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1. Instructions to participants (note, bold text was also highlighted when
instructions were provided to participants)
Instructions presented prior to the practice task
Please read these instructions carefully before you begin.
Your aim is to collect as many apples as possible within the time limit. The more apples you
collect, the larger your score at the end of this experiment and the bigger your prize will be.

e You can either stay to continue picking apples from the current tree or leave and find
a new tree. If you leave and travel to a new tree, you have to wait a fixed amount of
time. This time is fixed and has nothing to do with your internet connection or page
loading.

o You will only need your keyboard for this task. You can either press 'S' to stay with
the tree or 'L’ to leave the tree and find a new one.

e You will not know how many apples are on a new tree until you stay and pick them,
so it is a good idea to stay with each tree at least once before moving on.

e The number of apples left on a tree will decrease with time, meaning there will be
fewer apples left on the tree to collect the longer you stay there. Apples do not grow
back on each tree, so your job is to decide how long you want to spend at each tree.

After seven minutes you will move into a completely new environment (think of it as a
new orchard). This environment may be richer or poorer than the others. In some
environments it may be better to stay with atree for longer and in others it may be
better to stay with a tree for less time.

You will now begin a quick practice run of the study. Your practice score will not count
towards your score in the main task. The task should take 15 minutes altogether (including

the practice).



Second set of instructions presented after practice

You will now start the real study.

You will have seven minutes in each environment (or orchard) and the aim is to collect as
many apples as possible as these count towards your total score. This should take no longer
than 14 minutes to complete

Remember, it is a good idea to stay with each tree at least once to see how many apples are
there. Apples do not grow back on each tree, so your job is to decide how long you want to
spend at each tree. If you stay until there are no more apples left on the tree, you will not

gain any more points.

Press the button below when you are ready.



2. Full Outline of the Foraging Task
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Supplementary Figure 1: Order with which participants completed the foraging task. The screens
detail (in order): the initial instructions (see 1. Instructions to participant), the practice environment,
final instructions, first environment (note, the order with which the colours were presented was
counterbalanced), interim screen signalling the change in environment, the second environment and
finally a break screen notifying participants about the upcoming ACE questionnaire.

3. Computational Modelling
3.1. Parameter Recovery
To ensure the model could estimate the correct value of the three free parameters, we
simulated data for the rich and poor environments used in the behavioural study. For each
free parameter, we simulated data across a range of values (a {0,1} in increments of 0.1; c {-
1, 3} in increments of 0.2 and B {1, 5} in increments of 0.4) and ran the computational model
over these data. For our simulated and behavioural data, we estimated the parameters for
each individual using the optim function! for R v.3.5.1. This function uses Maximum Likelihood
Estimation to optimise the negative log likelihood of participants’ stay/leave decisions
produced by the SoftMax function (Equation 2). We found that the parameters were
recoverable, meaning that there was a strong correlation between the parameters hard coded
into the simulation and those estimated by the model (alpha: r (999) = .94, p < .001, 95% CI
[0.93, 0.94], beta: r(999) = .82, p < .001, 95% CI [0.80, 0.84], c: r(999) = .31, p <.001, 95% CI
[0.25, 0.36]). This suggests that the model was able to estimate the correct value of the free
parameters, though we found that ¢ was less well recovered. Notably, we did not observe
correlations between the parameters?. For correlations between the simulated and recovered

parameters, see Supplementary Figure 2.
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Supplementary Figure 2: Heatmap demonstrating the correlations between simulated (i.e.,
variables with the ‘hardcode’ prefix) and recovered parameters. Figures in each grid square
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indicate the Pearson's r correlation coefficient.

3.2.  Model Comparison Analysis

We compared two models based on reinforcement learning to examine which of these
presented a better explanation to participants’ behaviour. The first model had a single learning
rate parameter, which measured how much participants weighted reward feedback during
their decision-making. The formalisation for this model is detailed in the main manuscript (see
Equations 1 and 2). We compared this single learning rate model to a model which had
separate learning rates for positive (a+) and negative (a.) prediction errors. In this model, we
calculate whether reward feedback on each trial is better-than-expected (i.e., a positive

prediction error) or poorer-than-expected (i.e., a negative prediction error), which is expressed

as.:
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O i silti— pi
When & > 0, participants’ expectation of the average reward rate (pi), as formulated in
Equation 1, is updated according to the learning rate for positive prediction errors (a.). When
0 <0, participants’ estimate of the average reward rate, as formulated in Equation 1, is updated
according to the learning rate for negative prediction errors (a.). Participants’ estimate of the
average reward rate is then entered into the SoftMax equation detailed in Equation 2 in the

main manuscript.

