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1.  Instructions to participants (note, bold text was also highlighted when 

instructions were provided to participants) 

Instructions presented prior to the practice task 

Please read these instructions carefully before you begin. 

Your aim is to collect as many apples as possible within the time limit. The more apples you 

collect, the larger your score at the end of this experiment and the bigger your prize will be. 

• You can either stay to continue picking apples from the current tree or leave and find 

a new tree. If you leave and travel to a new tree, you have to wait a fixed amount of 

time. This time is fixed and has nothing to do with your internet connection or page 

loading. 

• You will only need your keyboard for this task. You can either press 'S' to stay with 

the tree or 'L' to leave the tree and find a new one. 

• You will not know how many apples are on a new tree until you stay and pick them, 

so it is a good idea to stay with each tree at least once before moving on. 

• The number of apples left on a tree will decrease with time, meaning there will be 

fewer apples left on the tree to collect the longer you stay there. Apples do not grow 

back on each tree, so your job is to decide how long you want to spend at each tree. 

After seven minutes you will move into a completely new environment (think of it as a 

new orchard). This environment may be richer or poorer than the others. In some 

environments it may be better to stay with a tree for longer and in others it may be 

better to stay with a tree for less time. 

You will now begin a quick practice run of the study. Your practice score will not count 

towards your score in the main task. The task should take 15 minutes altogether (including 

the practice). 
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Second set of instructions presented after practice  

You will now start the real study.  

You will have seven minutes in each environment (or orchard) and the aim is to collect as 

many apples as possible as these count towards your total score. This should take no longer 

than 14 minutes to complete 

Remember, it is a good idea to stay with each tree at least once to see how many apples are 

there. Apples do not grow back on each tree, so your job is to decide how long you want to 

spend at each tree. If you stay until there are no more apples left on the tree, you will not 

gain any more points. 

 

Press the button below when you are ready. 
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2.  Full Outline of the Foraging Task 



 5 

 



 6 

Supplementary Figure 1: Order with which participants completed the foraging task. The screens 
detail (in order): the initial instructions (see 1. Instructions to participant), the practice environment, 
final instructions, first environment (note, the order with which the colours were presented was 
counterbalanced), interim screen signalling the change in environment, the second environment and 
finally a break screen notifying participants about the upcoming ACE questionnaire.  

 
3. Computational Modelling 

3.1. Parameter Recovery 

To ensure the model could estimate the correct value of the three free parameters, we 

simulated data for the rich and poor environments used in the behavioural study. For each 

free parameter, we simulated data across a range of values (α {0,1} in increments of 0.1; c {-

1, 3} in increments of 0.2 and β {1, 5} in increments of 0.4) and ran the computational model 

over these data. For our simulated and behavioural data, we estimated the parameters for 

each individual using the optim function1 for R v.3.5.1. This function uses Maximum Likelihood 

Estimation to optimise the negative log likelihood of participants’ stay/leave decisions 

produced by the SoftMax function (Equation 2).  We found that the parameters were 

recoverable, meaning that there was a strong correlation between the parameters hard coded 

into the simulation and those estimated by the model (alpha: r (999) = .94, p < .001, 95% CI 

[0.93, 0.94], beta: r(999) = .82, p < .001, 95% CI [0.80, 0.84], c: r(999) = .31, p < .001, 95% CI 

[0.25, 0.36]). This suggests that the model was able to estimate the correct value of the free 

parameters, though we found that c was less well recovered. Notably, we did not observe 

correlations between the parameters2. For correlations between the simulated and recovered 

parameters, see Supplementary Figure 2. 
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Supplementary Figure 2: Heatmap demonstrating the correlations between simulated (i.e., 
variables with the ‘hardcode’ prefix) and recovered parameters. Figures in each grid square 
indicate the Pearson's r correlation coefficient. 

 

3.2. Model Comparison Analysis 

 We compared two models based on reinforcement learning to examine which of these 

presented a better explanation to participants’ behaviour. The first model had a single learning 

rate parameter, which measured how much participants weighted reward feedback during 

their decision-making. The formalisation for this model is detailed in the main manuscript (see 

Equations 1 and 2). We compared this single learning rate model to a model which had 

separate learning rates for positive (α+) and negative (α-) prediction errors. In this model, we 

calculate whether reward feedback on each trial is better-than-expected (i.e., a positive 

prediction error) or poorer-than-expected (i.e., a negative prediction error), which is expressed 

as: 
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δ i ← si /τi – ρi 

When δ > 0, participants’ expectation of the average reward rate (pi), as formulated in 

Equation 1, is updated according to the learning rate for positive prediction errors (α+). When 

δ < 0, participants’ estimate of the average reward rate, as formulated in Equation 1, is updated 

according to the learning rate for negative prediction errors (α-). Participants’ estimate of the 

average reward rate is then entered into the SoftMax equation detailed in Equation 2 in the 

main manuscript.  

