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SUPPLEMENTAL APPENDIX EXTENDED METHODS

Expression and purification of wild-type, mutant and truncated Pus7 proteins.
Saccharomyces cerevisiae wild-type and truncated (Pus7anssce, Pus7aipi) Pus7 protein encoding
DNA-sequences were ordered from GeneArt. Ligation independent cloning was used to
incorporate these sequences into a pMCSG7 vector containing an N-terminal Hise-tag and TEV
cleavage site. Single and double mutants were incorporated into the Pus7 sequence by
QuikChange® site-directed mutagenesis (Stratagene) using appropriate primers (IDT) (Sl
Methods). Sequences were confirmed by Sanger DNA sequencing (UMich sequencing core). All
proteins were expressed in BL21(DE3)-P-LysS E. coli cells grown in 1L Terrific Broth, 100 ug/mL
ampicillin at 37°C and 250 RPM. Protein expression was induced by the addition of isopropyl -
D-1-thiogalactopyranoside (IPTG) to a final concentration of 0.15 mM when cells reached ODeoo
of ~0.6. Following induction, cells were grown for 18 hours at 20°C and harvested by
centrifugation at 5,000 RPM for 30 minutes. Pus7 proteins were purified on a Ni?* Hi-Trap column
(GE healthcare), the His-tag was removed by TEV protease treatment followed by a second Ni?*
Hi-Trap column. The protein was further purified by anion exchange chromatography on a 5 mL
Resource™ Q column (GE Healthcare), and size exclusion chromatography using a Superdex
200 column (GE Healthcare). Purified protein was either concentrated and stored at -80° C or
used immediately for crystallization.

Selenomethionine Expression
pMCSG7-yPus7 was expressed in BL21(DE3) cells grown in Terrific Broth media (4% glycerol),

100 pg/mL ampicillin at 37°C overnight. The cells were pelleted resuspended in 1.1L of
selenomethionine minimal media, supplemented with 50 ug/mL L-selenomethionine, and 100 mL
of freshly prepared, and sterile filtered nutrient solution 20% (w/v) glucose, 0.3% (w/v) MgSOa,
0.1mg/mL Fe(l1)(SOa4)3, 0.1 mg/mL Thiamine, adjust to pH 7.4, sterile. The cells were then grown
at 37°C and 250 RPM until ODego of 0.6. The cells were induced with IPTG to a final concentration
of 0.2 mM and grown for 18 hours at 20°C before harvesting by centrifugation.

Crystallization
Unlabeled and SeMet derivatized Pus7 was concentrated 10 mg/mL in 50 mM TRIS, pH 7.5, 50

mM NaCl, 1 mM tris(2-carboxyethyl)phosphine (TCEP). Crystals of Pus7 were obtained by the
sitting-drop vapor-diffusion method at 20°C by mixing 0.5uL of protein solution (10mg/mL) with
0.5uL of the reservoir solution which contained 2 M ammonium sulfate, 10 mM nickel (Il) chloride,
100 mM TRIS pH 8.5. The crystals were then cryoprotected in a solution of 15% glycerol, 1.7 M
ammonium sulfate, 0.85 mM nickel (Il) chloride, 85 mM TRIS pH 8.5 before being flash cooled in
liquid-nitrogen.

Crystal data processing
Diffraction data were collected at 100 K and at the Se edge on LS-CAT 21-ID-D at Advanced

Photon Source, Argonne National Laboratory using a DECTRIS EIGER 9M. Three data sets were
collected from two crystals, and all were separately processed with XDS to 3.2 A resolution were
Friedel pairs were treated as equal. Reflections from a total of 1500 selected frames (first 500
from 2 datasets and first 400 from the third) were merged and scaled with Aimless (cite) and the



resulting reflection file was used for subsequent refinements of our Pus7 model. The data were
indexed to space group C222 (unit-cell parameters a = 117.9, b = 171.8, ¢ = 105.3 A) with 1
molecule in the asymmetric unit (Matthew’s coefficient Vi = 3.46 A® Da™, 64.5% solvent content).
500 frames from a single data set were processed anomalous (Friedel pairs were not treated as
equal) with XDS to 3.2 A and the resulting reflection file was used for the SAD phasing.

Crystal structure solution
Initial structure solutions were obtained by molecular replacement using the human Pus7

(PDB:5KKP) as a search model and initial phases were calculated using Phaser (1). However,
we were unable to obtain a structure solution for insertion domain one, which necessitated the
growth of Se-Met Pus7 crystals. AutoSol (2) was used to identify selenium sites and calculate
density-modified 3.3 A experimental maps based on a single-wavelength single-wavelength
anomalous dispersion (SAD) data set from SeMet Pus7 (the experimentally determined SeMet f
and f’ values that were used were -7.4 and 5.0 respectively). Specifically, 16 selenium sites were
located and used for SAD phasing, using phenix.hyss. Subsequently, Phaser was used to
calculate the experimental phases, followed by density modification with RESOLVE (figure of
merit 0.36 before and 0.78 after density modification). The experimental density map showed
clear features of the protein backbone and well-defined side chains. RESOLVE traced and
automatically built 389 residues and their side chains in the experimental electron density. The
final experimental model was in really good agreement with our original MR derived model but
also provided us with a partial model of ID-1. The partial model of ID-1 included residues 129 to
148, a region of ID-1 that packs against the core of an adjacent monomer and includes the only
SeMet present in ID1. The electron density corresponding to the insertion domain is overall poor
and of rather low resolution, as also reflected in the very high average B-factors (165.02) as
compared to the average B-factors (117.44) for the rest of the protein (Figure S2E). Ultimately,
using SAD phasing, in combination with our MR model, we were able to obtain a structure solution
for the insertion domain, completing our structure model. An overlay of the final Pus7 model with
all 16 experimentally determined selenium heavy atoms is shown in Fig. S2. The structural model
was refined with REFMACS as part of the CCP4I12 package (3) using isotropic individual B-factors
with maximum-likelihood targets where the Babinet model for bulk-solvent scaling was utilized.
Refinement was followed by model building and modification with Coot (4). We performed several
iterative rounds of refinement followed by model building and modification. All crystallographic
information as well as refinement statistics are provided in Table 1. The geometric quality of the
model and its agreement with the structure factors were assessed with MolProbity (5). Figures
displaying crystal structures were generated by PyMOL(6).

