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Aloha Keyword Spotting Benchmark

To compare our network models with other neuromorphic systems and ANN accelerators we used the Aloha
keyword spotting benchmark dataset (1).

Audio preprocessing and conversion to currents. To convert raw audio to spikes, we preprocessed the
raw audio signal x(t) by first applying a pre-emphasis filter by computing y(t) = x(t) − 0.95x(t − 1).
We then extracted 25ms frames with a 10ms stride from y(t) to which we applied a Hamming window
before computing 512-point fast Fourier transform. On the resulting power spectrum we further applied
40 triangular filters on a Mel-scale (2) and cropped and padded to a total of 80 time steps by repeating the
last frame.

Current to spike conversion. To convert the resulting spectrograms into input spikes for our models, we
interpreted the spectrogram channels as currents Ii which were fed into two adaptive leaky integrate-and-fire
(LIF) neurons per input channel (k = {1, 2}). To that end, we simulated the following dynamics for synaptic
currents Gki , membrane potentials Uki , and the adaptation variable Aki in discrete time:

Gki [t+ 1] = αGki [t] + wkIi [bζtc]− bk [1]
Uki [t+ 1] = βUki [t] + (1− β)

(
Gki [t]− aAki [t]

) (
1.0− Ski [t]

)
[2]

Aki [t+ 1] = γAki [t] + Ski [3]

where Ski is the output spike train, wk = {0.02, 0.15} is the input gain, bk = {0.35, 0.2} a bias term,
a = 0.1 the adaptation strength, and ζ = 2.5 a conversion factor that converts between the input current
time grid to the LIF simulation time grid which was fixed at 200 time steps. An output spike Ski was
generated whenever the corresponding voltage variable Uki crossed the firing threshold of 1. Moreover, we
set the scaling variables α = exp (−∆t/τsyn)), β = exp (−∆t/τmem)), and γ = exp (−∆t/τada)) with ∆t = 2ms,
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Supplementary Figure 1. Four example inputs from the Aloha keyword spotting benchmark. Input currents (top) and spike raster plots
(bottom). Note that we plotted the encoder neurons sorted by k = {1, 2}.
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τsyn = 5ms, τmem = 10ms, and τada = 100ms. Finally, the resulting sparse spiking activity was compressed
in time by the 1000× hardware acceleration factor (Supplementary Fig. 1) prior to feeding them into the
BrainScaleS-2 system.

Training and regularization. We trained our recurrent spiking neural networks (SNNs) in analogy to the ones
optimized for the spiking Heidelberg digits (SHD) dataset. To improve the network’s ability to generalize
on unseen data, input spikes were dropped with a probability of 8% during training. While Blouw et al.
(1) paired letter recognition in the spiking network with a subsequent in-software pattern matching on
the following allowed strings [’loha’, ’alha’, ’aloa’, ’aloh’, ’aoha’, ’aloha’], we trained our
system end-to-end on recognizing the entire “aloha” keyword directly.

Keyword spotting results. On the Aloha keyword spotting benchmark, our trained networks reached a true
positive rate of (89.6± 3.3)% and a true negative rate of (97.9± 0.8)%, measured across ten networks
trained on different sets of initial conditions (Supplementary Table 1). Our best network classified the test
data with a true positive rate of 92.7% and a true negative rate of 99.0%. These results are comparable
with the error rates reported by Blouw et al. (1). The raw energy efficiency and throughput figures are,
unfortunately, not directly comparable due to the dramatic differences in architecture and benchmarking
methodology. For once, Blouw et al. (1) based their energy figures only on the systems’ dynamic power; in
our case, we also included the idle consumption, as it dominated the total numbers. For the throughput
measurements, the authors included the overheads introduced by the Python-based host software and the
communication to the respective devices. We instead measured the throughput of our ASIC instead, since
in our case, the final classification was obtained on the embedded processor instead of the host system. The
largest discrepancy, however, stems from the vastly different network architectures. While Blouw et al. (1)
used a feedforward architecture with a CTC loss, we rely on a SNN with a standard Softmax cross entropy
loss (3). In their measurement, (1), considered a single forward pass of their network, which corresponds to
the classification of a single 10ms time frame, whereby each keyword/phrase consists of 65 time windows on
average. These measurements thus have to be understood as energy and throughput per frame. In contrast,
we measured inference on complete keywords/phrases using our recurrent architecture and, consequently,
report energy and throughput per inference.
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Supplementary Table 1. Comparison of the Aloha Keyword Spotting Benchmark results across neuromorphic
and conventional platforms.

