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Supplementary Note 1: The analytical relation between the near-field signal and the 

permittivity 

 In this section, we derive a simplified, yet intuitive relation between the scattering 

response and the permittivity of the TMDs before performing the numerical simulation in 

the next section. It should be noted that all the data analyses in the manuscript are based on 

rigorous numerical simulation discussed in the next section. The sample structure includes 

three regions: air (denoted by subscript “a”) at the top, TMDs with thickness 𝑑 in the 

middle, and semi-infinite substrate (denoted by subscript “s”).  

 The Fresnel reflection coefficient for p-polarized electric field servers as an 

estimate for the scattering response in this section and is given by 
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𝑧−
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𝜎𝑠
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      (1) 

Here, 𝜎𝑠 = −𝑖𝑑𝜀0(𝜀𝑟 − 1)𝜔 is the sheet conductivity of van der Waals TMDs, where 𝜀0 is 

vacuum permittivity, 𝜀𝑟 is the relative permittivity of TMDs. For atomically thin TMDS, 

only the in-plane conductivity contributes to the reflectivity1. For other materials, to take 

the anisotropy of materials into consideration, we use both in-plane and out-of-plane 

permittivity. 𝜀𝑠
𝑡 , 𝜀𝑎

𝑡  are the in-plane permittivities of the substrate and air, respectively. 

𝜀𝑠
𝑧 , 𝜀𝑎

𝑧 are the out-of-plane permittivities of the substrate BN and air, respectively. 𝜀𝑗 =

√𝜀𝑗
𝑡 ∙ 𝜀𝑗

𝑧. For air, 𝜀𝑎
𝑧 = 𝜀𝑎

𝑡 = 𝜀𝑎; for the h-BN, the in-plane and our-of-plane permittivity 

do not have much difference in the spectral range we investigated, so we assume 𝜀𝑠
𝑧 = 𝜀𝑠

𝑡 =
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𝜀𝑠. 𝑘𝑗
𝑧 (𝑗 corresponds to air or substrate) is the wave vector along out-of-plane direction, 

which is given by 𝑘𝑗
𝑧 = √𝜀𝑗

𝑡 (
𝜔2

𝑐2 −
𝑞2

𝜀𝑗
𝑧), where 𝑞 is the in-plane wave vector.  

 At large 𝑞, which is determined by the tip radius, we can make the approximation, 

𝑘𝑗
𝑧 ≈ −𝑖𝑞. 

 From these definition, we can get, 

𝑟𝑝 =
𝜀𝑠−𝜀𝑎+𝑖

𝜎

𝜔
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𝜔
𝑞
      (2) 

 We denote Δ𝑟𝑝 as the difference in reflection coefficients for structures including 

and excluding the TMDs. 

Δ𝑟𝑝 =
𝜀𝑠−𝜀𝑎+𝑖

𝜎
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−
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𝜔

)       (3) 

Here, the term 
𝑖𝜎𝑞

𝜔
 encodes the properties of the TMDs and determines the near-field signal. 

 Using 
𝑖2𝜀𝑎𝜎𝑞

𝜔
= 2𝜀0

2𝜀𝑎𝑟(𝜀𝑟 − 1)𝑑𝑞  and  𝑟0 =
𝜀𝑠−𝜀𝑎

𝜀𝑠+𝜀𝑎
, where 𝜀𝑟  and 𝜀𝑎𝑟  are the 

relative permittivity of the TMDs and the air, respectively. We finally obtain, 

Δ𝑟𝑝 = 𝑟0 (
2𝜀𝑎𝑟(𝜀𝑟−1)𝑑𝑞

(𝜀𝑠𝑟−𝜀𝑎𝑟)(𝜀𝑠𝑟+𝜀𝑎𝑟)+(𝜀𝑠𝑟−𝜀𝑎𝑟)(𝜀𝑟−1)𝑑𝑞
)      (4) 

This is the key result of this part. 

