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SUPPLEMENTARY METHODS 

Sample collection and enrichment of EVs from human plasma, serum, and urine 

For the prostate cancer dataset, human serum was collected using BD Vacutainer blood 

collection tubes (i.e., serum separation tubes). First, whole blood was centrifuged at 2,000g for 30 

minutes at 4ºC followed by another centrifugation of the serum at 12,000g for 45 minutes at 4ºC to 

remove larger EVs (e.g. microvesicles and apoptotic bodies). The supernatant was carefully 

transferred to ultracentrifugation tubes (Beckman coulter, thick wall polypropylene tube, Cat. 

#355642) and ultracentrifuged for two rounds at 110,000g for 2 hours at 4ºC. The pellet was finally 

resuspend in 1 mL PBS and stored at -80C for further analysis. EV enrichment from human urine 

was performed with the same protocol.  

For the HCC ‘biomarker discovery’ and ‘biomarker validation’ dataset, peripheral venous 

blood was collected in EDTA containing vacutainer (BD Vacutainer), stored on ice, and processed 

within 4 hours of collection. On the day of collection, we performed two centrifugation steps to 

separate plasma from other blood components and minimize cellular debris from our final isolate. 

First, whole blood was centrifuged at 1,600g for 10 minutes at 4ºC followed by another 

centrifugation of the plasma at 16,000g for 10 minutes at 4ºC to remove larger EVs (e.g. 

microvesicles and apoptotic bodies). The supernatant was then stored at -80°C until the 

ultracentrifugation was performed. For this, samples were thawed on ice and 0.5 - 1 mL of plasma 

was diluted in ~25 mL PBS and centrifuged at 120,000g for 2 hours at 4°C with a Type 50.2 Ti 

Fixed-Angle Titanium rotor (Beckman Coulter, k-factor = 69). Isolates were directly used for RNA 

extraction (see below) or resuspended in PBS and stored at -20°C until further analysis. 

 

Characterization of EV-enriched isolates 

Characterization procedures of our isolates were guided by recommendations from the 

International Society for Extracellular Vesicles (ISEV)[19]. After differential ultracentrifugation, 

the PBS-resuspended isolate was evaluated with transmission electron microscopy (TEM) in a 

Hitachi 7000 transmission electron microscope operating at 80 kV. Briefly, equal volumes of the 

isolate and 3% Glutaraldehyde were mixed and kept at room temperature for 1 hour. Two µl of 

osmium tetroxide was added to the mixture and incubated at room temperature for 1 hour. The 

solution was then transferred to formvar coated TEM grids and observed under the electron 

microscope. To estimate the size and concentration of the isolate, we conducted nanoparticle 

tracking analysis (NTA) on a NanoSight NS300 (Malvern Instruments Ltd, Malvern, UK) and 

analyzed the samples with the NTA 3.2 software (Malvern). For this, PBS-resuspended isolates 

were diluted 1:50 in PBS.  

https://paperpile.com/c/YLpmEG/BywJR
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For immuno-labeling of the isolate, we performed Western Blotting for the intracellular 

marker TSG101 and Exoview™ analysis for colocalization of tetraspanins CD9, CD63, and CD81. 

For Western Blotting, we quantified protein concentration (Bradford assay, Biorad) and 20 μg of 

protein were separated by sodium dodecyl sulfate–polyacrylamide electrophoresis under reducing 

conditions and transferred to PVDF membranes (Life Technologies). Unspecific binding sites were 

blocked with 5% nonfat dry milk and membranes were incubated with mouse monoclonal TSG101 

antibody (ab83, Abcam, RRID:AB_306450) at 4°C overnight followed by goat anti-mouse 

secondary antibody (A0447, Agilent Technologies) for 1 hour at room temperature. 

Chemiluminescence was detected using the ECL™ Prime Western Blotting System (RPN2232, GE 

Healthcare). The uncropped Western Blot image for TSG101 is displayed in Supplementary Fig. 

S9. Exoview™ experiments were carried out on an ExoView™ R100 imaging platform (NanoView 

Bioscience). With the Exoview™ Tetraspanin kit, 35 µl of PBS-resuspended isolate was incubated 

overnight on a microarray chip which has been functionalized with antibodies against CD9, CD63, 

CD81, plus IgG negative control to detect EVs expressing these surface markers. After washing off 

unbound particles, chips were stained with fluorescence-conjugated antibodies against CD9 (Alexa 

647) or CD81 (Alexa 555) to identify subpopulations based on maker profiles. Analysis was done 

with the NanoViewer 2.4.5 (NanoView Bioscience). 

 

RNA extraction, small library preparation and next-generation sequencing 

For the prostate cancer dataset, total RNA was extracted from the serum/urine bump 

fraction (nanoDLD, serum only), UC isolates, or bulk tissue using the Total Exosome and Protein 

Isolation Kit (Invitrogen 4478545) by following the protocol. For the HCC biomarker discovery 

and biomarker validation datasets, RNA was extracted from the UC isolate on the same day of 

ultracentrifugation using the miRNeasy Plasma/Serum kit (Qiagen) according to the manufacturer's 

recommendations including the spike-in C. elegans miR-39 miRNA mimic and stored at -80°C 

until further use. RNA quantitation and quality was assessed on a 2100 Bioanalyzer Instrument 

(Agilent) with the RNA 6000 Pico Kit (Agilent). Indexed Illumina Small RNA libraries were 

prepared with the SMARTer® smRNA-Seq Kit (Clontech Laboratories, Inc.) and sequenced on an 

Illumina HiSeq 4000 (prostate cancer dataset) or HiSeq2500 (liver cancer dataset) platform.  