Preparation of 5’-fluorescein labeled RNA substrates.
RNA was prepared via in vitro transcription from DNA oligonucleotide templates ordered from

Integrated DNA Technologies (IDT) and transcribed by recombinant T7 RNA polymerase (7).
Transcription reactions were carried out in 50 mM Tris-HCI pH 8.0, 4 mM MgCl», 1 mM spermidine,
5 mM DTT, 4 mM ATP, 4 mM CTP, 4 mM UTP, 1 mM GTP, 4 mM guanosine-5-O-
monophosphorothiolate (GMPS), 350 pg/mL purified T7 RNA polymerase, 12.5 uM purified DNA
template containing T7 promoter and 4 U/ul SUPERaseln. After stopping the transcription by the
addition of 50 mM EDTA and 500 mM NacCl, the RNA was washed with degassed TE pH 7.2 three



times using Amicon spin column (10 kDa MWCO). The washed RNA (~250 pl) was incubated
with 20 ul 45 mM fluorescein overnight at 37°C to label the 5’end. All following steps were carried
out in the dark. The reaction was stopped by addition of an equal volume of 2X loading dye (0.05%
Bromophenol Blue, 0.05% Xylene Cyanol dye, 50% m/v urea, 0.1 M EDTA) and run on a 12%
urea-polyacrylamide gel. The RNA was eluted via crush-and-soak method into buffer (TE, 0.1%
SDS, and 0.5 M NaCl) overnight at 4°C. The elution products were subsequently filtered, washed,
and concentrated using degassed TE and an Amicon spin column (10 kDa MWCOQO). The RNA
was then ethanol precipitated at -20°C for 12 hours. The resulting pellet was resuspended in 20
ul of RNase free H>O. The concentration of the total and labeled RNA were measured
photometrically using A260 and A494 respectively, using a Nanodrop spectrophotometer. Select
Fl-labeled substrates were also purchased from Dharmacon.

Electrophoretic mobility shift assays (EMSAs)
For gel-shift assays, serially diluted protein (0-2000 uM) was incubated with 10 nM of 5’-

fluorescein labeled RNA in 10 pL reaction volumes for = 5 min at 25°C in a binding buffer

containing 100 mM NH4OAc, 100 mM Tris, pH 8.0, 5 mM MgCl;, 2 mM DTT, and 6% (w/v)

sucrose. An aliquot of each reaction (5 pL) was loaded on a preequilibrated, native 6%
polyacrylamide (37.5:1) gel in 1XTBE. Gels were electrophoresed at 30V for ~4h at 4°C. When
fluorescently labeled RNA substrates were used, electrophoresis was performed in the dark. Gels
were then rinsed in 1XTBE and imaged on an Amersham Typhoon Biomolecular Imager (GE

Healthcare). If unlabeled RNA was used, the gel was stained with SYBR® Gold Nucleic Acid Gel
Stain (Invitrogen) in 1XTBE for = 30 min in the dark before imaging on the Typhoon. Band
intensities were quantified using ImageQuant (Cytiva) and the percentage of RNA bound

calculated using Equation 1:

np

RNAbound(%) =100 X KD,appnh + ET"h

Binding data were fit using equations derived from the binding models shown in Figure S10. In
general, simpler models were tried first, and if systematic errors remained in the fit, more complex
models were used to fit the data. The simplest model used was a Hill curve, Equation 2:

Nh

RNApouna(%) = 100 X Kpapp ™ + Ep™

In this model, Kp app is the apparent Kp for binding of Pus7 to one of the many sites on a given
RNA; Kbp,app'n is the concentration of Pus7 at which 50% of available sites are bound. When
systematic errors remained in the fit, a more complex model was used in which Pus7 bound first



to a single specific site on the RNA, followed by the binding of multiple Pus7 moieties to multiple
nonspecific sites on the same RNA (Figure S10B). These data were analyzed using Equation 3:

ET ET Np
( KD,appl) % (1 * ( KD,appZ) )

Er Er h
Lt ( /KD.appl) % (1 * ( /KD.appZ) )

Neither of these models are theoretically correct, in particular because there is no evidence for
cooperative binding of Pus7 to RNA. A theoretically correct binding model would need to account
for random binding of Pus7 to all of the possible binding sites on a given RNA. Each RNA has
many binding sites, which are not all equivalent because of differences in sequence and structure,
and the binding sites can interact with one another negatively (via steric occlusion, for example)
and positively (e.g. binding of Pus7 at one site changes structure at a second site, increasing
binding affinity). Our experimental methods do not provide enough information to develop such a
model. The simplified models we use to analyze the data are therefore the best available tool,
and allow for quantitative comparison of differences in binding that are identifiable via visual
inspection of EMSA gel images.

RNAbound(%) =100 X

Single-turnover pseudouridinylation assays
RNA substrates containing 5,6-[*H]-uridine were prepared by in vitro transcription (7) and

denaturing gel purification. Reaction buffer was as described for the EMSA experiments. RNA
substrates were folded in 1X reaction buffer by heating to 60°C for 5 minutes, followed by a 30
minute incubation at 30°C (8). Indicated concentrations of protein were mixed with the smallest
detectable amount of substrate (~3,000 cpm per uridine in each timepoint, which allows reliable
detection of tritium release above 5% turnover). At each timepoint an aliquot of reaction mix
(containing ~3,000 cpm/U) was quenched in 1,250 yL 0.1 M HCI (final) containing 250 ug Norit-
A. Quenched timepoints were mixed, centrifuged at 21,000 x g for 5 minutes, and 1000 pL of
supernatant was transferred to a new tube containing 250 pL of 0.1 M HCI with 250 pg Norit-A.
Mixing and centrifugation were repeated, and 1000 pL of the supernatant was filtered through
glass wool in a 1 mL pipet tip to remove residual charcoal. Aliquots of the filtrate (500 uL) were
removed for liquid scintillation counting in a Beckman LSC-6500. For each reaction mix, input
controls were prepared by passing an aliquot of reaction through the same process using 0.1 M
HCI without the Norit-A. Counts observed in the input sample are used to calculate cpm/uridine,
allowing calculation of the amount of W produced at each timepoint. Background counts were
determined by processing an RNA only reaction aliquot through the sample pipeline; these counts
were routinely equivalent to background in our instrument (~30 cpm). Fraction of target U
converted to W data were fitted using Equation 4:
U > ¥ (fraction) = 1 — e kobs*t

Stop Flow Assays: Pus7/ D256A binding with fluorescently labeled mRNA
D256A Pus7 and 5-fluorescein labeled CDC8 were generated and purified as described as

above. Kinetic binding experiments were performed using the Kintek SF-300x stop-flow
apparatus. Fluorescently labeled mRNA (5 nM final concentration) was mixed with D256A at



varied concentrations (20 nM — 750 nM final). Binding experiments were performed at room
temperature in same buffer used in the EMSA experiments over the span of 1-1.5 seconds. Lower
concentrations of Pus7/D256A (0-100nM) displayed monophasic behavior and were fit with a
single exponential equation: A1e™*" + ¢ to obtain a kovs1. Higher concentrations displayed biphasic
behavior and therefore were fit with a double exponential equation: Ae™''+ A,e™*® + ¢ to obtain
Kobst @and Kobs2. The Kops1 Values from both fits were then plotted against the concertation of D256A
PUS7 mutant, displaying a linear relationship. The y-intercept gave a ko of approximately 35 s™
and the slope gave a kon of ~4.3 x 108 M's™. The Kp For D256A binding CDC8 was obtained
using Equation 5: Kp = Ko/ Kon.