 At the far-field limit and in the near-infrared spectral range, the large damping at 

the room temperature makes that the real dielectric function remains positive and the 



4 
 

imaginary dielectric function has a finite positive value. With a layer thickness of 0.7 nm, 

this yields 𝜀𝑎𝑟𝑑(𝜀𝑟 − 1)𝑞 ≪ 1.  

 At the near-field limit, 𝑞 is determined by the tip apex. The dominant momentum 

is about 1/𝑅, where 𝑅 is the tip radius (~25 nm). When the thickness of the material is 

smaller than the tip radius, (𝜀𝑠𝑟 − 𝜀𝑎𝑟)(𝜀𝑟 − 1)𝑑𝑞  remains marginal compared to 

(𝜀𝑠𝑟 − 𝜀𝑎𝑟) (𝜀𝑠𝑟 + 𝜀𝑎𝑟). We can evaluate the two terms in the denominator using 𝜀𝑠𝑟 = 

3.8,  𝜀𝑎𝑟  = 1, the terms (𝜀𝑠𝑟 − 𝜀𝑎𝑟)(𝜀𝑠𝑟 + 𝜀𝑎𝑟)  is about 16.24, while the second term 

(𝜀𝑠𝑟 − 𝜀𝑎𝑟)(𝜀𝑟 − 1)𝑑𝑞 is about 0.8. Here we take 𝑑 = 0.7 nm, 𝑞 = 4 × 105 𝑐𝑚−1, and 𝜀𝑟 =

10. 

 From the above discussion, we find that in the few-layer TMD case,  

Δ𝑟𝑝 ≈ 𝑟0 (
2𝜀𝑎𝑟(𝜀𝑟−1)𝑑𝑞

(𝜀𝑠𝑟−𝜀𝑎𝑟)(𝜀𝑠𝑟+𝜀𝑎𝑟)
)      (5) 

 Here, 𝑟0 is the complex reflection without TMDs. From the formula, we can clearly 

see that Δ𝑟𝑝 is proportional to TMD’s permittivity. 

 The near-field signal can be denoted as2,3,  

𝑠 ≈ ∫ 𝑊(𝑞)𝑟𝑝𝑑𝑞      (6) 

where the weighting function 𝑊(𝑞)  denotes the momentum 𝑞  distribution and is 

determined by the tip geometry. Here all the data can be normalized to the substrate (h-

BN). In weak resonance limit, 𝑟𝑝  of the substrate and the TMDs do not have much 

dependence on the 𝑞. 

𝑠𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑠𝑇𝑀𝐷𝑠𝑒𝑖𝜑𝑇𝑀𝐷𝑠

𝑠𝐵𝑁𝑒𝑖𝜑𝐵𝑁
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=
∫ 𝜔(𝑘)𝑇𝑖𝑝𝑟𝑝𝑇𝑀𝐷𝑠

𝑑𝑘

∫ 𝜔(𝑘)𝑇𝑖𝑝𝑟𝑝𝐵𝑁
𝑑𝑘

≈
𝑟𝑝𝑇𝑀𝐷𝑠

∫ 𝑊(𝑞)𝑇𝑖𝑝𝑑𝑘

𝑟𝑝𝐵𝑁
∫ 𝑊(𝑞)𝑇𝑖𝑝𝑑𝑘

∝
Δ𝑟𝑝

𝑟0
       (7) 

 Therefore, the normalized near-field signal is approximately proportional to Δ𝑟𝑝. 

The key results derived from this formula can be summarized as follows: 

1) When the excitation energy is far away from the excitonic resonance energies, the 

imaginary part of permittivity is zero. So the phase signal for the sample with and 

without TMDs are the same. Generally, the phase signal peaks around the exciton 

resonance energy, where the imaginary part of the permittivity is maximum. 

2) The near field signal is proportional to the layer thickness if the change of the 

permittivity is negligible. So the near field amplitude linearly increases as a 

function of the layer numbers (see Supplementary Figure 7). 

3) The reflectivity is proportional to the momentum q. Therefore, the large momentum 

given by the sharp tip in the near-field experiment boosts the light-TMDs 

interaction. This is one of the factors that give raise to strong near-field interaction 

at the nanometer scale.  

