin cells (ECCs) located in the colon, therefore raising the question of the role 

played by the microbiota in this condition. Yano et al. showed that indeed, some metabolites 

excreted from bacteria could strongly stimulate the serotonin production of the ECCs (3). 

Moreover, they could correlate elevated serotonin levels in mice to the increased gut 

colonization by Clostridium species, particularly the ones expressing a high 7α-

dehydroxylation activity. Specific models for those bacteria (C. scindens, C. hiranonis, C. 

hylemonae) were retrieved from VMH AGORA reconstructions (model names in Table 3 in 

the main text) and their growth was assessed under 3 different diets (Unhealthy, DACH, 

Mediterranean) from the same database. An unhealthy diet containing a high kcal amount, 

saturated fatty acids, and cholesterol. The DACH (abbreviated from the international codes 

of Germany, Austria and Switzerland) being the ideal diet established by the society for 

Nutrition in Germany, Switzerland, and Austria (4). Finally, the Mediterranean diet is known 

to be one of the healthiest diets regularly consumed by millions of people mostly containing 

fresh plant foods, poultry, and olive oil as a fat source (5). 

 

Aim 

 

The aim was to evaluate the growth of the 3 Clostridial species revealed by Yano et al. for 

holding a high 7α-dehydroxylation activity implicated in the synthesis of deoxycholate from 

cholate. Both molecules strongly up-regulate serotonin production in ECCs. The fluxes going 

towards the biomass were assessed under 3 different diets retrieved from VMH with specific 

values for each exchange reaction of the models. 

 

Results 

 

The Clostridial species were assessed together with 2 Bacteroides species, which showed no 

impact on serotonin level according to Yano et al. mice study. 
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S1 Fig 1. Normalized fluxes on the DACH diet towards the biomass for 3 Clostridial and 2 

Bacteroides species. 

C. hiranonis growth is reduced under an unhealthy diet. Surprisingly the biomass for the 2 

other Clostridial species is increased under the same diet. Another observation is that the 

Mediterranean diet seems to promote the growth of almost all the Clostridial bacteria, better 

than the ideal DACH diet. Further investigations should be conducted on the metabolites 

stimulating serotonin production on ECCs, namely cholate, deoxycholate, and tyramine (3). A 

constrained-based model for the ECCs using rFASTCORMICS could assess those 

metabolites on the cellular serotonin production. 
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P3: Genome-scale metabolic modelling of human CD4+ T cells - Ni Zeng 

Introduction 

CD4+ T lymphocytes play a crucial role in the adaptive immune system. Depending on the 

extrinsic and intrinsic factors, naïve CD4 T cells can be differentiated into various subsets of 

effector T cells, such as Th1, Th2, Th17, inducible Tregs, and so on, to function differently 

against various pathogens. Metabolism is one of the major factors which profoundly influences 

T-cell differentiation and function. Distinct T-cell lineages utilize different metabolic programs 

to fulfil their functions (1,2). Therefore, modulation of CD4+ T-cells metabolic pathways can 

be useful to fight against some immune-associated diseases. Computational metabolic 

modelling of different subsets of CD4+ T cells might be a powerful approach to discover new 

mechanisms, biomarkers, and drug targets for CD4+ T cell-mediated immune diseases. 

Aim 

The project aims to construct the genome-scale metabolic models of naïve CD4+ T cells, Th1, 

Th2 cells. Based on the modelling, we aim to find out the metabolic pathways and metabolic 

genes which are exclusively essential to these three subsets of T cells.   