Wild-type and pus7A growth assessment
Wild-type and pus7A yeast cells were inoculated into 3 mL YPD media and grown overnight.

Then, they were diluted to ODeoo=1 as a starting point, and 7 ml of 10-fold serial dilutions were
spotted on fresh YPD agar plates supplemented with 0.75-1.0 M NaCl, 250 mM MgSQO4, 200 mM
puromycin, 100 ng/mL cycloheximide, 25-50 mg/mL hygromycin B, 50 mM MG132 and 1.5-3
mg/mL paromomycin. Growth of the cells were also tested in the presence of different carbon
sources including 2% glucose, 2% sucrose and 2% galactose in YEP agar media (1% yeast
extract and 2% peptone). The plates were incubated for 2-3 days at 30°C unless otherwise
indicated.

Phylogenetic tree generation

Annotated TruD/Pus7 sequences (>400 total sequences) from GenBank (NCBI) were aligned
using ClustalW. Then, a representative 44 amino acid sequence was used for further analysis.
Evolutionary analyses were conducted using MEGAX tool (9). The phylogenetic tree was
generated using the Maximum Likelihood method (10). The bootstrap consensus tree inferred
from 100 replicates is taken to represent the evolutionary history of the taxa analyzed (11). The
percentage of replicate trees in which the associated taxa clustered together in the bootstrap test
(100 replicates) are shown next to the branches. Initial tree(s) for the heuristic search were
obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise
distances estimated using the JTT model, and then selecting the topology with superior log
likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences
among sites (5 categories (+G, parameter = 1.3722)). The rate variation model allowed for some
sites to be evolutionarily invariable ([+1], 0.89% sites). There were a total of 1344 positions in the
final dataset.

Ribosome profiling data analysis
Raw ribosome profiling sequencing data from two studies (12, 13) were downloaded and

processed using the procedures described below. Briefly, adapter contaminations and low-quality
reads were filtered out from the raw reads using the Cutadapt tool (14) like as previously described
(15). Subsequently rRNA and tRNA contaminations were removed by aligning reads to the non-
coding RNA (ncRNA) sequences of S. cerevisiae using Bowtie2 (16). Next, the remaining
unaligned sequences were aligned against the transcriptome (coding RNA) of S. cerevisiae (R64-
1-1 genome built) using TopHat2 (17). After that perfect match alignments were extracted from
the TopHat output. For further downstream analysis, 3'- and 5-end P-site offset values were



determined using riboWaltz (18). These P-site offset values are required to identify where
ribosomes are located on each ribosome protected footprints (RPFs). After P-site offset
calculation, actively translating ribosomes that represent trinucleotide periodicity were identified.
Then the number of mapped RPFs was counted for each codon position within a gene using
Samtools (19).

Modeling of thermal stability of PUS7
Using the established relationship between a protein’s stability and its heat capacity (ACy),

stability (AG) chain length can be reasonably modeled as a function of chain length (N) and
temperature (T) (26-29). Pus 7’s stability curve was modeled as a function of N and T using
previously published model seen in, Equation 6 (27, 29-31).

AG(N,T) = AHg + AC, (T — Tg) — TASz — TAC, In In (%) (6)
Where enthalpy (AHRr) and entropy (ASr) are calculated at a reference temperature and (AC,) is
the heat capacity of a protein, Tr is the reference temperature of 373 K for both AHr and ASk.
These previous studies took advantage of the correlation between a protein’s thermodynamic
parameter and chain length to derive linear equations from experimental measurements collected
into databases. The linear equations can be expressed as equations 7, 8, 9, (27, 29)

AHg = my, - N + b, (7)
ASg =mg- N + b (8)
AC, = m.-N + b, (9)

Where my and by, are the slope and intercept of AHr, ms and bs are the slope and intercept of ASr
and mc and b are the slope and intercept of AC, when these parameters are plotted as a function
of N. Equations 7, 8, 9 can be inserted into Equation 6, in order to get stability as a function of N
and T as seen in Equation 10.

AG(N, T) = (10)

(muN + by) + (mN + b)(T — Tg) —T(mN + by) —T(m.N + b,) In (Tl)
R

Detection and quantification of pseudouridylation: CLAP assay
The CLAP assay was adapted from Zhang, 2019 (25).

Pseudouridylation of total RNA or in vitro transcribed CDC8

Briefly, 150 ug of total RNA purified from BY4741 yeast Apus7::kanMX was mixed with 50 uM
Pus7-WT or Pus7-AID1 and incubated for 10 minutes at 30°C or 37°C in 1X pseudouridinylation
buffer (100 mM TRIS-HCI pH 8.0, 100 mM NH4+OAc, 2 mM DTT, 5 mM MgClz) to modify the RNA.
The reaction was stopped by adding 1/10"™ volume of 3 M NaOAc pH 5.2, followed by two
phenol:chloroform (1:1) extractions with saturated acid phenol, and a final chloroform extraction
to isolate the RNA. The RNA was then precipitated by adding an equal volume of 100% EtOH
and 1 uL of GlycoBlue (Thermo Fisher, AM9515) and incubated at -20°C for 3 hours.

CMC treatment



RNA was resuspended in 41.5 uL of BEU buffer (50 mM Bicine pH 8.3, 4 mM EDTA, 7 M Urea).
For CMC treated samples, 8.5 uL of freshly prepared 1 M CMC dissolved in BEU buffer was
added, for a final concentration of 170 mM CMC. For CMC non-treated samples, 8.5 uL of BEU
buffer was added, for a final reaction volume of 50 uL. Samples were incubated at 37°C for 20
minutes. The reaction was stopped by adding 100 uL of Stop Buffer (300 mM NaOAc pH 5.2, 0.1
mM EDTA) for a final volume of 150 pL. Excess CMC was removed by two sequential ethanol
precipitations. Briefly, 700 uL 100% EtOH, and 1 uL GlycoBlue were added to the reaction before
incubating 3 hours at -20°C. Sample was spun down for 30 min, 15kRPM, at 4°C before removing
the supernatant, and washing the pellet by adding 500 uL of 70% EtOH, and spin for 5 min at
15kRPM. Remove supernatant and allow pellet to dry. Resuspend the RNA pellet in 100 uL of
Stop Buffer and repeat ethanol precipitation and wash.