 

Trimming 

The SMARTer™ smRNA-Seq kit yields reads are flanked on the 5’ end by a leading triad 

of three bases from SMARTer™ template switching activity, and on the 3’ end by the Illumina 

adapter and extra bases from the oligo dT (which are exactly 15 bp in length). We used Cutadapt[40] 

https://paperpile.com/c/YLpmEG/3NWii
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to remove the first 3 nucleotides of all reads, specify the homopolymer adapter sequence 

AAAAAAAAAA to remove along with any sequence 3’ of it, and finally discard all reads that are 

smaller than 15 bp long after these filters are applied. The exact command used, as recommended 

by the (strand-sensitive) SMARTer™ smRNA-Seq kit,  is 

cutadapt -m 15 -u 3 -a AAAAAAAAAA input.fastq > output.fastq   

Therefore our set of initial small RNAs are at least 15 bp long, and are trimmed from positions 1-

3 and also from the oligo dT 3’ through to the adapter. We note in passing that although template 

switching at low frequencies can add more than 3 nucleotides to the 5’ end, we did not trim any 

further on the 5’ end.  

Alignment and multiple small RNA mapping 

All samples’ smRNA adapters were trimmed as above. With the aim of identifying the 

transcriptional site of origin for each small RNA-seq (small RNA-seq) read, we aligned these small 

RNA-seq data to the GRCh38 reference genome. In order to deal with the preponderance of 

multiply mapping  small RNA-seq reads (i.e., a single read that maps with equal confidence to 

m  >= 2 genomic regions), we adopted strategies based on those of ERANGE 4.0a[41], 

SiLoCO[42–44], which quantify expression of multiply mapped reads as proportional to the 

number of uniquely mapped reads in the vicinity. It has been extensively shown by Johnson et 

al.[44] that compared to simply ignoring multiply mapped reads (minimizing sensitivity but 

maximizing specificity) or randomly assigning them (maximizing sensitivity, minimizing 

specificity, the default bowtie setting), local weighting of multiply mapped reads (m < 50) by 

genomic context leads to improved small RNA-seq alignment performance. Briefly, the procedure 

is as follows: 

a) For each trimmed fastq file, using bowtie[45], determine all best-matched alignments to 

genomic reference GRCh38 for each small RNA-seq read and discard those that multiply 

map > 50 times; 

        bowtie -q -v 1 -S -a -m 50 –-best --strata <hg38_genome>  < <input.fastq> > 

<output.sam>   

b) Read-sort the sam files (using samtools sort) and then finally merge the sorted sam files  

(using samtools merge) (samtools, RRID:SCR_005240). Count the number of uniquely 

mapped reads in 50 bp bins across the reference genome, with bin start coordinates defined 

by the 5’ edge of the uniquely mapped read.  For every multiply mapped read (m < 50) the 

https://paperpile.com/c/YLpmEG/esJit
https://paperpile.com/c/YLpmEG/Azau7+bcXTf+2tK7p
https://paperpile.com/c/YLpmEG/2tK7p
https://paperpile.com/c/YLpmEG/iEIAE


 

5 

local count of uniquely mapped reads, in each 50 bp bin, is computed across all alignment 

coordinates and converted to fractions of the sum of total counts across those locations. 

These fractions are the probabilities for placement of the multiply-mapped read in a 

particular alignment position, as drawn from a normal distribution. In cases where there 

are no proximal uniquely mapped reads recorded near the multiply-mapped loci, those loci 

will be randomly chosen if there are 3 or fewer choices. Otherwise they are discarded. 

Uniquely mapped or assigned (guided or m < 3) multiply mapped reads are called primary 

alignments. 

c) Following  Johnson et al.[44,46], we assign the following auxiliary CIGAR codes to the 

alignments in the final merged and sorted SAM/BAM file to reflect the uniqueness and 

mapping status of each alignment. 

1.  XY:Z:N -- Unmapped with zero valid alignments   

2.  XY:Z:M -- Unmapped with too many alignments: alignments > 50 

3.  XY:Z:O -- Unmapped because no guidance was possible ( > 3 choices with no 

proximal unique-mappers) 

4.  XY:Z:U -- Uniquely mapped   

5.  XY:Z:R -- Multi-mapped with primary alignment chosen randomly (no 

guidance, <= 3 choices)  

6.  XY:Z:P -- Multi-mapped with primary alignment chosen guided by unique-

weighting. Record probability    of uniquely-weighted assignment 

d) The total tallies of these counts across the two cohorts (Prostate smRC training cohort, n = 

41), (HCC smRC biomarker discovery cohort, n = 15) are given below. Primary alignments 

are all placed reads (CIGAR codes U + R + P), and percentages in brackets are given in 

terms of total number of input reads retained after cutadapt adapter trimming 

(Supplementary Table S6). 

