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Supporting Information Text12

This section provides further details on the methods used to evaluate the effectiveness of an MCMV-vectored transmissible13

vaccine. To this end, we: 1) detail the stochastic model that was used for the Approximate Bayesian Computation (ABC)14

process, 2) provide further details regarding the ABC algorithm itself, 3) detail the steady-state solutions to our model that15

give rise to the vaccine and pathogen basic reproductive numbers, and 4) develop and analyze models of partial vaccine efficacy.16

Stochastic Epidemiological Model of MCMV for ABC17

To estimate the epidemiological parameters of MCMV from the time-series data set, we implement a continuous-time Markov18

chain (CTMC) version of the model described in the main text Eq. (3)–Eq. (5), with some small modifications to the base19

model. Briefly, the CTMC version of our model is a stochastic process where the state variables are discrete random variables20

and the time scale is continuous (1). For this implementation of the model, the birth and death rates were set to zero because of21

the relatively constant population size of the founder population observed by Farroway et al. (2002) (2). Further, we include an22

additional exposed class (E2) to account for the initial fraction of the population that was exposed to MCMV via IP injection.23

We include the additional exposed class because exposure via transmission and IP injection are biologically different. With24

the addition of the IP injected class (E2), we introduce another parameter, σ2, which defines the rate at which IP injected25

individuals become infectious. We simulate the model using the Gillespie algorithm (3). Events, transitions, and transition26

rates are given in Table S1.27

Event Transition Transition Rate

Susceptible infected with MCMV S → S − 1, E1 → E1 + 1 βvI
N

Exposed via transmission becomes infectious E1 → E1 − 1, I → I + 1 σ

Exposed via IP injection becomes infectious E2 → E2 − 1, I → I + 1 σ2

Table S1. The events, transitions, and transition rates found in the CTMC model.

Approximate Bayesian Computation28

We use Approximate Bayesian Computation in combination with the time-series data set described by Farroway et al. (2002)29

to produce baseline parameter estimates for MCMV. We begin the ABC process by taking a random sample of the parameter30

values from the prior distributions (described in Table S2). These priors were informed by values reported within the MCMV31

literature. These parameter samples are then fed into the CTMC model, and a sample trajectory is generated using the32

Gillespie algorithm. Model simulations were initiated according to the initial conditions described in Farroway et al. (2002)33

(S = 16, E1 = 0, E2 = 6, I = 0). We stop the simulations once the time in the model has reached 84 days (the last time34

step described in Farroway et al. (2002)), and we take a binomial sample of the number of infectious individuals at each time35

point detailed in the data set, according to the sampling effort for a given rodent enclosure. We take a binomial sample at36

each time point in an attempt to recreate the possibility for sampling error in the MCMV transmission experiments. The37

binomial distribution is chosen for our sampling, as an individual is either MCMV positive (1) or negative (0) at each time38

point. We then calculate the residual sum of squares for our simulated sample across all enclosures at a given time point, and39

then averaged the value across all time points. The resulting quantity is a measure of how well the parameter samples and40

simulated model perform against the actual transmission experiments. If this value was less than or equal to our acceptance41

criteria (0.1), then the parameters for that simulated run were added to the multivariate posterior distribution. The ABC42

process was carried out until the multivariate posterior distribution accumulated twenty-five thousand samples.43

Parameter Prior Justification
β Uniform on [0.0005, 0.009] The range was determined based on values that could plausibly

lead to the observed seroprevalence.
σ Gamma with mean 0.099 and shape 75 The mode was selected based on known MCMV seroconversion

(4).
σ2 Gamma with mean 0.099 and shape 100 The mode was selected based on the seroconversion of MCMV

injected via IP injection (4).
Table S2. Prior distributions for each parameter in the MCMV model.
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Steady-state model solutions44

To find steady-state solutions of Eq. (7)–Eq. (11) in the main text, we set the left hand side of the equations to zero and solved45

the resulting algebraic equations for each of the state variables. This yields three steady-state solutions. The first,46