Alkali Treatment

Resuspend the pellet in 40 uL of 50 mM Na>COs; pH 10.4 (pH taken at 37°C, temperature of
incubation) and incubate for 3 hours at 37°C. Precipitate RNA via ethanol precipitation, as
described above, with an additional 70% ethanol wash. Let pellet air dry. Resuspend the pellet in
20 L sterile water and determine concentration by nano-drop.

RNA 5’ Phosphorylation

To 6 ug RNA in 6.5 uL, add 1 uL 10X T4 PNK reaction buffer (NEB B0201S), 1 uL of 1 mM ATP,
0.5 uL 20 U/uL SUPERase*In RNase Inhibitor (Thermo Fisher AM2694), and 1 uL 10 U/uL T4
PNK (NEB M0201L) for a final volume of 10 uL. Incubate at 37°C for 30 minutes.

Blocker Ligation

To the reaction above, add 1 uL 10X T4 RNA Ligase reaction buffer (NEB B0216L), 1 uL of 100
uM 5 RNA blocker oligo (IDT /5AmMCG6/rArCrCrCrA), 1 uL of 1 mM ATP, 1 uL 20 U/uL
SUPERase-«In RNase Inhibitor (Thermo Fisher AM2694), 3 uL DMSO, 2 ulL sterile water and 1
uL 10 U/uL T4 RNA Ligase | (NEB M0204L) for a final volume of 20 uL. Incubate at 16°C for 16
h. Stop ligation reaction by adding 1.2 uL 200 mM EDTA.

Reverse transcription

For reverse transcription, the RT primer was first annealed by taking 3 uL of ligation mixture,
adding 1 uL of 10 X annealing buffer (250 mM Tris-HCI, 480 mM KCI, pH 7.4) and 1 pL of 0.5 uM
target specific reverse transcription primer (IDT). Samples were heated to 95°C for 3 minutes and
slowly cooled to 37°C at a rate of -0.01°C/s (~15 min). To annealed sample, add 5 uL of 2 X AMV
reverse transcription reaction mixture (1.2 U/uL AMV RT (NEB M0277L), 2X AMV RT buffer, and
1 mM of each dNTP) for a final concentration of 0.6 U/uL AMV RT, 1X AMV RT buffer, and 0.5
mM of each dNTP. Incubate at 42°C for one hour. Inactivate AMV RT by heating to 85 °C for 5
min before placing on ice. To digest RNA, add 1 uL of 5 U/uL RNaseH and incubate at 37°C for
20 minutes. Inactivate RNaseH by heating to 85 °C for 5 min and before placing reaction on ice.
Add 1 uL of splint/adaptor oligo mix (1.5 uM adaptor oligo, 1.5 uM splint oligo) and incubate
mixture at 75°C for 3 minutes followed 3 minutes at room temperature to anneal the splint/adaptor.



Add 4 uL of 4x ligation mixture (40 U/uL T4 DNA ligase, 4X T4 DNA ligase buffer, and 50% DMSO)
for a final concentration of (10 U/uL T4 DNA ligase, 1X T4 DNA ligase buffer, and 12.5% DMSO).
Incubate at 16°C for 16 h. Heat reaction to 65°C for 10 min to deactivate T4 DNA ligase, place
immediately on ice.

PCR

Use 2 uL of reaction above, mix with 3.5 uL of 5 uM forward primer and 3.5 uL of 5 uM reverse
primer (or reverse transcription primer). Add components for Q5 DNA polymerase reaction to a
final volume of 35 uL and final concentration of 1X Q5 reaction buffer, 1X Q5 GC enhancer, 200
uM of each dNTP, 0.5 uM of forward and reverse primers, and 0.2 U/uL Q5 high fidelity DNA
polymerase (NEB M0491L). Perform 35 cycles of PCR at requisite annealing temperatures for
each site. 5 uL of PCR reaction was mixed with 1 uL of 6X TriTrack DNA loading dye and loaded
on to a native 10% acrylamide (29:1) gel in 1X TBE pre-run at 10V/cm for 1 hour. Gel ran 3 hours
at 10V/cm before being stained in 1X SYBR gold nucleic acid gel stain in 1X TBE for ~10 minutes.
Gels were imaged on Amersham Typhoon imager and quantified using ImageQuant.

CLAP Primers

ARG5,6_RT CCCATAGCAAGATTAATATTT
ARG5,6_FWD TAGTTATTGGTGGTTTCA
ARG5,6_REV TGCAGACATTGAGTAGC

ARG5,6_ADAPT
ARG5,6_SPLINT

pCCATGTGAAACCACCAATAACTA
TTTCACATGGAGTTGTTTGC/3SpC3/

BET2_RT GCTTGAGCTGCATGGGATTCA
BET2_FWD ACTATCAATTTTGGGTGAATTAA
BET2_REV GCATTAGGACATAATCCAAAG
BET2_ADAPT pCCATGTTAATTCACCCAAAATTGATAGT
BET2_SPLINT ATTAACATGGAGACTTTGTA/3SpC3/
U2snRNA_RT TATTATTTTGGGTGCCAAAAA
U2snRNA_56_FWD CCTTTTGGCTTAGATCAA

U2snRNA_REV
U2snRNA_56_ADAPT
U2snRNA_56_SPLINT
U2snRNA_35_FWD

U2snRNA_35_ADAPT
U2snRNA_35_SPLINT

ATGTGTATTGTAACAAATTAAAAGG
pCCATGTTGATCTAAGCCAAAAGG
ATCAACATGGAACAACTGAA/3SpC3/
ACGAATCTCTTTGCCTTT
pCCATGAAAGGCAAAGAGATTCGT
CCTTTCATGGAGTATCTGTT/3SpC3/

CDC8_RT ATATGCGTACTCAAAACAGGC
CDC8_FWD GCTATTGGATAAAGAGATAAGGA
CDC8_REV TCAACGATTTGCCAAATAAGC
CDC8_ADAPT pCCATGTCCTTATCTCTTTATCCAATAGC