 

Deconvolution analysis  

EV carrier deconvolution analysis was performed as a post-processing step to the standard 

exceRpt pipeline[47], which was applied to the entire HCC smRC discovery dataset (n=15). The 

output of exceRpt is collated (using mergePipelineRuns.R from 

https://github.com/rkitchen/exceRpt) to form summary data of count matrices for key annotated, 

noncoding RNA biotypes (piRNA, circRNA, miRNA, tRNA counts), aggregated QC data, adapter 

sequence data, and diagnostic plots. At this point we applied their deconvolution algorithm on the 

https://paperpile.com/c/YLpmEG/2tK7p+ihuHB
https://paperpile.com/c/YLpmEG/1r0uE
https://github.com/rkitchen/exceRpt
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summarized data. Briefly, this consists of two key stages: In the first stage, constituent cargo 

profiles are estimated using a modified version of a methylation deconvolution technique in 

Onuchic et al.[48]. Next, deconvolution is performed using the Read Counts or RPM sample 

profiles from the exRNA Atlas and the per-sample proportion enrichments of each profile are 

estimated.  

 

smRC definition, properties, exRNA-specific smRCs 

Details on trimming and alignment can be found in the supplementary methods. Clusters 

of primary alignments that are genomically localized – as expected biologically from localized 

small RNA precursors giving rise to multiple small RNA mature products -- can be defined by a 

simple moving average smoothing window via minimum coverage and primary alignment spacing 

(padding) constraints as shown in Fig. 3A.  Essentially, all regions of the genome that are tiled 

edge-to-edge by small RNA-seq reads within the padding constraint are filtered for those that 

contain at least the number of small RNA-seq reads specified by the minimum coverage threshold. 

Increasing the minimal coverage threshold decreases sensitivity (oversmooths) while increasing 

the padding decreases specificity. For the prostate cancer ‘smRC characterization’ cohort, we set 

the minimum coverage threshold to just over 1 rpm (read per million primary alignments) (U + P 

+ R), which works out to imply that at least 248 small RNA-seq reads must be contained within the 

cluster, while for the ‘HCC biomarker discovery’ cohort, we set the same rpm threshold and 

obtained 205 reads. In both cohorts we empirically set the padding to be approximately three 

quarters of the small RNA-seq read length, 75 bp. 

In order to quantify the peakiness of the distribution of reads within the moving average 

window we define a tiling complexity (C) measure as the percentage of the total window coverage 

comprised of unique read sequences. Low percentages (C < 0.1) indicate a highly peaked 

distribution, while high percentages (C > 0.9) reflect a relatively more uniform distribution. We 

note in passing that a similar measure could be defined for the dominant read strandedness of the 

window (+, -, mixed).  In addition, within the window we identify the peak coverage and its 

consensus sequence. 

We define small RNA clusters (smRC) as regions passing the above coverage and padding 

filters possessing total expression (computed in log2CPM units), complexity, and peak consensus 

sequences 

                   smRC := (chr:start-end; log2CPM, complexity, peak_consensus_sequence,…)   

https://paperpile.com/c/YLpmEG/gqDwx
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and annotate the genome with smRCs. The ellipsis indicates that other important 

parameters can be added (average strandedness, peakiness, smRC length, etc). For each smRC, we 

calculate the relative contribution of each sample to the total coverage by tallying a raw read count 

matrix with row dimension equal to the number of smRCs and column dimension equal the number 

of samples. The total number of smRCs in the prostate cancer ‘smRC characterization’ cohort is 

40,879 (while for the ‘HCC biomarker discovery’ cohort there are 229,677 smRCs), and their 

length ranges from 15 bp to 25 kbp in both datasets (see Supplementary Fig. S2A for length 

distribution within prostate cancer ‘smRC characterization’ cohort). Furthermore, as demonstrated 

by Fig. 3B and Supplementary Fig. S3B, capture of smRCs in general is relatively robust across 

different EV isolation technologies (nanoDLD and ultracentrifugation, UC), with over 80% of well-

expressed smRCs captured by both techniques (Supplementary Fig. 3A). 

Apart from being about as numerous as annotated genes, smRCs possess a standard 

overdispersed count (heteroscedastic) mean-variance profile across all samples, as shown in 

Supplementary Fig. 2B for the prostate cancer ‘smRC characterization’ cohort. Their variance 

profile tracks key axes of variation in the dataset, as shown in Supplementary Fig. 2C and in the 

PCA plot in Supplementary Fig. 2D, which demonstrates the first two principal components of 

smRC expression demarcate clear separation across exRNA versus cellular RNA origin and 

biofluid (serum/urine), respectively, implying that their differential expression may be tractably 

analyzed via standard techniques employing explicit parametric negative binomial estimations (e.g., 

DESeq2[49]) and nonparametric transformation models (e.g., voom/limma[50]). Normalizing the 

counts of all samples in the prostate cancer ‘smRC characterization’ cohort by library size and 

filtering for minimum expression (cpm > 5) across at least 3 samples, i.e., imposing 

                                              rowSums(cpm(DGE_smRC) > 5) > 2   

we obtain 34,297 well-expressed smRCs, where DGE_smRC is the smRC count matrix. The 

flexibility and interpretability of linear modeling can then be utilized to construct well-defined 

contrasts in expression and test associated null hypotheses. Leveraging the matched cellular and 

exRNA expression smRC profiles in the prostate cancer ‘smRC characterization’ cohort, we tested 

the expression null hypothesis (between exRNA and cellular RNA isolate sample smRCs) 