 

We compared the models using two indices of model fit: the Bayesian Information 

Criterion (BIC) and Akaike's Information Criterion (AIC), where lower values indicate the model 

provides a better explanation of participants’ data2. Comparison of the AIC and BIC for both 

models demonstrated that the single learning rate model had lower AIC and BIC values than 

the dual learning rate model in both the rich and poor foraging environments (see 

Supplementary Table 1), which was true for participants regardless of ACE exposure (see 

Supplementary Figure 3). These results suggest that a model with a single learning rate for 

both positive and negative prediction errors was a better fit to the data across both 

environments. As such, analyses in the main text were conducted using this model. 

 

Supplementary Table 1: Average of the indices of model fits from participants’ data for the 
single and dual learning rate models, in each environment. 

 Rich Environment Poor Environment 

Model AIC BIC AIC BIC 

Dual learning 
rate model 

-26.35 -14.61 -27.82 -17.97 

Single learning 
rate model 

-47.47 -39.49 -48.39 -40.86 
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Supplementary Figure 3: Plots demonstrating the relative fit of the single learning rate model 
compared to the dual learning rate model. Values below zero indicate that the single learning 
rate model was a better fit to participants' data whereas values above zero indicate the dual 
learning rate model was a better fit to the data. 

 

3.3. Post-Hoc Simulation 

 We used post-hoc simulation to demonstrate that we could recapitulate the main effect 

of ACE exposure reported in the Results section on participants’ leaving threshold. We 

conducted simulations using the mean parameter from the single learning rate model for each 

ACE group in each foraging environment. A total of 200 agents were simulated, 100 using the 

mean parameter estimates from the high ACE group and 100 using the mean parameter 

estimates from the low ACE group. The plots in Supplementary Figure 4 descriptively indicate 

that our model was able to replicate the effect of ACE exposure on participants’ leaving 

threshold (plotted in Figure 1 in the main manuscript), as we found the simulated ‘high ACE’ 

group to utilise a lower leaving threshold than the simulated ‘low ACE group’. This group 

difference was confirmed statistically (F(1,198) = 297.86, p < .001). We also found that simulated 
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agents utilised a higher leaving threshold in the rich environment relative to the poor 

environment (F(1,198) = 52.57, p < .001), consistent with optimal foraging theory and 

participants’ leaving threshold as reported in the Results section. 

 

Supplementary Figure 4: Plots demonstrating the average reward experienced on each trial 
for the simulated foraging agents in the rich environment (left) and poor environment (right). 
Local troughs indicate the simulated agents’ leaving thresholds. 
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4. Supplementary Results 

4.1. Analyses Controlling for Gender 

When controlling for gender in an ANCOVA of participants’ leaving threshold, we 

preserved all the effects reported in the Results of the main manuscript, including the two main 

effects and null interaction effect. We found a main effect of ACE exposure (F(1,134) = 4.84, p = 

.030, 2 = .03), and a main effect of environment type (F(1,134) = 20.96, p < .001, 2 = .002). In 

addition, there was no interaction between ACE exposure and environment (F(1,134) = 0.57, p 

= .452, 2 < .001). 

When including gender as a covariate in an analysis of participants’ learning rate, we also 

preserved the main effects and null interaction effect observed in the main manuscript. We 

found a main effect of ACE exposure (F(1,134) = 9.26, p = .003, 2 = .05) and environment type 

(F(1,134) = 5.13, p = .025, 2 = .006). Moreover, we did not observe an interaction between ACE 

exposure and environment (F(1,134) = 0.36, p = .546, 2 < .001). 

 

4.2. Regression Model Statistics 

When each of the DOSEPERT subscales were entered into separate regression 

models, neither ACE score nor age predicted subscales of the DOSPERT. With the exception 

of the social risk subscale, we found that being male predicted the subscales of the DOSPERT 

(see Supplementary Table 2 for full model statistics). 

Supplementary Table 2: Table demonstrating regression model statistics for the subscales of the 

DOSPERT. Bold cells indicate results that were statistically significant at the .05 level. 

Subscale ACE Score Age Gender Model Statistics 

 β p β p β p F R2 p 

Social -0.09 .299 -0.12 .158 0.04 .631 1.17 0.03 .325 

Ethical 0.10 .247 -0.06 .515 0.19 .033 1.73 0.04 .163 

Financial -0.13 .120 -0.11 .183 0.25 .004 5.84 .001 0.11 



 12 

Health and 

Safety 

0.15 .093 -0.10 .251 0.23 .009 2.98 .033 0.06 

Recreational -0.05 .588 -0.09 .272 0.18 .044 2.30 0.05 .080 

  

4.3. Analyses of ACE Score as a Continuous Measure 

We found similar patterns in our data when nonparametric correlations were run using 

ACE scale as a continuous measure. Specifically, we found that there were significant 

negative associations between ACE scores and learning rate in the rich environment r(144) = 

-0.15, p = .033 and poor environment r(144) = -0.20, p =  .007. With regard to leaving 

thresholds, we found a significant negative association between ACE score and leaving 

threshold in the poor quality environment r(144) = - 0.15, p = .033. However, the relationship 

between ACE score and leaving threshold in the rich environment was not significant r(144) =  

-0.09, p =  .144.  