We compared the models using two indices of model fit: the Bayesian Information
Criterion (BIC) and Akaike's Information Criterion (AIC), where lower values indicate the model
provides a better explanation of participants’ data®. Comparison of the AIC and BIC for both
models demonstrated that the single learning rate model had lower AIC and BIC values than
the dual learning rate model in both the rich and poor foraging environments (see
Supplementary Table 1), which was true for participants regardless of ACE exposure (see
Supplementary Figure 3). These results suggest that a model with a single learning rate for
both positive and negative prediction errors was a better fit to the data across both

environments. As such, analyses in the main text were conducted using this model.

Supplementary Table 1: Average of the indices of model fits from participants’ data for the
single and dual learning rate models, in each environment.

Rich Environment Poor Environment
Model AlIC BIC AlIC BIC
Dual learning -26.35 -14.61 -27.82 -17.97
rate model
Single learning -47.47 -39.49 -48.39 -40.86
rate model
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Supplementary Figure 3: Plots demonstrating the relative fit of the single learning rate model
compared to the dual learning rate model. Values below zero indicate that the single learning
rate model was a better fit to participants' data whereas values above zero indicate the dual
learning rate model was a better fit to the data.

3.3.  Post-Hoc Simulation

We used post-hoc simulation to demonstrate that we could recapitulate the main effect
of ACE exposure reported in the Results section on participants’ leaving threshold. We
conducted simulations using the mean parameter from the single learning rate model for each
ACE group in each foraging environment. A total of 200 agents were simulated, 100 using the
mean parameter estimates from the high ACE group and 100 using the mean parameter
estimates from the low ACE group. The plots in Supplementary Figure 4 descriptively indicate
that our model was able to replicate the effect of ACE exposure on participants’ leaving
threshold (plotted in Figure 1 in the main manuscript), as we found the simulated ‘high ACE’
group to utilise a lower leaving threshold than the simulated ‘low ACE group’. This group

difference was confirmed statistically (F(1,198) = 297.86, p <.001). We also found that simulated



agents utilised a higher leaving threshold in the rich environment relative to the poor
environment (Fupi108) = 52.57, p < .001), consistent with optimal foraging theory and

participants’ leaving threshold as reported in the Results section.
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Supplementary Figure 4: Plots demonstrating the average reward experienced on each trial
for the simulated foraging agents in the rich environment (left) and poor environment (right).
Local troughs indicate the simulated agents’ leaving thresholds.
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4. Supplementary Results

4.1. Analyses Controlling for Gender

When controlling for gender in an ANCOVA of participants’ leaving threshold, we
preserved all the effects reported in the Results of the main manuscript, including the two main
effects and null interaction effect. We found a main effect of ACE exposure (Fa 132y = 4.84, p =
.030, n? =.03), and a main effect of environment type (Fq.134 = 20.96, p < .001, n? =.002). In
addition, there was no interaction between ACE exposure and environment (F,134 = 0.57, p
= 452, 2 < .001).

When including gender as a covariate in an analysis of participants’ learning rate, we also
preserved the main effects and null interaction effect observed in the main manuscript. We
found a main effect of ACE exposure (F.134) = 9.26, p = .003, n? = .05) and environment type

(Fa,134 = 5.13, p = .025, n? = .006). Moreover, we did not observe an interaction between ACE

exposure and environment (Fq 134 = 0.36, p = .546, n2 < .001).

4.2. Regression Model Statistics
When each of the DOSEPERT subscales were entered into separate regression
models, neither ACE score nor age predicted subscales of the DOSPERT. With the exception
of the social risk subscale, we found that being male predicted the subscales of the DOSPERT
(see Supplementary Table 2 for full model statistics).

Supplementary Table 2: Table demonstrating regression model statistics for the subscales of the

DOSPERT. Bold cells indicate results that were statistically significant at the .05 level.