   H0 := exRNA - cellular = 0   

using the standard voom/limma workflow[50]. Any smRCs rejecting this null hypothesis with 

positive (negative) logFC are defined as exRNA (cellular) specific in the same patient. Of all the 

well-expressed smRCs, 25,771 (14,458 cellular, 11,313 exRNA) had a BH-adjusted p-value (FDR) 

https://paperpile.com/c/YLpmEG/P2DbE
https://paperpile.com/c/YLpmEG/ZS8p1
https://paperpile.com/c/YLpmEG/ZS8p1
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< 0.05 to reject the null hypothesis as shown in the volcano plot of Fig. 3C. Plotting the tiling 

complexity and peakiness of these significant exRNA- and cellular-specific smRCs, and annotating 

by logFC, the striking difference between exRNA and cellular smRCs becomes manifest. exRNA-

associated (cellular-associated) smRCs have low (high) complexity and dominant peaks. 

Furthermore, examining the maximum value logFC for all significant smRCs as a function of the 

length of the smRC peak consensus sequence in Supplementary Fig. 2E, we see that smRCs with 

shorter peak consensus sequences (smRC length < 26 bp) tend to be exRNA-derived while those 

with longer sequences (26 bp  < smRC length < 97 bp ) are preferentially expressed in cellular 

smRCs. Similarly, Supplementary Fig. 2F demonstrates that shorter smRCs, which tend to be 

better expressed in exRNA compared to cellular samples, also tend to rely more heavily on 

multimapping (XY:Z:P and XY:Z:R) reads. We therefore define exRNA-associated smRCs 

                exRNA_smRC := (chr:start-end; log2CPM, complexity ~ 0, short peak_consensus_sequence,…)   

as the subset of well-expressed smRCs that are short, peaky, relatively low tiling complexity, and 

have relatively higher average reliance on multi-mapped reads.  

 

HCC smRC biomarker selection 

Using exactly the same methodology as outlined in smRC definition and properties in 

the supplementary material, we computed HCC-specific smRCs from the ‘HCC biomarker 

discovery’ cohort by testing the null hypothesis 

                                                                  H1 := early HCC – CLD = 0 

and adjusting for etiology, age, gender, and sequencing batch.  Only 269 smRCs (41 upregulated, 

228 downregulated) were significantly associated (FDR < 0.05) with HCC. We focused on well-

expressed smRCs which were over-expressed in HCC compared to chronic liver disease, and 

applied the following filtering criteria using the intuition of the prostate cancer ‘smRC 

characterization’ cohort: 

a) Filter to the top 90th percentile of positive logFC for significant smRCs, which is 2.51, 

which leaves (29/41); 

b) Order the remaining smRCs in descending order average expression (log2cpm) across all 

samples; 
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c) Remove all smRCs with complexity higher than mean of candidates, all those with larger 

size than the mean, and all those with higher than median smRC consensus sequence length; 

(6/41) 

d) Remove the smRCs whose peak consensus sequences have significant overlap with repeat 

elements (LINEs, SINEs, low complexity sequence, etc), in order to aid RT-qPCR 

validation; (5/41) 

e) Select the top 4 smRCs; 

Supplementary Table S5 displays the relevant information from the top four selected 

smRCs. Subsequent RT-qPCR validation revealed that smRC_125851 had relatively poor 

discriminatory power between HCC and CLD, so it was removed. The remaining three were 

profiled via RT-qPCR in the early ‘HCC biomarker validation’ cohort and subsequently used to 

create an early HCC risk function using penalized logistic regression. 

 

Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) 

We designed custom TaqMan® Small RNA Assays to target our candidate smRCs 

(ThermoFisher, Supplementary Table S4+S5) and purchased a catalog TaqMan® miRNA Assay 

against cel-miR-39-3p (ThermoFisher) to target the spike-in miRNA mimic which was used during 

the exRNA extraction for normalization purposes. Three µl of extracted exRNA were used for 

reverse transcription (RT) to cDNA with the conventional TaqMan™ MicroRNA Reverse 

Transcription Kit (ThermoFisher) and target-specific RT primers, followed by quantitative real-

time PCR according to the manufacturer’s protocol. For our 3-smRC signature, raw ct values of 

smRCs were corrected against ct values of the spike-in (∆Ct) and normalized to the average ∆Ct of 

all controls (∆∆Ct). Overall, the turnaround time from blood sampling to final test results can be 

achieved in less than 12 hours. 

 

smRC overlap with known RNA biotypes 

We next investigated if well-expressed exRNA and cellular smRCs preferentially capture 

(enclose) any key known RNA biotypes, as we would expect with both exRNA and cellular smRCs 

for miRNA for example, and to what extent they do so across all key biotypes. Indeed, for a specific 

RNA biotype we first computed the smRC capture percentage (i.e., whether or not the smRC 

completely or only partially enclosed the RNA biotype). Then, for a particular smRC capture 

percentage, we asked how frequent a particular RNA biotype was among all biotypes. 