 

4.4. Analyses of Participants’ Patch Residency Times 

One possibility is that the main effects of ACE group on participants’ leaving threshold 

reported in the Results section occurred because participants in the high ACE group remained 

for the same or similar amount of time in patches in both environments, producing an illusory 

effect that they were adjusting their leaving thresholds between these two environments. To 

exclude this interpretation, we conducted analyses on participants’ patch residency time 

measured in seconds (i.e., how long they remained in patches before exploring). Analysis of 

this variable replicated the findings we observed with participants’ leaving thresholds. 

Specifically, participants adjusted their patch residency time as a function of the environment 

(F(1,136) = 55.24, p < .001, η2 = 0.07), with participants remaining for longer in the richer 

environment relative to the poorer environment, which is consistent with optimal foraging 

theory3. We also found a main effect of ACE exposure (F(1,136) = 11.78, p < .001, η2 = 0.06; see 

Supplementary Figure 5), consistent with our analyses of participants’ leaving thresholds (see 

Figure 1 in the main manuscript). However, we did not find an interaction between environment 
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and ACE exposure (F(1,136) = 1.31, p = .255, η2 = 0.002). Together, these findings suggest that 

participants adjusted the time they remained with patches in a similar manner to their leaving 

thresholds between the two foraging environments. Moreover, ACE exposed individuals 

stayed with patches for longer than individuals without these experiences. 

 

 

Supplementary Figure 5: Plot demonstrating the average patch residency time (y-axis) in the 
two foraging environments (x-axis). These results are comparable to our analyses of 
participants’ leaving thresholds detailed in Figure 1 in the main manuscript. 

 

4.5. Analyses Controlling for Counterbalance Order Effects 

We conducted additional analyses which suggested that our primary findings were not affected 

by order effects related to counterbalancing of the environments, as the effects reported in the 

Results section were preserved after accounting for the order with which participants 

experienced the two foraging environments. In these analyses we included the order with 

which participants experienced the rich and poor environments as an additional factor in the 

analyses of participants’ leaving threshold and learning rates.  

Examining participants’ leaving thresholds, we did find a significant order*environment 

interaction (F(1,136) = 5.31, p = .023). Despite this interaction, our results were consistent with 
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those reported in the main manuscript as we still find a main effect of ACE exposure (F(1,135) = 

4.39, p = .038, 2 = 0.03) and environment (F(1,135) = 28.65, p < .001, 2 = 0.03), with the effect 

sizes for these differences being exactly the same as reported in our original analyses. We 

did not find a significant order*environment*ACE group interaction (F(1,135) = 0.44, p = .510), 

indicating these order effects did not account for the different leaving thresholds we observed 

between groups. As we had a priori predictions that leaving thresholds would be higher in the 

rich environment relative to the poor environment, we ran a one-tailed planned comparison 

between leaving thresholds in the rich and poor environments, accounting for counterbalance 

order. Results of this planned comparison demonstrated that leaving thresholds were 

significantly higher in the rich environment relative to the poor environment in the 

counterbalance condition where the rich environment was presented first (t(135) = 2.08, p = 

.039) and in the counterbalance condition where the poor environment was presented first 

(t(135) = 5.51, p < .001). Examining participants’ learning rates, an ANOVA demonstrated that 

there was no interaction between counterbalance order*environment (F(1,142) = 0.01, p = .915), 

though consistent with the results in the main manuscript we find a main effect of ACE 

exposure (F(1,142) = 8.65, p = .004) and environment (F(1,142) = 0.01, p = .915). These analyses 

demonstrate that the results reported in the original manuscript are not affected by order 

effects.  

 

4.6. Analyses of Participants’ Reaction Times 

Analysing participants’ reaction times, we found that participants in the high ACE group 

had slower reaction times (Mrich = 0.53, SDrich = 0.24, Mpoor = 0.51, SDpoor = 0.23) compared to 

participants in the low ACE group (Mrich = 0.43, SDrich = 0.17, Mpoor = 0.43, SDpoor = 0.16; F(1,137) 

= 8.53, p = .004, 2 = 0.05 ). However, we found no main effect of environment on RT (F(1,137) 

= 0.39, p = .535) nor an interaction between ACE group and environment (F(1,137) = 0.84, p = 

.361). 