CDC8_SPLINT AAGGACATGGAGACGTTACT/3SpC3/



EFB1/TEF5_81 RT
EFB1/TEF5_81_FWD
EFB1/TEF5_81 REV
EFB1/TEF5_81 ADAPT
EFB1/TEF5_81_SPLINT

RTC3_77_RT
RTC3_77_FWD
RTC3_77_REV
RTC3_77_ADAPT
RTC3_77_SPLINT

RTC3 288 RT/REV
RTC3 288 FWD

RTC3 288 ADAPT
RTC3 288 SPLINT

TEF2_555 RT
TEF2_555_FWD
TEF2_555 REV
TEF2_555_ADAPT
TEF2_555_SPLINT

TEF2_1104_RT
TEF2_1104_FWD
TEF2_1104_REV
TEF2_1104_ADAPT
TEF2_1104_SPLINT

GTTGAACCATCTGGAGAATTC
GAAACAATTAAACGCTTCTTT
TGGGTAAGCAGATTGGAAA
pCCATGAAAGAAGCGTTTAATTGTTTC
TCTTTCATGGACTGCTGTTT/3SpC3/

TCCTGAGGAGTGAAAACTTCG
GGTGAAAATACAGATTTGATTG
AAGAGTTCGACAACTTCAGAT
pCCATGCAATCAAATCTGTATTTTCACC
GATTGCATGGAGACGAATAT/3SpC3/

TCAATTGTAGGCTTTGGTTC
GTTATCGATTTGATATTGAGAAA
pCCATGTTTCTCAATATCAAATCGATAAC
AGAAACCATGGAGTCTCAAAA/3SpC3/

GGACTTCAAGAACTTTGGATG
GAAACCTCCAACTTTATCAA
GGTGGTAGCTTCAATCATGTT
pCCATGTTGATAAAGTTGGAGGTTTC
ATCAACATGGGTTCCATTCG/3SpC3/

ACCCTTGTACCATGGAGCGTT
TTACTCTCCAGTTTTGGA
GTCTTCCAACTTCTTACCAGA
pCCATGTCCAAAACTGGAGAGTAA
TTGGACATGGAGATTCGACG/3SpC3/



SUPPLEMENTAL APPENDIX FIGURES

Figure S1: Phylogenetic relations in TruD and Pus7 family. This tree shows the relation of
Pus7 family proteins in different species. It also represents the relation between Pus7 family with

TruD family proteins.
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Figure S2: Comparison of Pus7 structures. (A) Rendering of the electrostatic surface potential
of yeast Pus7 generated with ABPS Electrostatics (20). Negatively charged regions are shown in
red, and positively charged regions are shown in blue. (B) Catalytic residue D256, Pus7
numbering, is shifted ~4A relative to the same residue in TruD (D80). Figure shows alignment of
the yeast Pus7 active site (purple) and residues (gray) with the equivalent residues in TruD
(yellow, PDB: 1SB7)(21). Pus7 numbering in black, TruD numbering in yellow. Distances
measured both from CAlpha position and from the carboxyl on D256/D80. (C) Superposition of
yeast Pus7 (light gray, blue) and human Pus7 (dark gray, yellow, PDB: 5KKP)(22), (Capha RMSD
= 3.743 for 144 atoms) and rotated 180 degrees to show the difference in position of the insertions
(I, 1, and 1ll) in yeast (blue) and human (yellow) Pus7. The catalytic residue D256, yeast
numbering, is shown in the active site (light gray spheres). (D) Top down view of yeast and human
superposition, looking down into the active site. (E) Putty representation of Pus7 colored
according to B factors. Residues with the lowest B factors in blue (min = 20A) and maximum in
red (max=200A). (F) 2Fo-Fc maps showing experimental electron density (gray mesh) around
yeast Pus7 ID-l (blue) contoured at 1.56. Methionine residues (M88 and M145, orange), shown
as sticks, used for SAD phasing.(G) Superposition (using 136 — 336 c-alpha atoms of the TRUD
and PUS domains, RMSD: ~2.52A for these domains) of TruD homologs, including: each
molecule in the asymmetric unit of each E.coli TruD structure (gray, PDB: 1sb7, 1si7, 1szw), both
TruD molecules in the asymmetric unit of the Methanosarcina Mazei structure (gray, PDB: 1z2z),
the single Pus7 molecule in the human structure (yellow, PDB: 5kkp), and the single molecule in
the yeast Pus7 structure reported here (blue).









Figure S3: Sequence alignment of representative TruD family members.

Pus7|S.
Pus7|H.
Pus7|D.
Pus7|M.
TruD|E.

Pus7|S.
Pus7|H.
Pus7|D.
Pus7|M.
TruD |E.

Pus7|S.
Pus7|H.
Pus7|D.
Pus7|M.
TruD |E.

Pus7|S.
Pus7|H.
Pus7|D.
Pus7|M.
TruD|E.

Pus7]|S.
Pus7|H.
Pus7|D.
Pus7|M.
TruD|E.

Pus7|S.
Pus7|H.
Pus7|D.
Pus7|M.
TruD|E.

Pus7|S.
Pus7|H.
Pus7|D.
Pus7|M.
TruD|E.

Pus7|S.
Pus7|H.
Pus7|D.
Pus7|M.
TruD|E.

Pus7|S.
Pus7|H.
Pus7|D.
Pus7|M.
TruD |E.

Pus7|S.
Pus7|H.
Pus7|D.
Pus7|M.
TruD|E.