S = b(d+ σ)
σβv

[1]47

E = −bd2 − bdσ + bσβv

σ(d+ σ)βv
[2]48

I = −bd2 − bdσ + bσβv

d(d+ σ)βv
[3]49

P = 0 [4]50

R = 0, [5]51
52

the second,53

S = b(d+ δ)
dβp

[6]54

E = 0 [7]55

I = 0 [8]56

P = −bd− bδ + bβp

(d+ δ)βp
[9]57

R = − bδ (d+ δ − βp)
d(d+ δ)βp

, [10]58

59

and the third,60

S = b

d
[11]61

E = 0 [12]62

I = 0 [13]63

P = 0 [14]64

R = 0. [15]65
66

From these solutions, we see that there are three possible scenarios, 1) the vaccine is endemic and the pathogen is absent, 2)67

the pathogen is present and the vaccine is absent, and 3) both the pathogen and vaccine are absent from the population.68

Calculating basic reproductive numbers69

To find the analytical solution for the basic reproductive number of MCMV and the pathogen, we performed a standard70

stability analysis on the infection-free steady state. To perform this analysis, we linearized the system of differential equations71

Eq. (7)–Eq. (11) in the main text, and evaluated the resulting Jacobian matrix at the equilibrium solution (Eq. (11)–Eq. (15)).72

We then found the eigenvalues of the resulting matrix. From these eigenvalues, we were able to find the threshold transmission73

conditions that lead to instability of the infection-free steady state:74

R0,v ≡ βvσ

d(d+ σ) > 1, [16]75

76

or77

R0,p ≡ βp

d+ δ
> 1. [17]78

79

According to the classic definition of R0, the quantity defined by Eq. (16) is MCMV’s reproductive number. Similarly, Eq. (17)80

represents the reproductive number of the pathogen.81

For completeness, we performed a stability analysis on the MCMV-endemic steady state (Eq. (1)–Eq. (5)) and the82

pathogen-endemic steady state (Eq. (6)–Eq. (10)). We found that the vaccine-endemic steady state is stable if83

R0,v > 1, [18]84
85

and86

R0,v > R0,p. [19]87
88

Further, we find that the pathogen-endemic steady state is stable if89

R0,p > 1, [20]90
91

and92

R0,p > R0,v. [21]93
94
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Partial vaccine efficacy: imperfect transmission blocking95

To account for partial vaccine efficacy, we extend the model described in the main text Eq. (7)–Eq. (11) to cases where96

co-infection between the transmissible vaccine and the pathogen reduces—but does not completely block—pathogen transmission.97

In this model, individuals that have been exposed to the vaccine (E), as well as those that are actively infectious with the vaccine98

(I), can be infected by the target pathogen. In these cases, individuals transition into the vaccine-exposed pathogen-infected99

class (Ep), and the vaccine-infectious pathogen-infected class (Ip). From these co-infected classes, pathogen transmission is100

reduced by a factor of (ρ). Further, individuals in the Ep and Ip classes can recover from pathogen infection and transition into101

the Er and Ir classes, respectively. Moreover, all individuals that have been exposed to the vaccine (E, Ep, and Er), transition102

into their corresponding vaccine infectious class at rate σ. When ρ = 1, the vaccine perfectly blocks pathogen transmission and103

the co-infection model reduces to equations Eq. (7)–Eq. (11) in the main text. All model parameters are described in the main104

text (i.e., βv, σ, βp, δ, b, d). These assumptions lead to the following extended model of co-infection:105

dS

dt
= b− S

(
βpP + (1 − ρ)βp(Ep + Ip) + βv(I + Ip + Ir)

N
+ d

)
[22]106

dE

dt
= S

(
βv(I + Ip + Ir)

N

)
− E

(
βpP + (1 − ρ)βp(Ep + Ip)

N
+ σ + d

)
[23]107

dEp

dt
= E

(
βpP + (1 − ρ)βp(Ep + Ip)

N

)
− Ep(σ + δ + d) [24]108

dEr

dt
= δEp − Er(σ + d) [25]109

dI

dt
= σE − I

(
βpP + (1 − ρ)βp(Ep + Ip)

N
+ d

)
[26]110

dIp

dt
= I

(
βpP + (1 − ρ)βp(Ep + Ip)

N

)
+ σEp − Ip(δ + d) [27]111

dIr

dt
= δIp + σEr − dIr [28]112

dP

dt
= S

(
βpP + (1 − ρ)βp(Ep + Ip)

