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Supplementary Method 1. Training data collection and processing for light pattern 4 

prediction  5 

In order to access real-time light availability inside algal culture, we first developed a light 6 

distribution pattern prediction model (LDPM) to predict light distribution patterns (LDPs) in a 7 

cuboid photobioreactor (PBR). We collected 138 LDPs in the PBR (19.6 cm in length × 9.6 cm 8 

in width × 20 cm in height) with 23 different cell concentrations and 6 different light intensities 9 

as training samples for the machine-learning model. The LDPs were captured by a camera fixed 10 

on top of a PBR containing different cell concentrations and illuminated with different light 11 

intensities. A LED light bar (4000K, CRI =80) placed on one side of the photobioreactor was 12 

used as a light source (Figure 1A). The illuminance was monitored by a sensor on the surface 13 

of the photobioreactor and converted to photosynthetic photon flux density (PPFD) with a 14 

coefficient of 56. The twenty-three cell concentration gradients were set to 0.11973, 0.21294, 15 

0.40872, 0.45162, 0.54405, 0.62712, 0.74256, 0.82056, 0.90948, 0.96915, 1.10604, 1.2246, 16 

1.3026, 1.3923, 1.443, 1.5444, 1.7901, 1.9188, 2.0241, 2.3556, 2.535, 2.9601, 3.6777 g/L , 17 

while the six light intensity gradients were set to 107, 178, 267, 357, 570, 714 μmol m−2 s−1. 18 

The camera was set to manual mode and all parameters were locked throughout the 19 

photographing process to ensure consistency. After acquiring all LDPs, raw pictures were 20 

cropped, converted to grayscale, and compressed to 40 × 18 pixels in Photoshop 2020 (Figure 21 

1A). The compressed images were used to represent the light distribution pattern inside the 22 

photobioreactor with grayscale values (GSVs) representing light intensities. The GSVs were 23 

extracted from the grayscale images with the CV2 module in Python. To evaluate the accuracy 24 

of GSVs representing light intensities, we extracted GSVs at (0, 20) (row 0, column 20) from 25 



LDPs over a wide range of cell concentrations and assessed the linearity between GSV and light 26 

intensity. 27 

The training sample collection for pond LDPM is shown in Figure S10A. LDP images were 28 

captured from a simplified pond setup (Figure S10A) and the collected LDP images were 29 

converted to 208 × 10-pixel grayscale images as mentioned above. The light intensities for the 30 

pond LDP training samples were set to 196, 268, 357, 446, 536, 625, 714, 804, 964, 1071, 1161, 31 

1250, 1339, 1429, 1518, 1607, 1696, 1786, 1875 μmol m−2 s−1, and cell concentrations were set 32 

to 0.062, 0.140, 0.228, 0.337, 0.466, 0.620, 0.871, 0.999, 1.177, 1.254, 1.396, 1.482, 1.553, 33 

2.007, 2.320, 2.814, 3.199, 3.694, 4.577, 5.519 g/L. The LDP for the pond system was set to be 34 

one-dimensional and represented with the 208 pixels in the middle column (column 5) of the 35 

LDP image.   36 



Supplementary Method 2. LDPM training and evaluation 37 

Due to the high complexity of the LDP inside algal culture and limited training samples, we 38 

believe that predicting LDPs pixel by pixel is the best method for accurate prediction. Pixel-by-39 

pixel prediction means that individual pixels in LDP images are treated as individual models and 40 

then combined, rather than treating the whole image as one model. Thus, we trained 720 models 41 

for a 40 × 18-pixel LDP prediction. Cell concentrations and light intensities, two major factors 42 

shaping LDP, were set as features in training with the corresponding GSVs at each pixel as labels. 43 

Both features and labels were normalized by subtracting their average and dividing by their 44 

standard deviation. Around 10% of the training samples were randomly selected as testing samples. 45 

We chose Support Vector Regression with a Radial Basis Function kernel (SVR-RBF) as the 46 

algorithm and kernel for the prediction in this study. SVR-RBF from an open-source machine 47 

learning library, scikit-learn1, was used for training and prediction. We selected the best models at 48 

each pixel by selecting the combinations of parameters (C:1, 10, 100, 1000, 3000; gamma: 0.003, 49 