Materials and methods 

Transcriptome data collection and processing: Microarray data of human naïve CD4+ T 

cells, Th1 and Th2 were selected and collected from the Gene Expression Omnibus (3) 

database. For naïve CD4+ T cells (unpolarized), 9 datasets were included. For Th1 cells, 

which were differentiated from naïve CD4+ T cells in the presence of IL12, IFNγ, anti-CD3, 

anti-CD28, and anti-IL-4 antibodies, 11 datasets were collected. For Th2 cells, which were 

differentiated in the presence of IL-4, anti-CD3, anti-CD28, and anti-IFNγ antibodies, 12 

datasets were used (see Table 3 in the main text). All samples were analysed with (HG-

U133A) Affymetrix Human Genome U133A Array. The 32 microarray CEL files were read by 

the package of BiocManager (1.30.10) in R studio version 1.4.1106 with the oligo package 

(1.54.1). Data were normalized using the fRMA package (1.42.0) and the hgu133afrmavecs 

vector. Then the data were discretized with Barcode. 

Reconstruction of cell type-specific genome-scale metabolic model: The data from 

Barcode were loaded into the FASTCORMICS workflow. Genes with a z-score above 3 are 

considered as expressed genes and define the discretization score as 1. The ones with a z-

score below 0 are defined as unexpressed genes and defined as -1. z-score which is between 

0 and 3 is discretized as 0, which represents an undetermined gene set. Then the 

discretization score 1 is mapped to the consistent version of Recon3D via the Gene Protein 

Reactions Rules (GPR) to generate the core reactions. The biomass objective function from 

the Recon3D template was used here. 

Model validation: Based on the literature that glucose and glutamine are crucial for the 

proliferation of CD4+ T cells (4,5), Flux Balance Analysis (FBA) from the COBRA Toolbox was 

performed using different flux rates of glucose and glutamine reactions and then the effect of 

these flux rates on the growth rate was evaluated. 
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Essential genes prediction and pathway enrichment analysis: Single gene deletion was 

performed to predict the essential genes which are related to the growth rate of three subsets 

of CD4+ T cells. A Venn diagram was generated to find out the essential genes which are 

exclusive for naïve CD4+ T cells, Th1, and Th2 cells. Then according to the exclusive essential 

genes, biological processed enrichment analysis was performed via referring to the database 

of KEGG. 

Results 

 

 Naïve Th1 Th2 

Genes 1029 945 951 

Reactions 1538 1579 1614 

Metabolites 1379 1307 1343 

S1 Table 2. Number of genes, reactions, and metabolites in the FASTCORMICS models. 

 

Common essential genes among 

Th1, and Th2 & naive CD4 T cells 

Unique essential genes to 

naive CD4 T cells 

Unique essential genes to 

Th2 cells 

55 genes were essential in the 3 
cell types. No essential gene was 
unique to the Th1 cell model. 

SLC16A10, CPT2, ANPEP, 

SLCO1B1, SLCO1A2, MTAP 

SLC25A6, PKM 

Cardiac muscle contraction Bile secretion Pyruvate metabolism 

Oxidative phosphorylation Renin-angiotensin system Type II diabetes mellitus 

Parkinson disease 

Fatty acid degradation Central carbon metabolism in 

cancer 

Non-alcoholic fatty liver disease 

(NAFLD) 

Cysteine and methionine 

metabolism 

Glycolysis / Gluconeogenesis 

Alzheimer disease Glutathione metabolism Glucagon signalling pathway 

Huntington disease PPAR signalling pathway Purine metabolism 

Thermogenesis Protein digestion and absorption Parkinson disease 

Pyrimidine metabolism Hematopoietic cell lineage Cellular senescence 

Sphingolipid metabolism 

Thyroid hormone signalling 

pathway 

Necroptosis 

Glycerophospholipid metabolism Thermogenesis cGMP-PKG signalling pathway 

S1 Table 3. KEGG pathway enrichment analysis for shared genes in the three cell types, unique 

genes to naive CD4 T cells, & unique genes to Th2 cells. Th1 cells didn’t show any unique essential 

genes compared to naïve and Th2 cells. The top 10 pathways in each list were only selected by p-

value. 
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In our metabolic models for naïve, Th1, and Th2 cells, we predicted 6 metabolic genes which 

might be exclusively essential for naïve cell proliferation, and 2 exclusively essential for Th2 

cell proliferation. Cysteine and methionine metabolism and glutathione metabolism were 

indicated to be important for naïve CD4 T cells and pyruvate metabolism and glycolysis 

important for Th2 cells in the enrichment analysis. 
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P4: Exploratory study using a human alveolar macrophage or respective mouse model 

combined with the Zika virus - Claudia Cipriani  

  