cerevisiae
sapiens
rerio
musculus
coli

cerevisiae
sapiens
rerio
musculus
coli

cerevisiae
sapiens
rerio
musculus
coli

cerevisiae
sapiens
rerio
musculus
coli

cerevisiae
sapiens
rerio
musculus
coli

cerevisiae
sapiens
rerio
musculus
coli

cerevisiae
sapiens
rerio
musculus
coli

cerevisiae
sapiens
rerio
musculus
coli

cerevisiae
sapiens
rerio
musculus
coli

cerevisiae
sapiens
rerio
musculus
coli

1

75
145

144

214
253
219
258

39

291
329
295
334
115

370
402
368
407
186

449
474

479
193

............... MS D . .SEATVKRPLD
LTKGQDGLONDFLSISEDVPRPPDTVSTGKGGKNSEAQLED
V..o LGS[EKRSCPD....... EEQHSAKRIRV

MEMTSTSLKRGCLVVEDNDSVTPHDETKKQKVSEGCLTSSQDGVENDGLHR|SENEPGPPEAESTVKDDENSSAQVQE

e — — — — — — — — | PUSDomain (aa37-74) |— — —|

(@rID) o> (2 pz >
. . . . .9 L] .0
AHVGPS.........ENAAK....KLKIEQRTQA.DGIHEAPVGITLFLEPELP TBELgVEI 0
EEE...E..EEDGLSEE..CEEEESESFADMMKHGL. . T[E[ADVGI|TK[F|V[S|SH . 0 BIo v = bl
EEE...PQEDEEEEPQEEEEPEEEEESFADMMKHGL . . T[EADVGIHRIF|I|SEH . T Blo r v = FRES
EEE...EEEEEDGLSE..AGEEEEAESFADMMKHGL. . TE[LDVGICKF|V|S[SH . H Blo F v = pilEEs
....................................... NL. T Bl F v Y= B
Insertion Domain | (aa75-215) |
- “ al D a2 a3
EGKV I HETPJKGFKMPKK . PQRSKEEVNA . « . 0o vvv.. .. KESEAARRQEFNV....DPELRNQLVEIFGEEDVLKIES
DIGRISHIND[LSIPVDEED. . . . . PSE...... DIFTVLTAEE. ..... RLEELQLFKNKE. . ... ..TSVA
EIG[RMV RILIDD|L CVPAEEQD . .RLDPSESSSAEAQTLSEEQ...... OLEDLOLFRNKE. . .
DERISHLD LSVPVDEED. .PPE...... DALTVLTAED...... JOLEELQLFKNKE . .
O
VYRTANKMETAKNFEDKS VRTK IHQLLREAFKNELESVTTDTNTF . . KIAR. SN. RNSRTNKQEKINQTRDANGVENWG|Y
P IEVIEDTKEKRTIIHOAIKSLFPGLETKTE . DREGKKY IVAYHAAGKKAL . « . v o v . .. ANPRKHSWB|[K
LLHRAVKTLFPGLETKTE . ERDGQRVIVAYHAAGKTAL. . . .. AELRPSAAPRKHSWE[K
VIHQAIKSLFPGLETKTE.DREGRKYIVAYHAAGKKAL. ... . AKVRAAADPRKHSWE[K
B X X GFER[D

- - - - - - - - - — — — — — — — — — — — — —/| PUSDomain (aa218-313)

B s D CEmD e
L|

. . ° .
GP[S|KDF IHF|TL/HEFENKDRMER V] RVIPSRVIRYA[H RTWMKGMI I
KCHMMNEKL
KCHWMMNLKL
KCHMMNLKL

Q

:

RVIRP NMF(SYMETESIKRINI|SVISJE TAVLKISA. . .
RVIKPNIFSYMETISIKRINTITVETAVLKISA. . .
KIHAREV|SFIA[GOIENK HENVT|E[JW L C A R GKEMP .

Vi MOIR RINVIT|C[JRVS I SKIGL . . .
SR|G|. SYC] FVLYKENKDTMD INV RVIKPNIFSYMETISIKRINTITV[E ITAVLKITA. . .
NR SFCHF|VLIYISENKDMERA TN/ T
Vi
Al . CHMEGCQV

ERICIRAS]

SR|G|. SYCHF|V|LIY)NENKD}y§
GE|G|.

KM e

KIN PIAKIAEENAO(RN HIYT VIYLIAN I TG T D
HPMAKIAEEAO[Y HIYT VIYLIAN T SG SO
T PRAKINe A A0 (R HIYT VLN I TG T D
R KRG AP [PUYARYT L\YLIJE VS . . N

° .
NF S| ASNDKEDVTTGNSEVSLEEIVSNGCKSLSENE‘IF

S
Insertion Il (aa365-443) )

Cas D a0
AAEETESDODNV . LPKSKEARK IWAEMKPAA LRTK QMBRQC LAENAETY s

VMD[LILKPRSGAEKGY LVKCRE EWAK/TIKIDP T ARLRK LE[VKRCVIE[GOLLRGILISKY . . . . . ..M.KNIVS
VVDLILKPRPGAEKGYLVKCREEWART/ODIP AARLRK LP[VKRCVIE[G QL LR GILAKH . - . . . CK.HNIIT
VMDILILKPRSGAEKGYLVKCREEWAKTIKIDP A SALKK L[V KRCVE[G QL LR GIL|sRY . - . . CIMIKNIVS

C ald D 10> >

QEYVWIIS IASIKINIELHGLK . . LIYV[ELVIDTSEKSPLI . SGIDDEDFDEDVREAQFIRAKAVTQEDIDSVKY. .
SKIITEDYGLKP . . MP[E@MLVLKGA. . . ... ..... TATYIEE..DDVNNY

SRRAVDAYGLRA . . E[MLTILRGG. . . .. .. ... SAHVLSA..DEAQKH. .
SRERATEEYGLRP . . P[ELVLKGA. . . .. ..... TPTYIEE..DDVDNY. .
AERILKKADVIN . QVIYD[RIAILOLAGRGSWEVA . . . . ..o it i it i e i e e TT..EELAELQRRVN

a6 p13 > pid> pis >
P SNEELKOQLFVD ILKEYDN MDp FNMR R RIIHYDDP|SQOMVN

EVVAYDDP|KIPLFN
ELVQYDDPRVPLVH
EVVA[YDDP[KIPLFN

( Insertion Il (aa594-634) |
al7

PUS Domain (aa635-676) —

pi6 D

. .
TD|LDI[LINNTRAKESGQKYMKAKLDRYMPD .KG.[GEK TRV V L KGOMG| AlLE¥J L MK|LETS|RRGDM . CDVKENTI .
TDVDNILEGKTPPV. ... KYRHLKMDFS P 'IREVL”MDTSIKNQTQLNTTWLR‘
TD|LEKLENKPAPV. . . KYCHLKMEFS P 'VREVLﬁMDTSIKNQTQLNTSWLN.
ITD[VDN[LIEGKPPPV. .. KYRELKMDFS P 'IREVL”MDTSIKNQTQLNTSWLR.
P P 1 P D.VEVEIRFW P VRELINTTGDYAHIA ........ E




Figure S4: ID-l contains a single strand nucleic acid binding R3H domain. DALI alignment of the
R3H motifs (based on 56 atoms, RMSD: 2.788 A) from humanPus7 ID-I (yellow, PDB: 5kkp) and
PARN (blue, PDB: 2a1s).
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Figure S5: S. cerevisiae cell growth under different conditions.
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Figure S6: Example S. cerevisiae cell growth in liquid media. Growth curves for wild-type and
pus7A cells in YPD at 30°C after the addition of (A) nothing, (B) cycloheximide, and (C)

paromomycin.

A10 - - - - - - - B14

12} |[—WT
=v--Pus7 K.O.

10
v

8

3
o
(o]

600
»

oD
I

o N A O ®

L . . N N L . N L L L N N L
0 10 20 30 40 50 60 70 80 20 40 60 80 100 120
Time (hr) Time after Chx addition (hr)

C .