0.01, 0.03, 0.1, 0.3,1.) returning the highest R2 score. Prediction accuracy was determined by 50 

overall evaluation and by pixel-by-pixel evaluation. The overall evaluation calculated an R2 value 51 

by comparing all predicted GSVs with measured GSVs in the testing data set to assess the overall 52 

prediction accuracy of the model. Pixel-by-pixel evaluation calculated the R2 value at each pixel 53 

to assess the prediction accuracy at different positions on LDPs. Accuracy percentages were 54 

calculated by counting pixels with an R2 score larger than 0.90 (or between 0.79 and 0.85), and 55 

dividing by 720. The R2 evaluation was performed with the metrics module on scikit-learn. The 56 

matplotlib module in Python was used for visualization of evaluation results and predicted images2.  57 



Supplementary Method 3. Dark area calculation 58 

In the machine-learning training process, we collected LDPs from a larger cuboid 59 

photobioreactor (19.6 cm in length × 9.6 cm in width × 20 cm in height) in order to get more 60 

information from a single image. However, the photobioreactor used for cultivation was a 61 

smaller photobioreactor 10 cm long and 5 cm wide. To adapt the pre-trained models to the 62 

smaller photobioreactor, we selected the 10 left-most columns (column 0-9) and 10 right-most 63 

columns (column 30-39) in the 9 rows (row 0-8) closest to the light source in the LDP of the 64 

larger photobioreactor to represent the LDP of the smaller photobioreactor. Thus, LDPs in small 65 

photobioreactors were represented by images with 180 (20 × 9) pixels. For dark area calculation, 66 

grayscale values less than 25.5 (1/10 of the maximum grayscale value) were counted (n) and 67 

normalized as percentages of LDP pixels (n/180×100%). The dark area with double light sources 68 

was estimated with the following equation (1), assuming no interference between light from 69 

two sources:  70 

   𝐴2 =  {
(1 − (1 − 𝐴1) × 2) × 100%                 𝑖𝑓 𝐴1 > 50%;
0                                                                   𝑖𝑓 𝐴1 < 50%;

 71 

Where A1 and A2 refer to dark areas with one and two light sources at given light intensities, 72 

respectively.  73 

(1) 



Supplementary Method 4. Growth curve fitting, growth rate calculation, and biomass 74 

productivity prediction 75 

To generate a growth curve, we collected cell concentration under given light intensities at 76 

different time points by measuring OD730. Variables were normalized by subtracting their 77 

average and dividing by their standard deviation. The logistic curve was defined as the equation 78 

(2): 79 

𝑓(𝑥) =
𝑎

(1 + 𝑒−𝑐(𝑥−𝑑))
+ 𝑏 80 

Where x represents the variable here, representing time and a, b, c, d are parameters that 81 

determine the shape of the growth curve. The fitting and prediction were processed by the 82 

Optimize module in the SciPy library in Python3. Growth rates at specific time points were 83 

estimated by the slope of the corresponding curve at that point.   84 

(2) 



Supplementary Method 5. Growth Rate Prediction Model (GRM) training and evaluation 85 

The GRM was trained to predict cyanobacterial growth rates based on the LDPs (Figure 86 

2B). In order to collect training data, we cultivated cyanobacteria under different light 87 

intensities (107, 178, 267, 357, 570, 714 μmol m−2 s−1) in the smaller PBR. The concentration 88 

of the cyanobacteria was monitored and fitted with sigmoid curves for growth rate calculations 89 

mentioned above. Vectors extracted from the first 9 rows in the middle column of the LDP were 90 

used as features, and the corresponding (at the same time points) calculated growth rates were 91 

set as labels in the training. The features were normalized by subtracting their averages and 92 

dividing by their standard deviations. The random forest algorithm was used for the GRM model 93 

and the performance of the model was evaluated by calculating an R2 value between the 94 

predicted and measured growth rates in the reserved testing set (20% of the training samples).  95 

The GRM was adapted to predict growth rates under a double-light condition based on the 96 

assumption that there are no interferences between light from two sources. In this way, vectors 97 

extracted from the first 5 rows of the middle columns of LDPs were used as features for the 98 

GRM training.  99 

Similar to the GRM for PBR, we grew several batches of cyanobacteria in a pond system to 100 

acquire the growth data for pond GRM training. The growth data were then fitted with sigmoid 101 

curves for growth rate calculation. The normalized 208-length vectors predicted from the pond 102 