Subscale ACE Score Age Gender Model Statistics
B P B P B p F R? p

Social -0.09 .299 -0.12 .158 0.04 631 1.17 0.03 .325

Ethical 0.10 247 -0.06 515 0.19 .033 1.73 0.04 .163

Financial -0.13 .120 -0.11 .183 0.25 .004 5.84 001 011

11



Health and 0.15 .093 -0.10 .251 0.23 .009 2.98 .033 0.06
Safety

Recreational -0.05 .588 -0.09 .272 0.18 .044 2.30 0.05 .080

4.3. Analyses of ACE Score as a Continuous Measure

We found similar patterns in our data when nonparametric correlations were run using
ACE scale as a continuous measure. Specifically, we found that there were significant
negative associations between ACE scores and learning rate in the rich environment r(144) =
-0.15, p = .033 and poor environment r(144) = -0.20, p = .007. With regard to leaving
thresholds, we found a significant negative association between ACE score and leaving
threshold in the poor quality environment r(144) = - 0.15, p = .033. However, the relationship
between ACE score and leaving threshold in the rich environment was not significant r(144) =

-0.09, p = .144.

4.4. Analyses of Participants’ Patch Residency Times

One possibility is that the main effects of ACE group on participants’ leaving threshold
reported in the Results section occurred because participants in the high ACE group remained
for the same or similar amount of time in patches in both environments, producing an illusory
effect that they were adjusting their leaving thresholds between these two environments. To
exclude this interpretation, we conducted analyses on participants’ patch residency time
measured in seconds (i.e., how long they remained in patches before exploring). Analysis of
this variable replicated the findings we observed with participants’ leaving thresholds.
Specifically, participants adjusted their patch residency time as a function of the environment
(Faise) = 55.24, p < .001, n? = 0.07), with participants remaining for longer in the richer
environment relative to the poorer environment, which is consistent with optimal foraging
theory®. We also found a main effect of ACE exposure (Fu136) = 11.78, p <.001, n?= 0.06; see
Supplementary Figure 5), consistent with our analyses of participants’ leaving thresholds (see

Figure 1 in the main manuscript). However, we did not find an interaction between environment
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and ACE exposure (Fa136) = 1.31, p = .255, n?=0.002). Together, these findings suggest that
participants adjusted the time they remained with patches in a similar manner to their leaving
thresholds between the two foraging environments. Moreover, ACE exposed individuals

stayed with patches for longer than individuals without these experiences.
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Supplementary Figure 5: Plot demonstrating the average patch residency time (y-axis) in the
two foraging environments (x-axis). These results are comparable to our analyses of
participants’ leaving thresholds detailed in Figure 1 in the main manuscript.

4.5. Analyses Controlling for Counterbalance Order Effects

We conducted additional analyses which suggested that our primary findings were not affected
by order effects related to counterbalancing of the environments, as the effects reported in the
Results section were preserved after accounting for the order with which participants
experienced the two foraging environments. In these analyses we included the order with
which participants experienced the rich and poor environments as an additional factor in the
analyses of participants’ leaving threshold and learning rates.

Examining participants’ leaving thresholds, we did find a significant order*environment

interaction (Fq.136) = 5.31, p = .023). Despite this interaction, our results were consistent with
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those reported in the main manuscript as we still find a main effect of ACE exposure (F,135 =
4.39, p =.038, n?= 0.03) and environment (F,135 = 28.65, p <.001, n?= 0.03), with the effect
sizes for these differences being exactly the same as reported in our original analyses. We
did not find a significant order*environment*ACE group interaction (F 135 = 0.44, p = .510),
indicating these order effects did not account for the different leaving thresholds we observed
between groups. As we had a priori predictions that leaving thresholds would be higher in the
rich environment relative to the poor environment, we ran a one-tailed planned comparison
between leaving thresholds in the rich and poor environments, accounting for counterbalance
order. Results of this planned comparison demonstrated that leaving thresholds were
significantly higher in the rich environment relative to the poor environment in the
counterbalance condition where the rich environment was presented first (t(135) = 2.08, p =
.039) and in the counterbalance condition where the poor environment was presented first
(t(135) = 5.51, p <.001). Examining participants’ learning rates, an ANOVA demonstrated that
there was no interaction between counterbalance order*environment (F 1420 = 0.01, p = .915),
though consistent with the results in the main manuscript we find a main effect of ACE
exposure (F,142) = 8.65, p =.004) and environment (F(1,142) = 0.01, p =.915). These analyses
demonstrate that the results reported in the original manuscript are not affected by order

effects.

4.6. Analyses of Participants’ Reaction Times
Analysing participants’ reaction times, we found that participants in the high ACE group
had slower reaction times (Myich = 0.53, SDyich = 0.24, Mpoor = 0.51, SDpoor = 0.23) compared to
participants in the low ACE group (Mrich = 0.43, SDyich = 0.17, Mpoor = 0.43, SDyoor = 0.16; F(1,137)
= 8.53, p =.004, n?=0.05 ). However, we found no main effect of environment on RT (F(.137)
=0.39, p = .535) nor an interaction between ACE group and environment (F@,137y = 0.84, p =

.361).