 



 15 

4.7. Exploration Behaviour in the High ACE Group Only  

To exclude the possibility that participants in the high ACE group simply did not change 

their leaving thresholds much between the two environments, we ran independent t-tests on 

the leaving threshold and patch residency time in the high ACE group. These analyses 

demonstrated that participants in the high ACE group did modulate their leaving thresholds as 

a function of the environment, as these participants explored more in the rich environment (M= 

5.00, SD = 2.46) then the poor environment (M = 4.26, SD = 2.16) t(44) = 3.35, p = .002, 

Cohen’s d = 0.50. In addition, we also found that the high ACE group had significantly longer 

patch residency times in the rich environment relative to the poorer environment (t(44) = 4.59, 

p < .001, Cohen’s d = 0.68), which is consistent with optimal foraging theory3. 

 

4.8. Analyses by Type of Adversity 
 

It has been suggested by some researchers (e.g.,4) that behavioural differences 

following adversity are driven by the type of experience. These experiences can be separated 

into the following categories: threatening events (including physical and sexual abuse), 

neglect, and family adversity (e.g., parental imprisonment; see Table 1 in the main 

manuscript;4–6). As some participants experienced more than one type of adversity, we 

constructed three factors: One that dummy coded for the presence versus absence of 

threatening events, one that coded for the presence versus absence of neglect, and one that 

coded for the presence versus absence of family adversity. For each of our dependent 

variables (leaving thresholds and learning rate), we ran separate ANOVAs for each of the 

three adversity factors to examine whether behavioural differences were driven by a particular 

type of adverse experience. We also included environment type (rich or poor) as a second 

factor in these ANOVA analyses. 

 

In our analysis of participants’ leaving thresholds, we did not find evidence that a 

particular category of adversity explains the differences we observe in participants’ leaving 

thresholds. We ran three ANOVAs which each had only one of the types of adversity 
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(threatening events, neglect, or family adversity) entered as the independent variable. We 

applied the Bonferroni correction to these three exploratory analyses. When experience of 

threatening events was entered as the independent variable, we did not find a main effect of 

threatening events on participants’ leaving thresholds (F(1,137) = 2.17, pbonf = .429), nor an 

interaction between threatening events and environment (F(1,137) = 0.03, pbonf = 1) though in 

this model we did find a main effect of environment, consistent with the analyses presented in 

the main manuscript (F(1,137) = 28.83, pbonf = .003). When experience of neglect was entered 

as the independent variable, we did not find a main effect of neglect (F(1,137) = 0.21, pbonf = 1) 

nor an interaction between environment and neglect (F(1,137) = 2.61, pbonf = .327), though we 

did find a main effect of environment, consistent with our original analyses (F(1,137) = 31.38, 

pbonf = .003). Finally, when experience of family adversity was entered as the independent 

variable, we did not find a main effect of family adversity (F(1,137) = 3.73, pbonf = .168), nor an 

interaction between family adversity and environment (F(1,137) = 1.82, pbonf = .540), though we 

did find a main effect of environment (F(1,137) = 28.15, , pbonf = .003).  

 

Although there were no effects of adversity type for leaving threshold, we found that 

group level differences in learning rate were driven by experiences of threatening events. We 

ran three ANOVAs examining the effect of each type of adversity on participants’ learning rate. 

We Bonferroni-corrected for these three exploratory analyses. When experience of 

threatening events was entered as an independent variable, we found a main effect of 

threatening events on participants learning rate (F(1,137) = 7.02, pbonf = .027, 2 = 0.05) with 

participants exposed to these events having a lower learning rate (Mrich = 0.53, SDrich = 0.24, 

Mpoor = 0.59, SDpoor = 0.17) compared to participants who were not exposed to these 

experiences (Mrich = 0.62, SDrich = 0.14, Mpoor = 0.64, SDpoor = 0.17). We also found a main effect 

of environment (F(1,137) = 9.31, pbonf = .009, 2 = 0.01), though we did not find an interaction 

between environment and threatening events (F(1,137) = 2.27, pbonf = .405). When experience 

of neglect was entered as an independent variable, we did not find a main effect of neglect 
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(F(1,137) = 1.53, pbonf = .654) nor an interaction between environment and neglect (F(1,137) =, pbonf 

= .327), though we did find a main effect of environment (F(1,137) = 31.38, pbonf = .003). Finally, 

when experience of family adversity was entered as an independent variable, we did not find 

a main effect of family adversity (F(1,137) = 4.29, pbonf = .120). We found a main effect of 

environment (F(1,137) = 9.38, p = .003, pbonf = .009), though we did not find an interaction 

between environment and family adversity (F(1,137) = 0.03, pbonf = 1). These findings may 

suggest that differences in learning rate were driven by threatening experiences. 
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