 We note that in this section we focus on the case that the dielectric function has 

large damping. When damping is reduced, such as through low-temperature experiments, 

the real dielectric function will go across zero and 𝑟𝑝  will strongly depend on the 

momentum q. These consequences give rise to different relation between the near-field 

signal and the dielectric function. 

Supplementary Note 2: Point dipole model of s-SNOM scattering amplitude and 

phase 
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 The point dipole model3 is used to interpret the data as it is well documented to 

capture the response of atomically thin samples transferred on thick substrates3,4. The short 

detection depth in our experiment also justifies the point dipole as a good model description 

of our experiment. The near-field signals are almost the same across regions with different 

h-BN thickness, 30 and 40 nm (Fig. 2 and Supplementary Figure 3). This negligible 

contrast indicates that the near-field detection depth is no more than 30 nm, consistent with 

the recent simulation results, which show that the high harmonics demodulation and the 

short wavelength reduce the s-SNOM detection depth5,6. Furthermore, recently both the 

transverse electric (TE) and transverse magnetic (TM) waveguide modes were observed in 

TMDs flakes by s-SNOM at NIR frequency, which is in contrast to mid-IR experiments 

where only the TM model can be detected7. The observation of the TE model at the NIR 

frequency further confirms that the tip effective length is comparable to its horizontal scale, 

and thus the tip can be treated as a point dipole.  

 Thus, the calculation is performed using the well-established point-dipole model 

framework for multi-layered sample3, where the AFM tip is approximated by a point dipole 

located at its apex. The tip radius is 𝑎 = 25 𝑛𝑚. The harmonic motion of the tip can be 

described by 𝑧(𝑡) = ℎ0 + 𝐴(1 − cos(Ω𝑡)), where 𝐴 = 50 𝑛𝑚 is the tip tapping amplitude 

and Ω is the tip tapping frequency. ℎ0 is set to be 23 𝑛𝑚. The near-field interaction of the 

tip and the sample manifest itself via the modified dipole moment 𝒑, which is directly 

proportional to the far-field scattering. The complex-valued scattered field demodulated at 

𝑛-th harmonics of Ω is thus given by  

𝑠𝑛𝑒𝑖𝜙𝑛 ∝ ∫
𝑒𝑖𝑛Ω𝑡𝑑𝑡

1−𝐺𝑎3

2𝜋

Ω
0

,         (8) 
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where 𝐺 = ∫ 𝑞2𝑒−2𝑞𝑧𝑟𝑝(𝜔, 𝑞)
∞

0
𝑑𝑞 is the tip-sample coupling function and 𝑟𝑝(𝜔, 𝑞) is the 

frequency- and momentum-dependent p-polarized reflection coefficient. In the following 

calculation we concentrate specifically on 𝑛 = 5 as in the main text.   

 The sample consists of three layers, a TMD top layer, a 30 𝑛𝑚 h-BN middle layer, 

and a thick PPC bottom layer. Due to the large thickness of PPC, it can be safely considered 

as infinitely thick in the model. The thickness for monolayer TMD is 0.7 𝑛𝑚. Therefore, 

the thickness for the hetero-bilayer case is 1.4 𝑛𝑚 and 2.1 𝑛𝑚 for the tri-layer case. The 

dielectric constants of h-BN and PPC are nondispersive in the relevant frequency range 

and take the values of 3.8 and 3, respectively. The dispersive dielectric function of the 

TMDs around the exciton resonance frequency can be described by a Lorentz oscillator 

(eq. 1 in the main text). Once the dielectric function of each layer is known, 𝑟𝑝(𝜔, 𝑞) can 

be calculated following the transfer matrix formalism and 𝑠𝑛𝑒𝑖𝜙𝑛  can be evaluated using 

equation (8).  