N

)
− P (δ + d) [29]113

dR

dt
= δP − dR. [30]114

115

Simulating this model against endemic LASV and LCMV yielded Fig. 4 in the main text. For these simulations, we define116

pathogen prevalence as the fraction of individuals that actively transmit the pathogen (Ep(1 − ρ) + Ip(1 − ρ) + P )/N .117

Critical vaccine efficacy. To solve for the critical vaccine efficacy that must be achieved for a transmissible vaccine to protect a118

reservoir population from pathogen invasion, we linearized the pathogen-infected subsystem (Ep, Ip, P ) (Eq. (24), Eq. (27),119

Eq. (29)) about the pathogen-free steady state. We then solved for the vaccine efficacy (ρ) that leads to a positive eigenvalue120

of the Jacobian matrix of this linearized subsystem. To determine if this condition for pathogen protection also guarantees121

elimination of an endemic pathogen, we simulated the partial efficacy model starting at the pathogen-endemic steady state. We122

introduced the transmissible vaccine to 10% of the susceptible population, with a range of vaccine efficacies and potential123

pathogen R0’s. We find that over the range of pathogen R0’s we considered, the critical vaccine efficacy for eliminating an124

endemic pathogen is equivalent to the efficacy required to prevent pathogen invasion.125
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Fig. S1. Pathogen prevalence with varying levels of vaccine efficacy across a range of pathogen R0 ’s. Simulations were initialized at the endemic pathogen steady state,
with 10% of the susceptible population removed and exposed to the transmissible vaccine. Simulations were carried out for a duration of 10,000 days, with the pathogen
prevalence being recorded at the final time point. The parameters used to perform these simulations are as follows: βv = 0.033 individual−1 day−1, σ = 0.099 day−1,
d = 0.00274 day−1, b = 1.37 day−1.

Varying vaccination rate. To demonstrate the impact of varying the initial fraction of susceptible hosts that are vaccinated,126

we provide a complementary figure to Fig. 3 in the main text. Here, we expose 1% of the susceptible population to the127

transmissible vaccine, and find that the average time required to reduce the prevalence of LASV and LCMV by 95% increased128

by 137 and 101 days, respectively (Fig. S2).129
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Fig. S2. Temporal dynamics of (a) Lassa virus (LASV) and (b) Lymphocytic Choriomeningitis virus (LCMV) reduction as a result of using a MCMV-vectored transmissible
vaccine. Simulations are initialized at the steady state quantities for susceptible and pathogen infected individuals, with 1% of the susceptible population exposed to the
transmissible vaccine. For each pathogen we randomly sampled βv and σ from the posterior distribution 100 times, and simulated our model forward in time for each set of
parameters. The gray region represents the range of values observed across the 100 replicate simulations, where the orange dashed line is the mean. The gray vertical lines
indicate the minimum, mean, and maximum time to 95% pathogen reduction ((a) min=176 days, mean=331.45 days, max=762 days (b) min=652 days, mean=801.98 days,
max=1197 days).

Partial vaccine efficacy: imperfect infection blocking130

To consider scenarios where the transmissible vaccine is imperfect with respect to blocking infection by the pathogen (rather131

than transmission), we formulated an additional model of partial vaccine efficacy. This model uses the same notation as the132

previous model of partial vaccine efficacy, but ρ now indicates the reduction in pathogen infection rate experienced by vaccine133

exposed and vaccine infected classes. The resulting model is as follows:134

dS

dt
= b− S

(
βp(P + Ep + Ip) + βv(I + Ip + Ir)

N
+ d

)
[31]135

dE

dt
= βvS(I + Ip + Ir)

N
− E

(
(1 − ρ)βp(P + Ep + Ip)

N
+ σ + d

)
[32]136

dEp

dt
= (1 − ρ)βpE(P + Ep + Ip)

N
− (σ + δ + d)Ep [33]137

dEr

dt
= δEp − (σ + d)Er [34]138

dI

dt
= σE − (1 − ρ)βpI(P + Ep + Ip)

N
− dI [35]139

dIp

dt
= σEp + (1 − ρ)βpI(P + Ep + Ip)

N
− (δ + d)Ip [36]140

dIr

dt
= δIp + σEr − dIr [37]141

dP

dt
= βpS(P + Ep + Ip)