Supplementary Fig. S4A shows the relative breakdown of RNA biotypes at several extremal 
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points of the smRC capture percentage (1%, 70%, 100%), where plainly miRNA, snoRNA, snRNA, 

and other small RNA are preferentially completely captured (i.e., they are the dominant RNA 

biotypes with capture overlap ~ 1) by smRCs compared to mRNA, which are dominantly grazed 

(i.e., protein coding biotype is dominant for capture overlap << 1). In other words,  as expected, 

when a smRC completely or mostly encloses a known RNA biotype, it is mostly likely a small 

RNA and very unlikely a protein-coding RNA. Indeed, plotting the RNA biotype frequency across 

all exRNA and cellular smRC capture overlap percentages separately for mRNA, lincRNA, 

miRNA, and snoRNA, yields Supplementary Fig. S4B. We find that exRNA smRCs dominantly 

partially capture (graze) mRNA at most to about 25% of the mRNA transcript, and never capture 

more, while cellular smRCs tend to overlap more protein-coding mRNA and can actually 

completely enclose mRNA. Similarly, using Supplementary Fig. S4B, one can conclude miRNA 

are preferentially completely enclosed by both exRNAEV and cellular smRCs at the same rate, at 

most 50% of a lncRNA is captured by an exRNA smRC, and snoRNAs are preferentially 

completely enclosed by cellular smRCs compared to exRNA smRCs. Taken together, when smRCs 

do enclose known RNA biotypes they can either do so predominantly partially (as with mRNA and 

lncRNA) or predominantly completely (as with miRNA, snoRNA, and other small RNA), with key 

differences in the statistics observed between exRNA and cellular smRCs. Finally, one can ask if 

these overlap properties are principally driven by the number and relative size distributions of 

exRNA and cellular smRCs (as opposed to a genuine property of small RNA accumulation in 

exRNA and cells). Randomly generating genomic regions with the same number of regions, and 

exRNA and cellular smRC size distributions (masking for repeat regions and centromeres), we 

repeat the above overlap computations and use a Kolmogorov-Smirnov test to assess if the 

underlying distributions of overlaps and capture percentages are the same within sampling noise. 

It turns out that all pairwise (x = smRC, y = random) Kolmogorov-Smirnov tests with two sided 

alternative hypotheses are highly significant, especially for lncRNAs, indicating that the exRNA 

and RNA biotype specific overlap patterns are not solely attributable to the size distributions (or 

number) of smRCs. As Supplementary Table S3 illustrate for the two separate one-sided KS tests, 

interesting trends emerge: for mRNA, both exRNA and cellular smRCs tend to overlap more exons 

than expected by random simulation; for lncRNA, exRNA smRCs overlap than expected more 

while cellular smRCs overlap much less; for miRNA, both exRNA and cellular smRCs overlap far 

more than expected by chance; for snoRNA, cellular smRCs overlap far more than expected while 

exRNA smRCs have slightly more evidence for relative depletion.  

In summary, exRNA smRCs overlap known RNA biotypes in a non-random fashion, and 

when they completely or almost completely enclose a biotype it is overwhelmingly likely to be a 



 

11 

known small RNA biotype, as opposed to similar but distinct trends for cellular smRCs. To aid in 

interpretation and comparison, Supplementary Fig. S4C also includes the simulated fractional 

overlap curves. However, as Supplementary Fig. S4A demonstrates a significant fraction of 

exRNA smRCs are well-expressed from unannotated genomic regions. 

 

Prostate smRC consensus sequence motifs 

 In the absence of functional data, we speculate that like other small RNA, exRNA small 

RNA payloads are in complex with RNA binding proteins (RBPs), or may bear vestigial evidence 

of exRNA related packing by RBPs. Using MEME[51], we investigated if the exRNA smRC peak 

consensus sequences had any evidence of being enriched in ungapped motif sequences that in turn 

had homology to known RBP motifs. Parsimoniously, we assumed that each peak sequence 

contains at most one occurrence of a motif, but likely none. We also assumed that if nucleotide 

frequency biases exist there would be only single-nucleotide biases (as opposed to dimer biases 

such as GC content, or even higher order biases), and only searched for motifs between 3 and 6 

nucleotides long, rejecting all those that had a sufficiently high E-value (probability of being found 

randomly). This amounts to running an instance of a zeroth order Hidden Markov Model in the 

zoops (zero or one per sequence) setting of MEME on a fasta file of exRNA-specific smRCs, which 

we took to be those with positive logFC in the null H0 and FDR < 0.001: 

meme exRNA_smRC_peaks.fasta -brief 100000 -rna -oc exRNA_smRC_output -nostatus -evt .001 

-mod zoops -nmotifs 10 -minw 3 maxw 6 -objfun classic -markov_order 0 1> stdout 2> stderr    

The final results of the MEME computation are summarized here. Briefly, two 6 nucleotide 

motifs were found significantly over-enriched in two distinct groups of exRNA smRC peak 

consensus sequences, each representing approximately 11% of the total number of exRNA smRC 

peak consensus sequences interrogated. The motifs YCCACC (617 smRC peaks, RBP binding 

prediction: PCBP1, G3BP1, HNPRL, YBX1, ELAV1, E-value ~ 1e-46) and  KKGAAR (626 

smRC peaks, RBP binding prediction: ESRP2, HNRPRF, HNRPH1-3, SRSF1, E-value ~ 1e-8) 

were submitted for RBP motif homology assessment using ATtRACT[52] 

(https://attract.cnic.es/searchmotif) and RBPDB[53] (http://rbpdb.ccbr.utoronto.ca/).  