platform architecture true positive true negative energy/frame throughput energy/inference throughput
(%) (%) (µJ) (Frame s−1) (µJ) (Inference s−1)

CPU(1) 390-256-256-29 i 92.7 97.9 6300 iii 1813
GPU(1) 92.7 97.9 29 800 iii 770
Jetson(1) 92.7 97.9 5600 iii 419
Movidius(1) 92.7 97.9 1500 iii 300
Loihi(1) 93.8 97.9 270 iii 296
BSS-2 (this work) 80-176-2 (recurrent) 89.6 ± 3.3 ii 97.9 ± 0.8 ii 70 iv 2800

i Inference involves additional post-processing on the host system to obtain the final classification result. ii We observed strong fluctuations in performance for different initial
conditions. Our best network evaluated to a true positive rate of 92.7 % and a true negative rate of 99.0 %. iii Calculated from dynamic power consumption. iv Calculated

from total power consumption.
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Supplementary Table 2. Comparison of MNIST results across spike-based neuromorphic platforms and ANN
accelerators.

platform reference architecture node accuracy energy/inference throughput latency
(nm) (%) (µJ) (Inference s−1) (µs)

di
gi

ta
l

SpiNNaker Stromatias et al.(4) 784-500-500-10 130 95.0 / iii / iii /

TrueNorth Esser et al. (5) CNN (1 ensemble) 28 92.7 0.27 1000 /
CNN (16 ensembles) 28 95 4 1000 /
CNN (64 ensembles) 28 99.4 108.0 1000 /

— Chen et al. (6) 236-20 10 88.0 1.0 6250 /
784-1024-512-10 10 98.2 12.4 / /
784-1024-512-10 10 97.9 1.7 / /

MorphIC Frenkel et al. (7) 784-500-10i 65 97.8 205 / /
784-500-10i 65 95.9 21.8 250 /

SPOON Frenkel et al. (8) CNN 28 97.5 0.3 ii / 117

an
al

og

BSS-1 Schmitt et al. (9) 100-15-15-5 180 95.0 / iii 10 000 /
BSS-2 Göltz et al. (10) 256-246-10 65 96.9 8.4 21 000 < 10
BSS-2 this work 256-246-10 65 97.6 2.4 85 000 8

A
N

N

BinarEye Moons et al. (11) CNN (9 layers) 28 98.85 14.4 120 8333 iv

CNN (9 layers) 28 97.50 3.47 500 2000 iv

CNN (9 layers) 28 96.70 0.92 1700 588 iv

CNN (5 layers) 28 97.4 0.21 / /
DNN Engine Whatmough et al. (12) 784-256-256-256-10 28 98.4 0.57 111 000 /

284-256-256-256-10 28 98.4 0.36 61 000 /
— Chen et al. (13) 128-1024-10 65 93.7 0.11 14 300 /
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Supplementary Table 3. Parameters for the neuromorphic substrate and learning framework.

parameter value (MNIST / SHD)

difference threshold-leak ϑ− Vleak (270 ± 15) mV
membrane time constant τm (5.7 ± 0.3) µs / (8.6 ± 1.2) µs

in computation graph 6.0 µs / 10.0 µs
synaptic time constant τs (6.5 ± 0.1) µs / (11.2 ± 0.5) µs

in computation graph 6.0 µs / 10.0 µs

input unit time constant τin 8 µs / –
input unit threshold ϑin 0.2 / –

surrogate gradient steepness β 50
learning rate η 1.5 × 10−3

learning rate decay per epoch γη 0.03 / 0.025
amplitude regularization strength ρa 4 × 10−4 / –
burst regularization strength ρb 0.005 / –
rate regularization strength ρr – / 0.6 × 10−3

rate regularization threshold ϑr – / 600

time step/sample period ∆t 1.7 µs
weight initialization spread σ̂w 0.17, 0.34 for recurrent
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