12} |~*WT
=¥--Pus7-KO
10 3

0

e
—
™

>
--....
-*

oD

8
6
4t
2
0

0 20 40 60 80 100

Time after Paromomycin addition (hr)



Figure S7: Ribosome occupancies are affected in the absence of Pus7. (A) Ribosome
protected footprint (RPF) read length distribution. Distribution of ribosome protected fragments
(RPFs) length show that most of the RPFs are between 27-30 nucleotide length. (B) ~50-60 % of
these RPFs are in-frame (frame 0) (C) Ribosome occupancies are altered in pus7A compared to
wild-type cells. Fold change in the ribosome codon occupancies was simply calculated by dividing
the number of mapped RPFs in the P-site of pus7A to wild-type.
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Figure S8: Raw EMSA data

Each panel is titled “SUBSTRATE PROTEIN” in bold text. Panels are grouped by substrate and
then by protein mutations. Each panel shows the binding model used for curve fitting, one gel
image, and a single curve fitted to all replicate data sets. The dissociation constant for the specific
binding step of the model is noted along with the error of the fitted parameter.
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Figure S9: Yeast PUS1 nonspecifically binds RNA and catalyzes pseudouridinylation
outside its consensus sequence. A. EMSA using PUS1 and its GLK1 target RNA showing
specific and nonspecific binding events. B. Measurement of pseudouridine synthase activity on
a variety of PUS7 and PUS1 substrate RNAs. The tRNA substrates are positive controls and
show the expected pattern of activity. The MFKKX substrate contains two UGUAG motifs and
mutation of one of them eliminates pseudouridinylation at that site by both PUS1 and PUS7.
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Figure S10: Models utilized in analysis of EMSA data. (A) Simultaneous binding of n PUS7
enzymes to a single RNA substrate, otherwise known as a Hill binding curve. This model was
used when no specific binding was apparent. Binding curves were fit to the equation shown. The
EMSA assay allowed direct estimation of free enzyme concentrations, so we fit the data using
both free and total enzyme concentrations. The differences between these fits was much smaller
than the difference in fits of data from independent replicates. Since using total enzyme as the
independent variable was not the limiting factor in the precision of our measurements, we used
total enzyme as the independent variable for simplicity. (B) Model for binding of one PUS7 enzyme
to a single specific site on the substrate RNA, followed by simultaneous binding of n PUS7
enzymes to n non-specific sites on the same RNA. This model was used to fit data when the Hill
equation underestimated the fraction bound at lower concentrations of enzyme, reflecting the
existence of a unique site with a lower Kp for PUS7. (C) A realistic model for binding of one or
more PUS7 enzymes, in arbitrary order, to a single specific site and one or more nonspecific sites
on a single RNA. Occupancy of nonspecific sites is indicated by superscripts /, j, k, ... on the S.
Nonspecific sites can be bound in any order (e.g., k,/,/,j) but are depicted in alphabetical order for
convenience.
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Figure S11: Stopped flow assessment of binding kinetics. (A) Experimental set-up, as
described in the corresponding S| Appendix Methods. (B) Stopped-flow traces of FI-CDC8
rapidly mixed with 0, 20 and 750 nM of D256A Pus7 protein. (C) Traces at higher D256A
concentrations were biphasic. This shows a 750 nM trace fit with one or two phases. (D) All of
the Kobs,1 Values measured are plotted as a function of D256A Pus7 concentration.
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Figure S12: Deletion of ID1 does not broadly affect pseudouridinylation of total RNA in vitro.
Total cellular RNA extracted from Apus7::kanMX was pseudouridinylated in vitro using PUS7FL
or PUS7AID1. Pseudouridinylation of known sites was assayed using CLAP (25).
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Figure S13: Deletion of ID-lI influences pseudouridylation efficiency in a target dependent
manner.

Total cellular RNA was extracted from pus7::kanMX yeast and pseudouridinylated in vitro with
PUST7fl or PUS7AID1 (left side) or extracted from pus7::kanMX yeast expressing PUS7FL or
PUS7AID1 (right side). Pseudouridinylation was assayed at specific sites using CLAP (25). The
difference between mean pseudouridinylation level at sites in RNA exposed to PUS7AID1 and
RNA exposed to PUS7fl is shown on the y axis.
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Figure S14: Expression of PUS7AID1 confers no obvious phenotypic defects relative to
PUS7FL. PUS7 was expressed from a CEN plasmid under the control of a GPD promoter in WT
and Apus7::kanMX yeast and assayed by spot plating under the indicated conditions. Three
independent transformants were assayed for each plasmid.
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Figure S15: Isolation of PUS7fl and PUS7AID1 expressing clones. Three independent
transformants were isolated for each strain/plasmid combination.
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Figure S16: Secondary structure prediction of Pus7 modified sites in mRNA coding regions
reported in Carlile, et al. Nature (2014) (23).
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Figure S17: Model - Pus7 rapidly samples RNAs
for specific modifiable sequences. RNAs contain
multiple (often overlapping) potential Pus7 binding
sites. These sites have varying degrees of accessibility
to Pus due to their secondary/tertiary structures or
occlusion by RNA-binding proteins. Pus7 rapidly
samples all accessible sites on a given RNA, forming
nonspecific interactions with most sequences. When
Pus7 interacts with a modifiable (e.g. UGUAR)
sequence, it forms a tighter, ‘specific’ interaction that
results in W installation. Only a handful of the potential
Pus7 sites are modifiable and ‘specific.’



Figure S18: Secondary structure predictions at 30°C and 45°C of randomly selected Pus7
heat shock targets Schwartz, et al. Cell (2014) (24).
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Figure S19: The observed rate constant for pseudouridinylation on short target 1 (ST1) is
increased ~10-fold at elevated temperature. A. Observed rate constants for
pseudouridinylation increase more than 10-fold as temperature increases, suggesting that
increased conformational flexibility of the RNA structure allows more rapid access of PUS7. B. A
set of stochastic structure predictions (32) demonstrating possible temperature-dependent
changes in the structural environment of the target U in substrate sT1.
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Figure S20: Modeled thermal stability of PUS7.
Using the chain length (N) of Pus 7, its stability was modeled as a function temperature range to
find its maximum stability. Its maximum stability of about 65 kJ/mol is at approximately 22 ° C.
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SUPPLEMENTAL APPENDIX TABLES
Table S1: Crystallographic parameters.