Examining the expression profile of exRNA smRCs enriched in either of these motifs 

across the prostate cancer ‘smRC characterization’ cohort reveals over-expression in exRNA 

compared to cellular smRCs (true by definition), for example in Supplementary Fig. S8, but 

interesting sub-patterns emerge. These include a bimodal downregulated expression of motif-

enriched cellular smRCs, suggesting an enriched subset that might imply a role in exRNA packing 

https://paperpile.com/c/YLpmEG/pwcO0
https://paperpile.com/c/YLpmEG/u6bnm
https://attract.cnic.es/searchmotif
https://paperpile.com/c/YLpmEG/sknhN
http://rbpdb.ccbr.utoronto.ca/
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within cells, and an overall upregulation in nanoDLD isolation compared to UC within serum (and 

also overall compared to urine UC).  
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SUPPLEMENTARY FIGURES 

 
Supplementary Fig. S1. Annotated exRNA expression in cargo profiles. (A) Heatmap of 

correlations of estimated constituent cargo profiles with our exRNA expression profiles. exRNA 

expression in units of normalized expression is correlated with key RNA species distinguishing the 

6 cargo types (CTs, columns) previously identified[4]. CT4 is heavily enriched, i.e. ncRNA profiles 

58-75 are heavily enriched, indicating highly EV specific origin of exRNA. (B) Heatmap of per-

sample proportions of estimated constituent cargo profiles (columns) among the 6 cargo types 

(CTs). 
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Supplementary Fig. S2. smRC properties of prostate cancer ‘smRC characterization 

cohort’. (A) Density plot of smRC length. (B) Mean-variance profile across all samples. (C) smRC 

axis of variation. The relative contribution of each axis of expression variation is displayed across 

the training prostate cancer dataset in order of magnitude. RNA origin (i.e., EV-derived or cellular) 

contributed the most to the observed variance. (D) Principal component analysis (PCA). (E) 

Maximum value logFC among all significant smRCs as a function of the length of the smRC peak 

consensus sequence. (F) Mapping uniqueness of smRC as a function of the length. 
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Supplementary Fig. S3. smRC correlation properties across different biofluids and 

technologies. (A) Percentage of smRC captured by both UC and nanoDLD EV isolation. (B) 

Correlation plot across prostate cancer samples. (C) Correlation plot for EV-derived smRC 

expression across different biofluids (i.e., serum versus urine) using UC. (D) Correlation of single 

smRC expression between RNAseq and RT-PCR in the prostate cancer cohort. 
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Supplementary Fig. S4. Level of smRC overlap with annotated hg38 biotypes. (A) 

Distribution of percentage overlap of smRCs onto all known hg38 RNA biotypes. Low overlap (<<1) 

indicates smRC does not contain whole RNA bioptype, high or total overlap (~1) indicates RNA 

biotype contained within smRC. (B) Plot of given RNA biotype abundance percentage (among all 

RNA biotypes in hg38 annotation) versus smRC overlap percentage as above. Abundance 

percentage quantifies the frequency of a given RNA biotype among all others. (C) Same as (B), 

only with curves derived from a random genomic distribution matching number and size of smRCs.  
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Supplementary Fig. S5. smRC expression in ‘HCC biomarker discovery’ cohort. (A) 

Principal component analysis (PCA) for HCC biomarker discovery cohort. (B) Expression for each 

smRC between chronic liver disease controls (CLD, n=5), HCC patients (n=10), and patients with 

other non-HCC malignancies (n=142). (C-E) Correlation of 3-smRC-signature expression 

between RNAseq and RT-PCR in the HCC discovery cohort. 
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Supplementary Fig. S6. smRC expression in ‘HCC biomarker validation’ cohort and 

correlation with clinical variables. Correlation of smRC expression with age (A) and gender (B).  

(C) Expression for each smRC between HCC patients (n=105), chronic liver disease controls (CLD, 

n=85), and patients without chronic liver disease (noCLD, n=19) (RT-qPCR data). 
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Supplementary Fig. S7. Sensitivity and specificity of 3-smRC model. Balanced 

accuracy−maximizing sensitivity (A) and specificity (B), respectively, versus kernel density 

estimation of all [sens, spec] simulation pairs (with n = 30 moving average) for the smRC model 

to discriminate early stage HCC from controls at high risk.  
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Supplementary Fig. S8. Motif containing smRC expression in prostate cancer ‘smRC 

characterization’ cohort across RNA origin. Expression profile of exRNA smRCs enriched in 

either of the motifs (A, YCCACC, B, KKGAAR) reveals over-expression in exRNA compared to 

cellular smRCs (true by definition) with a bimodal downregulated expression of motif-enriched 

cellular smRCs. 
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Supplementary Fig. S9. Complete image of Western Blotting analysis targeting TSG101. 

The section included in the manuscript is highlighted in red. 
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SUPPLEMENTARY TABLES 

 

Supplementary Table S1. Clinical characteristics of discovery cohort for HCC patients and 

controls.  
Early Stage HCC 

(n=10) 

CLD, risk for HCC 

(n=5) 

P-Value 

Age (Years) 67 63 0.94 

Sex (Male) 7 (70%) 3 (60%) 1 

Cirrhosis (Yes) 8 (80%) 4 (80%) 1 

Etiology    

  HCV 4 (40%) 2 (40%) 1 

  HBV 3 (30%) 1 (20%) 1 

  NASH 3 (30%) 2 (20%) 1 

Tumor stage (BCLC)    

  Early Stage (Stage A) 6 (60%) n.a. n.a. 