 In our case, we aim to solve the reverse problem where 𝑠𝑛𝑒𝑖𝜙𝑛 is experimentally 

measured and the TMD dielectric function is to be solved. This problem can be approached 

using various techniques8-11. Here we employ a fitting procedure: the parameters in 

equation (1) in the main text are used as free parameters. Staring with estimated initial 

values for these fitting parameters, iterative optimization algorithms such as the BFGS or 

the Powell methods are then used to minimize the error function, which is defined as the 

sum of squared differences, in the parameter space. The parameters that give the best fit 

are considered as the extracted value and the corresponding ε(𝜔) for the TMD is calculated 

using equation 1 in main text.  
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 We note that although the point-dipole model might seem like an oversimplification 

of the realistic tip geometry, its validity has been demonstrated in numerous studies3,12,13. 

Recent simulation study has also demonstrated that the radiation pattern from a realistic tip 

geometry is very reminiscent of the point-dipole located at the tip apex5. Furthermore, we 

have implemented other models such as the finite dipole model where the elongated tip 

shank is taken into consideration14,15. The conclusion is largely similar. Therefore, we 

believe the point-dipole model provides sufficient quantitative description of our TMD 

system in the near-infrared and visible spectral range. 
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Supplementary Figures 

 

Supplementary Figure 1 | The resolution of the near-field signals. a, AFM topography 

of WSe2 trilayer on h-BN. b, Near-field images of the amplitude 𝑠5 taken at the excitation 

energy of 1.66 eV. c, Height profile and the near-field amplitude 𝑠5 along the line trace 

shown in the AFM topography a. d, AFM topography of close zero degree stacked WSe2 

bilayer on h-BN. e, Near-field images of the amplitude 𝑠5 taken at the excitation energy of 

1.65 eV. f, Height profile and the near-field amplitude 𝑠5 along the line trace shown in the 

AFM topography d. By comparing the topographic images with the near-field images, we 

can conclude that the resolution of the near-field image is about 20 nm (estimated within a 

10% to 90% contrast). 
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Supplementary Figure 2 | Second harmonic generation (SHG) characterization of the 

sample. a SHG mapping of the sample. The strong SHG intensity indicates that all the 

sample regions have odd layer numbers. The inversional symmetry is broken. b, c 

Polarization pattern of SHG intensity of WSe2 monolayer (b) and MoSe2 monolayer (c), 

respectively.  



11 
 

 

Supplementary Figure 3 | AFM topography. a, AFM topography of the sample region 

in Fig. 2 in the main text. b, Topographic height profile along the red arrow in a. 
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Supplementary Figure 4 | Intralayer exciton photoluminescence (PL) spectra from 

monolayer MoSe2 and monolayer WSe2. 



13 
 

 

Supplementary Figure 5 | The scattering amplitude and phase demodulated at the 

fourth harmonic of the tip tapping frequency. a, Representative near-field images of the 

normalized scattering amplitude. Boundaries of the monolayer WSe2 region are displayed 

with black dashed lines. b, Near-field images of the normalized phase The excitation 

energies are indicated in the images. The images are acquired simultaneously with Fig. 2 

in main text. 
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Supplementary Figure 6 | Evolution of the scattering amplitude and phase for the 

monolayer MoSe2 as a function of the excitation energy. a, Representative near-field 

images of the normalized scattering amplitude 𝑠5(𝜔)/𝑠5(ℎ˗BN). The excitation energies 

are indicated in the images. The images are acquired by scanning over the rectangular area 

marked with the dashed lines in Fig. 1 d. Boundaries of the monolayer MoSe2 region are 

displayed with black dashed lines in the upper left panel of a. b, Near-field images of the 

normalized phase 𝜑5(𝜔) . The images with the same energy in a and b are acquired 

simultaneously. c and d, Normalized near-field amplitude 𝑠5(𝜔)/𝑠5(ℎ˗BN) and phase 

𝜑5(𝜔) spectra for MoSe2 (data points). The spectra fitted by the point dipole model (PDM) 

are shown as solid curves. e, Dielectric function of MoSe2 monolayer extracted from the 

point dipole model. 
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Supplementary Figure 7 | Normalized amplitude dependence on layer numbers. The 

theoretical values of bilayer and trilayer samples are obtained by adding the signals in 

monolayers.  
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