Introduction  

  

Zika virus (ZIKV) is a member of the Flaviviridae family transmitted by insect bites. It was 

isolated for the first time from a rhesus monkey in 1947 (1). The first recorded human infected 

case was in Uganda in 1952. In February 2016, the outbreak of the ZIKV was declared as a 

Public Health Emergency of International Concern by the World Health Organization (2). The 

virus, primarily spread by Aedes mosquitoes, can then be transmitted to humans through 

sexual contacts, blood transfusions, or vertical transmission from mother to foetus (3). 

Symptoms caused by ZIV include microcephaly and neuroinflammatory syndrome (4). 

Because of the absence of approved treatments for ZIKV infection, new therapeutics are 

needed. In 2018, a genome-scale metabolic model that combines human macrophage cell 

metabolism and virus biochemical demand was developed (5).  

 

Aim  

  

The project aimed to confirm the validity of a previously published human-virus metabolic 

model (5). By performing in silico reaction deletions, on the viral-infected human model, we 

can predict possible antiviral drugs. The building of additional models using other tissues or 

hosts, including the viral biomass, might help to understand the different modes of virulence 

and to define tissue-specific drugs. 

  

Material and Method 

 

The human macrophage iAB-AMØ- 1410 metabolic model, was downloaded from Aller et al. 

(5). This model was reconstructed in a previous study (6) based on Recon1 (7), a generic 

human metabolic model, and transcriptomic data of alveolar macrophages from different 

patients. This model did not have genes and subsystem compartments assigned. The genome 

for ZIKV was obtained from the NCBI database with accession number NC_012532.1. Then, 

the authors constructed the final viral biomass objective function with its necessary 

components attached in the supplementary materials of the paper. The mouse model 

iMM1415 was obtained from the paper (8). 

  

Results  

  

The viral biomass reaction was added to the macrophage model. Optimization of the model 

was performed once for the viral biomass and once for the macrophage biomass, followed by 

a single reaction deletion where essential genes for the viral biomass and macrophage 

maintenance were identified. The result for the viral biomass optimization showed the 

production capacity of the virus, without any concurrent macrophage biomass production. 

However, this scenario is biologically not realistic, as the host cell needs to preserve its 

biochemical demands e.g., due to turn-over. To overcome this problem, we set the 

optimization weights for the macrophage & the virus to 100 & 1 respectively. Also, the upper 

bound for the macrophage biomass reaction was set to 10% of the maximal flux of the viral 

biomass. Thus, the maximal fluxes for viral and macrophage objective functions changed from 

0.027 & 0 1/h respectively for viral biomass optimization, into 0.0249 & 0.0027 1/h after 
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changing the weights and the upper limit. The same concept was implemented in the mouse 

model when adding the virus biomass objective function. We found a list of essential reactions 

for the macrophage and mouse models alone, reactions essential for both macrophage/mouse 

and virus and only in the case of macrophage-virus model 2 essential reactions only for the 

virus. These results are represented by the Venn diagram in (S1 Fig 2). 

 

 

S1 Fig 2. Venn diagram representing the number of essential reactions for macrophage/mouse 

and for the virus. The intersection represents the number of essential reactions which are in 

common. a. 65 reactions are essential only for macrophage, 2 reactions are essential only for the 

virus and 35 essential reactions are shared. b. 121 reactions are essential only for mice, 0 reactions 

are essential only for the virus and 116 essential reactions are shared. 

The 2 essential reactions for the virus in the macrophage-virus model are the phosphate 

exchange and guanosine monophosphate kinase (GK1). GK1 is involved in the purine 

metabolism that catalyses the reversible turnover of deoxyguanosine monophosphate (GMP) 

to deoxyguanosine diphosphate transferring a phosphoryl from ATP to GMP. In particular, 

GK1 is known as an essential building block of the RNA and for this reason an indispensable 

supplier for the construction of the RNA of the Zika virus. Using DrugBank (9), it was possible 

to identify some drugs that inhibit GK1, such as Acyclovir & Valacyclovir.  