  Intermediate Stage (BCLC B) 2 (20%) n.a. n.a. 

  Advanced Stage (BCLC C) 2 (20%) n.a. n.a. 

Largest nodule (cm) 3.5 n.a. n.a. 

AFP (ng/mL*) 20.6 4.6 0.46 

Continuous variables are displayed as median. *Upper limit of normal 9ng/mL. AFP, alpha 

fetoprotein, BCLC, Barcelona Clinic for Liver Cancer, HBV/HCV, chronic hepatitis B/C, 

NASH, non-alcoholic steatohepatitis  
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Supplementary Table S2 
        

 
Bootstrap Validation of Penalized AFP + smRC model Bootstrap Validation of Penalized AFP + smRC model 

Index Origina

l 

Sample 

Trainin

g 

Sample 

Test 

Sampl

e 

Optimis

m 

Correcte

d Index 

n Origina

l 

Sample 

Trainin

g 

Sample 

Test Optimism 

Index 

Correcte

d 

n 

Dxy 0.810 0.850 0.780 0.060 0.750 1000 0.910 0.930 0.880 0.050 0.860 1000 

R2 0.590 0.630 0.570 0.060 0.530 1000 0.740 0.770 0.720 0.050 0.680 1000 

Intercep

t 

0.000 0.000 0.010 −0.01 0.010 1000 0.000 0.000 −0.02 0.020 −0.02 1000 

Slope 1.000 1.000 0.910 0.090 0.910 1000 1.000 1.000 0.920 0.080 0.920 1000 

Emax 0.000 0.000 0.020 0.020 0.020 1000 0.000 0.000 0.020 0.020 0.020 1000 

D 0.600 0.630 0.550 0.080 0.520 1000 0.830 0.850 0.760 0.090 0.740 1000 

U −0.01 −0.01 0.000 −0.01 0.000 1000 −0.01 −0.01 0.000 −0.02 0.000 1000 

Q 0.610 0.640 0.540 0.100 0.510 1000 0.840 0.860 0.760 0.110 0.730 1000 

B 0.130 0.110 0.140 −0.02 0.150 1000 0.080 0.070 0.100 −0.03 0.110 1000 

g 2.760 3.100 2.780 0.320 2.440 1000 4.910 5.480 4.990 0.500 4.420 1000 

gp 0.390 0.400 0.390 0.010 0.380 1000 0.440 0.440 0.440 0.000 0.430 1000 

AUC 0.910 0.920 0.891 0.030 0.874 1000 0.955 0.967 0.942 0.024 0.930 1000 

Dxy: Somers’ rank correlation between the observed HCC status and predicted HCC probabilities; Emax: maximum absolute 

calibration error on probability scale; B: Brier score; U: unreliability index; D: discrimination; Q: quality (Q = D – U); g: Gini’s mean 

difference of log-odds between HCC and CLD; gp: Gini's mean difference in probability scale; AUC; Area Under the Receiver 

Operating Curve 
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Supplementary Table S3. 

RNA biotype  Biofluid statistic P-value Alternative hypothesis 

mRNA cell 0.527 0 CDF x above CDF y 

mRNA exRNA 0.106 1.32e-05 CDF x above CDF y 

lincRNA cell 0.00 1 CDF x above CDF y 

lincRNA exRNA 0.250 0 CDF x above CDF y 

miRNA cell 0.913 0 CDF x above CDF y 

miRNA exRNA 0.393 0 CDF x above CDF y 

snoRNA cell 1.000 0 CDF x above CDF y 

snoRNA exRNA 0.158 0 CDF x above CDF y 

mRNA cell 0.008 1 CDF x below CDF y 

mRNA exRNA 0.068 .0098135 CDF x below CDF y 

lincRNA cell 0.689 0 CDF x below CDF y 

lincRNA exRNA 0.058 0.03455966 CDF x below CDF y 

miRNA cell 0 1 CDF x below CDF y 

miRNA exRNA 0.068 0.0098135 CDF x below CDF y 

snoRNA cell 0 1 CDF x below CDF y 

snoRNA exRNA 0.245 0 CDF x below CDF y 
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Supplementary Table S4. RT-qPCR assay sequences for orthogonal smRC validation in prostate cancer dataset 

smRC Genomic location 

(hg38) 

Target sequence for RT-qPCR assay 

prostate_1 chr8:21329709-

21329879 

CUAGGCCAGUGGUCUUUAUGU 

prostate_2 chr2:148881489-

148881928 

AUAGGUUUGGUCCUAGCCUUUCUAUUAGCUCUUAGUAAGAUUACA

CAUGCAAGCAUCCCCAUUCCAGUGAGUUCACCCUCUAAAUCACC 

prostate_3 chr2:222918489-

222918711 

GGGGGAAGGAGGAGAAAAUUCACAUGUAAACUUGUUC 
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Supplementary Table S5. RT-qPCR assay sequences of 3-smRC signature and genomic location 

smRC Genomic 

location (hg38) 

R
eg

io
n

 l
en

g
th

 (
b

p
) 