Table S1. X-Ray Crystallography Data Collection and Refinement

Statistics

Pus7

Data collection

Beamline APS, LSCAT 21-IDD
Wavelength (A) 0.979
Temperature (K) 100
Resolution (A) 48.27-3.20 (3.42-3.20)
Space group 222
Cell dimensions (A) a=117.9,b=17L.8,
c=1053

Cell dimensions (°) a=B=y=90
Observed reflections 184,895 (31,045)
Unique reflections 18,019 (3,207)
Rmeas (%) 17.8 (141.7)
Rmerge (%) 17.8 (132.6)
<I/o> 9.5(2.0)
CC(1/2) 0.996 (0.802)
Multiplicity 10.3 (9.7)
Completeness (%) 99.9 (100)
Overall B (A?) (Wilson plot) 121.9
Refinement
Resolution range 46.32-3.20
Number of reflections 18017/881
(work/test set)
Rwork/Riree (%0) 22.4/27.6
No. of non-H atoms

Protein 9394

Water 14

Ligand 15
B-factors (A?)

Protein 130.1

Water 88.7

Ligand 164.3
Rmsd deviations

Bond lengths (A) 0.0025

Bond angles (°) 1.21
Estimated coordinate error (A); maximum 0.4200
likelihood based
Cruickshank’s DPI' (A) 0.4688
Ramachandran plot

Favored/allowed/outliers

87.7/12.1/0.2



MolProbity Score 1.63 (100" percentile)

PDB TMZV




Table S2: Impact of Pus7 mutations on CDC8 binding and modification

kobs
variant Kobs (s7) &0 defect Kb, app1 (NM) %©
(fold)®
WT®  99x107 £ 1.0x10" 1 76 + 15
D256A° no reaction 60 + 16
K61A  2.6x102 + 041x102 38+6 400 + 200
F67A  46x10° + 0.2x10° 213%i 180 + 40
E7T1IA  52x10° + 0.3x 103 1%%* 210 + 50
F307Y 2.6x10° % 0.1x10° 3%%i 378 + 102
N305A 4.0x10% + <1x10° 2’388 230 £+ 60
B . 74,000
FO7A 13x10° & <1x10® [0 344 & 170
WT 84x10" % 05x10" 1 n.d.g
H161AT  69x10"7 % 0.9x10" 1(')2; 170 + 40
ADT 38x10" + 06x10" 2(')25* 160 + 40

@ errors are standard error of the fit

b kovs determined by fitting a curve of the form y = 1 — e~Fobs Xt

¢ relative to WT at the same concentration on full-length cdc8 substrate

9 Kp determined by curve fitting as described in Supplemental Appendix — Extended Methods
° All Kp values determined using D256A-double mutants, except for WT (no mutation), and the
F307Y and D256A single mutants.

fConcentration of [Pus7] used to determine kops = 10 uM. All other reactions carried out with
[Pus7]=2 puM

9n.d., not determined



Table S3: Dissociation constants for Pus7 binding to various substrates.

substrate  variant Kbp,app1 (NM) P
dC8-A WT 16 + 2
eaee D256A 57 + 4
cdc8-B D256A 802 320
4C8-C WT 74 + 19
eaee D256A 131 + 13
D256A 34 + 4
T1 AID1-
° 69 + 13
D256A
not analyzed — very
D256A weak
sT2 AID1- not analyzed — very,
D256A very weak
D256A 16+ 1
tRNA AP
AID1-
eve 34 = 1
D256A

@ errors are standard error of the fit
b Kp determined by curve fitting as described in the Extended Methods



Table S4: Observed rate constants for pseudouridinylation on different substrates.

substrate vartlan []F:::I\sn-), Kobs (s7) #°

WT 1 4.9 %107 + 0.5 x 10
cdc8-A 5 9.3 x 10" * 1.4 x 107"
10 7.7 x 10 + 0.8 x 10
cdc8-B WT 2 6.4 x 10 + 1.0 x 10"
10 7.8 x 10 + 0.8 x 10
WT 2 8.9 x 10 + 2.1 x 10"
cde8-C 10 9.9x10" + 1.4 x 10"
WT 10 5.1x%x103 + 0.2x 103

sT1
AID1 10 9.4 %103 + 0.7 x 103
ST2 WT 10 2.4 % 10" + 0.2 x 10
tRNA Asp.GUC WT 10 9.1x 103 + 0.5%x 103

@ errors are standard error of the fit
b kobs determined by fitting a curve of the form fraction U »= 1 — e *obs X ¢



Table S5: RNAs used for biochemical assays.

substrate name

cdc8-FL

CDC8-FL-NT

CDC 8-A

CDC 8-A-NT

CDC 8-B

CDC 8-B-NT

CDC 8-C

CDC 8-C-NT

ST1

SNT1

ST2

SNT2

tRNAAsp,GUC

tRNAAP-CUC.NT

CLAP-CDC8

RNA sequence

GUCAAUCACGAUUGUAGACGUUACUAAUAAGGGCAUUCAGGAAGU
UGAAGCGCUUAUUUGG

GUCAAUCACGAUUGCAGACGUUACUAAUAAGGGCAUUCAGGAAGU
UGAAGCGCUUAUUUGG

GAUUGUAGACGUUACUAAUAAGGGCAUUCAGGAAGUUGAAGCGCU
UAUUUGG

GAUUGCAGACGUUACUAAUAAGGGCAUUCAGGAAGUUGAAGCGCU
UAUUUGG

GUCAAUCACGAUUGUAGACGUUACU

GUCAAUCACGAUUGCAGACGUUACU
GUCAAUCACGAUUGUAGACGUUACUAAUAAGGGCGGAAGUGCGCU
UAUUUGG

GUCAAUCACGAUUGCAGACGUUACUAAUAAGGGCGGAAGUGCGCU
UAUUUGG

GGUGUCUUGCGAGGAUAAGUGCAUUUGUAGGCCCUUCCCA

GGUGUCUUGCGAGGAUAAGUGCAUUUGCAGGCCCUUCCCA

GGGAUCUGUAGCCCACCAA

GGGAUCUGCAGCCCACCAA

GCCGUGAUAGUUUAAUGGUCAGAAUGGGCGCUUGUCGCGUGCCA
GAUCGGGGUUCAAUUCCCCGUCGCGGCGCCA

GCCGUGAUAGCUUAAUGGUCAGAAUGGGGCUUGUCGCGUGCCAG
AUCGGGGUUCAAUUCCCCGUCGCGGCGCCA
GGCUAUUGGAUAAAGAGAUAAGGAAAGGCGAUGAGUCAAUCACGA
UUGUAGACGUUACUAAUAAGGGCAUUCAGGAAGUUGAAGCGCUUA
UUUGGCAAAUCGUUGAGCCUGUUUUGAGUACGCAUAU
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