N
− (δ + d)P [38]142

dR

dt
= δP − dR [39]143

[40]144
145

Recreating Fig. 4 from the main text, we find that changing the formulation of partial efficacy from transmission blocking146

to infection blocking increases the time required to reduce the prevalence of an endemic pathogen. Specifically, we find that147

when vaccine efficacy is 50%, the time to reduce the prevalence of LASV and LCMV by 95% is increased by 6 and 19 days,148

respectively, relative to a partially effective transmission blocking vaccine (Fig. S3).149
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Fig. S3. Temporal dynamics of (a) Lassa virus (LASV) and (b) Lymphocytic Choriomeningitis virus (LCMV) reduction as a result of using an MCMV-vectored transmissible
vaccine with varying levels of efficacy. Here, the vaccine blocks or partially blocks pathogen infection (solid lines) rather than transmission as in the results reported in Fig. 4
of the main text (dashed lines). Simulations are initialized at the steady state quantities for susceptible and pathogen infected individuals, where 10% of the susceptible
population is exposed to the transmissible vaccine. The parameters used to perform these simulations are as followed: βv = 0.033 individual−1 day−1, σ = 0.099 day−1,
d = 0.00274 day−1, b = 1.37 day−1.

Delayed pathogen immunity150

The mathematical model described in the main text assumes that individuals exposed to the transmissible vaccine are instantly151

immune to pathogen infection. In reality, the process of gaining protective immunity through vaccination is not an instantaneous152

process. Here, we relax this assumption and allow vaccine exposed individuals to be infected with the target pathogen. These153

vaccine exposed individuals do not gain protective immunity to the pathogen until they transition into the vaccine infectious154

class. Using the same parameter and state variable notation as described previously, these assumptions lead to following system155

of differential equations:156

dS

dt
= b− S

(
βp(P + Ep) + βv(I + Ip + Ir)

N
+ d

)
[41]157

dE

dt
= S

(
βv(I + Ip + Ir)

N

)
− E

(
βp(P + Ep)

N
+ σ + d

)
[42]158

dEp

dt
= E

(
βp(P + Ep)

N

)
− Ep(σ + δ + d) [43]159

dEr

dt
= δEp − Er(σ + d) [44]160

dI

dt
= σE − dI [45]161

dIp

dt
= σEp − Ip(δ + d) [46]162

dIr

dt
= δIp + σEr − dIr [47]163

dP

dt
= S

(
βp(P + Ep)

N

)
− P (δ + d) [48]164

dR

dt
= δP − dR. [49]165

166

Simulating pathogen reduction with this delayed immunity model and comparing the results to the immediate immunity model167

from the main text reveals that delayed immunity has minimal impact on a transmissible vaccine’s ability to reduce an endemic168

pathogen. Specifically, we find that delayed immunity increases the time required to reduce the prevalence of LASV and LCMV169

by 95% by only 6 and 20 days, respectively.170
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Fig. S4. Temporal dynamics of (a) Lassa virus (LASV) and (b) Lymphocytic Choriomeningitis virus (LCMV) reduction as a result of using an MCMV-vectored transmissible
vaccine. Simulations are initialized at the steady state quantities for susceptible and pathogen infected individuals, where 10% of the susceptible population is exposed to the
transmissible vaccine. Here we compare the model in the main text to the delayed pathogen immunity model described above.

Prevalence of MCMV in Australian locations171

Location Strain Number Tested Number Positive Prevalence Prevalence: Lower CI Prevalence: Upper CI

Boullanger Island G4 27 11 0.407 0.224 0.612
Macquarie Island G4 40 40 1 0.912 1

Canberra G4 12 9 0.75 0.428 0.945
Walpeup G4 38 22 0.579 0.408 0.737

Boullanger Island K181 27 27 1 0.872 1
Macquarie Island K181 40 11 0.275 0.146 0.439

Canberra K181 12 11 0.917 0.615 0.998
Walpeup K181 38 21 0.552 0.383 0.714

Table S3. Sampling intensity across the various sites described in Gorman et al. (2006). Clopper-Pearson 95% intervals were calculated for
each prevalence in an attempt to account for sampling error.
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