M
a
jo

r 
p

ea
k

 l
en

g
th

 

(b
p

) 

A
v
er

a
g
e 

E
x
p

re
ss

io
n

 

(l
o
g
2
cp

m
) 

logFC adjusted 

p-value 

Peak consensus 

sequence 

Target sequence for 

RT-qPCR assay 

In
cl

u
d

ed
 i

n
 3

-s
m

R
C

 

si
g
n

a
tu

re
 

AUC 

smRC_

119591 

chr8:137627017

-137627182 

166 15 2.260 3.258 0.01583 CCUCUUCUUAA

CACC 

UUGUCCUCUUCUU

AACACC 

Yes 0.75 

smRC_

125851 

chr9:95513777-

95515830 

2054 15 1.081 3.554 0.00951 CCCCUUAUUUA

CCCC 

UUUCCUCCCCUUA

UUUACCCC 

No NA 

smRC_

135709 

chr10:70817194

-70818087 

894 15 2.328 3.498 0.00418 CCUUCCCGUAC

UACC 

CUCCCUUCCCGUA

CUACC 

Yes 0.68 

smRC_

48615 

chr3:103950043

-103953627 

3585 15 3.102 2.513 0.03956 CUCUUUACAGU

GACC 

UGUCUCUUUACAG

UGACC 

Yes 0.78 
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Supplementary Table S6 

Read mapping status PrCA smRC 

characterization cohort 

(reads) 

HCC smRC biomarker 

discovery cohort 

(reads) 

Total (post cutadapt) 494 828 430 409 592 240 

Unmapped 213 988 996 (43.2%) 138 477 962 (33.8%) 

Unmapped because m > 50 10 370 278 (2.1%) 11 205 827 (2.7%) 

Unmapped because guidance failed 38 714 298 (7.8%) 7 066 592 (1.7%) 

Uniquely mapped (U) 86 369 038 (17.5%) 203 895 810 (49.8%) 

Multiply mapped (m < 3, R) 2 136 572 (0.4%) 2 072 756 (0.4%) 

Multiply mapped with u-rescue (P) 143 249 248 (28.9%) 46 873 293 (11.4%) 

Primary alignments (U + R + P) 229 618 286 (46.4%) 250 769 103 (61.2%) 
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AIM  

STARD stands for “Standards for Reporting Diagnostic accuracy studies”. This list of items was developed 

to contribute to the completeness and transparency of reporting of diagnostic accuracy studies. Authors can use the 

list to write informative study reports. Editors and peer-reviewers can use it to evaluate whether the information has 

been included in manuscripts submitted for publication.  

Explanation 

A diagnostic accuracy study evaluates the ability of one or more medical tests to correctly classify study 

participants as having a target condition. This can be a disease, a disease stage, response or benefit from therapy, or 

an event or condition in the future. A medical test can be an imaging procedure, a laboratory test, elements from 

history and physical examination, a combination of these, or any other method for collecting information about the 

current health status of a patient. 

The test whose accuracy is evaluated is called index test. A study can evaluate the accuracy of one or more 

index tests. Evaluating the ability of a medical test to correctly classify patients is typically done by comparing the 

distribution of the index test results with those of the reference standard. The reference standard is the best available 

method for establishing the presence or absence of the target condition. An accuracy study can rely on one or more 

reference standards. 

If test results are categorized as either positive or negative, the cross tabulation of the index test results against 

those of the reference standard can be used to estimate the sensitivity of the index test (the proportion of participants 

with the target condition who have a positive index test), and its specificity (the proportion without the target 

condition who have a negative index test). From this cross tabulation (sometimes referred to as the contingency or 

“2x2” table), several other accuracy statistics can be estimated, such as the positive and negative predictive values 

of the test. Confidence intervals around estimates of accuracy can then be calculated to quantify the statistical 

precision of the measurements. 

If the index test results can take more than two values, categorization of test results as positive or negative 

requires a test positivity cut-off. When multiple such cut-offs can be defined, authors can report a receiver operating 

characteristic (ROC) curve which graphically represents the combination of sensitivity and specificity for each 

possible test positivity cut-off. The area under the ROC curve informs in a single numerical value about the overall 

diagnostic accuracy of the index test.  

The intended use of a medical test can be diagnosis, screening, staging, monitoring, surveillance, prediction 

or prognosis. The clinical role of a test explains its position relative to existing tests in the clinical pathway. A 

replacement test, for example, replaces an existing test. A triage test is used before an existing test; an add-on test is 

used after an existing test.  

Besides diagnostic accuracy, several other outcomes and statistics may be relevant in the evaluation of 

medical tests. Medical tests can also be used to classify patients for purposes other than diagnosis, such as staging or 



 

 

prognosis. The STARD list was not explicitly developed for these other outcomes, statistics, and study types, although 

most STARD items would still apply.  

DEVELOPMENT 

This STARD list was released in 2015. The 30 items were identified by an international expert group of 

methodologists, researchers, and editors. The guiding principle in the development of STARD was to select items 

that, when reported, would help readers to judge the potential for bias in the study, to appraise the applicability of the 

study findings and the validity of conclusions and recommendations. The list represents an update of the first version, 

which was published in 2003.  

 

More information can be found on http://www.equator-network.org/reporting-guidelines/stard. 
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