Conclusion 

Constraint-based modelling is one of the most used approaches to model cellular metabolism. 

In this project, it was possible to obtain a host-virus integrated metabolic model using the 

human alveolar macrophage model iAB-AMØ-1410 and the mouse model iMM1415 as host 

cells and Zika as a virus. Single reaction deletion was used to identify potential targets such 

as GK1 for antiviral therapies. GK1 could play an essential role in different treatment 

strategies, but further analysis is needed to verify this finding. 
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P5: Metabolic differences in high and low STAT3 expressing breast cancer - Sundas 
Arshad 

Aim 

This study aimed to compare the presence of metabolic pathways, reactions, metabolites, and 

genes in breast cancer with different STAT3 expression. Therefore, two context-specific 

models (high and low STAT3 expression) were built using as input a published model of a 

breast cancer cell line (MDA-MB-231) and patient expression data from the TCGA, previously 

segregated into high and low STAT3 expression. 

 

Material and methods 

To build two metabolic models of low and high STAT3 expression, we used a previously 

published breast cancer cell line model, MDA-MB-231 (1) as a scaffold model. First, the model 

was constrained using DMEM medium (Dulbecco's modified Eagle's medium), which contains 

20 components using the constrain_model_rFASTCORMICS function. In order to check for 

model consistency, i.e. remove all blocked reactions unable to carry a flux, FASTCC (included 

in the rFASTCORMICS pipeline) was run. 

 

Patient gene expression data for breast cancer and healthy controls was taken from the TCGA 

(accession number: GSE62944). The RNA-seq data contains 1120 breast cancer samples 

and 22368 genes for each sample. Then, the breast cancer samples were stratified into high 

and low STAT3 expression status. Samples with a STAT3 gene expression below the 33rd and 

over the 66th percentile were selected for low and high expression of STAT3, respectively, 

leaving us with 749 samples for breast cancer.  

 

In the next step, the gene expression data for low and high STAT3 expression was discretized 

into expressed, not expressed genes, and genes with unknown expression status with the 

discretize_FPKM function in rFASTCORMICS. Two consensus context-specific models were 

built by pooling the different samples of the high and low expression of STAT3 using 

rFASTCORMICS. Both models lost the biomass objective function during the model 

consistency check after the model building process. 

 

Results 

To get an overview on the models built for the high and low expression of STAT3, we 

compared their reactions, metabolites, and genes. There was no major difference in the 

number of reactions, metabolites, and genes observed between high STAT3 and low STAT3 

models. 

 

Model Fields STAT3_high STAT3_low 

Reactions 889 934 

Metabolites 748 779 

Genes 990 949 
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S1 Table 4. Number of reactions, metabolites and metabolic genes in high and low STAT3 

expression models. 

 

The number of pathways observed for both models was similar (67 and 69 pathways in the 

high and low STAT3 expression model, respectively). However, there were two additional 

pathways (phenylalanine and vitamin B6 metabolism) in the low STAT3 expression model. No 

literature is available about a link between STAT3 and 'Phenylalanine metabolism', but there 

is a link between vitamin B6 and STAT3 expression that has been shown in previous studies 

(2). Vitamin B6 might have a general impact on the cellular management of stress by 

sensitizing a large panel of cancer cell lines to apoptosis (2). We also found the metabolite 

Glycero-3-phosphocholine which was exclusively present in patients with higher STAT3 

expression. Recently, Glycero-3-phosphocholine was found to be negatively correlated with 

the flora bacteria Faecalibacterium in breast cancer patients. The abundance of this bacteria 

was reduced in breast cancer patients (3). Also, Faecalibacterium inhibits the production of 

IL-6 and phosphorylation of JAK/STAT3 cascade, thus preventing the metastasis and the 

proliferation of the breast cancer cells (3). 
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