14



4.7. Exploration Behaviour in the High ACE Group Only

To exclude the possibility that participants in the high ACE group simply did not change
their leaving thresholds much between the two environments, we ran independent t-tests on
the leaving threshold and patch residency time in the high ACE group. These analyses
demonstrated that participants in the high ACE group did modulate their leaving thresholds as
a function of the environment, as these participants explored more in the rich environment (M=
5.00, SD = 2.46) then the poor environment (M = 4.26, SD = 2.16) t(44) = 3.35, p = .002,
Cohen’s d = 0.50. In addition, we also found that the high ACE group had significantly longer
patch residency times in the rich environment relative to the poorer environment (t(44) = 4.59,

p <.001, Cohen’s d = 0.68), which is consistent with optimal foraging theory?®.

4.8. Analyses by Type of Adversity

It has been suggested by some researchers (e.g.,%) that behavioural differences
following adversity are driven by the type of experience. These experiences can be separated
into the following categories: threatening events (including physical and sexual abuse),
neglect, and family adversity (e.g., parental imprisonment; see Table 1 in the main
manuscript;*®). As some participants experienced more than one type of adversity, we
constructed three factors: One that dummy coded for the presence versus absence of
threatening events, one that coded for the presence versus absence of neglect, and one that
coded for the presence versus absence of family adversity. For each of our dependent
variables (leaving thresholds and learning rate), we ran separate ANOVAs for each of the
three adversity factors to examine whether behavioural differences were driven by a particular
type of adverse experience. We also included environment type (rich or poor) as a second

factor in these ANOVA analyses.

In our analysis of participants’ leaving thresholds, we did not find evidence that a
particular category of adversity explains the differences we observe in participants’ leaving

thresholds. We ran three ANOVAs which each had only one of the types of adversity

15



(threatening events, neglect, or family adversity) entered as the independent variable. We
applied the Bonferroni correction to these three exploratory analyses. When experience of
threatening events was entered as the independent variable, we did not find a main effect of
threatening events on participants’ leaving thresholds (F,137 = 2.17, poont = .429), nor an
interaction between threatening events and environment (F1,137) = 0.03, poont = 1) though in
this model we did find a main effect of environment, consistent with the analyses presented in
the main manuscript (F,137 = 28.83, pront = .003). When experience of neglect was entered
as the independent variable, we did not find a main effect of neglect (F,137) = 0.21, Poont = 1)
nor an interaction between environment and neglect (F,137) = 2.61, poont = .327), though we
did find a main effect of environment, consistent with our original analyses (F(,137 = 31.38,
Poont = .003). Finally, when experience of family adversity was entered as the independent
variable, we did not find a main effect of family adversity (Fa.137) = 3.73, poont = .168), nor an
interaction between family adversity and environment (F,137) = 1.82, poont = .540), though we

did find a main effect of environment (Fq.137) = 28.15, , pPoont = .003).

Although there were no effects of adversity type for leaving threshold, we found that
group level differences in learning rate were driven by experiences of threatening events. We
ran three ANOVAs examining the effect of each type of adversity on participants’ learning rate.
We Bonferroni-corrected for these three exploratory analyses. When experience of
threatening events was entered as an independent variable, we found a main effect of
threatening events on participants learning rate (Fu,137 = 7.02, Poont = .027, n? = 0.05) with
participants exposed to these events having a lower learning rate (Mich = 0.53, SDyich = 0.24,
Mpoor = 0.59, SDpoor = 0.17) compared to participants who were not exposed to these
experiences (Miich = 0.62, SDyich = 0.14, Mpoor= 0.64, SDpoor = 0.17). We also found a main effect
of environment (F.137) = 9.31, poont = .009, n?= 0.01), though we did not find an interaction
between environment and threatening events (F,137) = 2.27, poont = .405). When experience

of neglect was entered as an independent variable, we did not find a main effect of neglect
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(F,137) = 1.53, puont = .654) nor an interaction between environment and neglect (F,137) =, Poont
= .327), though we did find a main effect of environment (F,137) = 31.38, pront = .003). Finally,
when experience of family adversity was entered as an independent variable, we did not find
a main effect of family adversity (Fu137) = 4.29, poont = .120). We found a main effect of
environment (Fq,137 = 9.38, p = .003, puont = .009), though we did not find an interaction
between environment and family adversity (Fa 137 = 0.03, poont = 1). These findings may

suggest that differences in learning rate were driven by threatening experiences.
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