LDPM and the calculated growth rates were set as features and labels, respectively, for the pond 103 

GRM training. The training and evaluation of the pond GRM were the same as the PBR GRM 104 

described above.  105 



Supplementary Method 6. Growth simulation 106 

Cyanobacterial growth simulation was performed as shown in Figure 2A. An initial cell 107 

concentration and light program are required inputs and the simulation process contains a loop 108 

with four steps: 1) predict the LDP based on the initial cell concentration and initial light 109 

intensity with the LDPM; 2) predict the growth rate based on the LDP from step 1 with the 110 

GRM; 3) calculate the new cell concentration from the initial cell concentration and the 111 

predicted growth rate; 4) update the newly calculated cell concentration and current light 112 

intensity as inputs for the next round of LDP prediction. The light programs were specified in 113 

the main text. The initial cell concentration used for PBR growth simulation ranged from 0.2 to 114 

4.8, with a 0.2 increment. The initial concentration used for pond growth simulation was set to 115 

0.1, 0.4, 0.6, and 0.8. To ensure accurate growth simulation, the bubbling rate, temperature, 116 

surface area, and light conditions were tightly controlled in a way that no severe sedimentation 117 

happens during cultivation in PBRs, while these conditions were controlled to achieve 118 

sedimentation in collection vessel.   119 



 120 

Supplementary Figure 1. Pixel-by-pixel evaluation of LDPM prediction over testing 121 

samples. 94.4% of pixels achieved R2 values higher than 0.90, and only 0.8% of pixels had R2 122 

values in the range of 0.79 to 0.85.   123 



 124 

Supplementary Figure 2. Light intensity (represented by GSV) changes over the length of 125 

the light path. GSVs in the middle column (column 20, row 1 - 18) of LDPs were extracted to 126 

represent light intensities over light paths and plotted against distances from light sources (a-d). 127 

Different colors in the figures represent different intensities of light sources (107, 178, 267, 357, 128 

570, 714 µmol m-2 s-1). Light intensity decreased only slightly over the path when cell 129 

concentration was low (a). But significant decreases were observed when cell concentration 130 

increased (b, c), and light intensity dropped sharply (GSV below 20 within 1 cm) when cell 131 

concentration reached 2.9601 g/L (d). The results suggest intensified mutual shading at higher cell 132 

concentration. Source data are provided as a Source Data file.  133 



 134 

Supplementary Figure 3. Relationship between cell concentration (OD730), dark area derived 135 

from LDP, and growth rate. Growth curves (blue) were generated by fitting cell concentration 136 

(OD730 and time) collected from cultivations under light intensities at 107 (a), 178 (b), 267 (c), 357 137 

(d), 570 (e), 714 (f) µmol m-2 s-1. Slopes of growth curves were calculated to represent growth 138 

rates at these light intensities (green, a-f). LDPs over the growth at given light conditions were 139 

predicted by LDPM and dark areas were defined as LDP pixels with GSVs less than 25.5 (magenta, 140 

a-f). Growth rates peaked at 36.8 ± 4.7 hours and dark areas reached 43.1 ± 4.9% regardless of 141 

light intensity (green, magenta, a-f). Overall, dark areas experienced three stages: zeros stage (left 142 

of the first dashed line), increasing stage (in between the first and second dashed lines), and plateau 143 

stage (right of the second dashed line) (magenta, a-f). The increasing stage (between dashed lines) 144 

overlapped significantly with the fastest growth period of cyanobacteria (green, magenta, a-f). 145 

Source data are provided as a Source Data file.  146 



 147 

Supplementary Figure 4. Validation of growth simulation by machine-learning models under 148 

different growth conditions and comparison between semi-continuous algal cultivation (SAC) 149 

and fed-batch. The growth simulation achieved R2 scores of 0.996 (a), 0.999 (b), 0.996 (c), 0.998 150 

(d), 0.996 (e), 0.997 (f), and 0.978 (g) under light intensities of 107, 178, 267, 357, 570, 714, and 151 

178-714-178 µmol m-2 s-1, indicating high prediction accuracy. (h) Growth comparison of UTEX 152 

2973 with SAC and fed-batch cultivation Data are presented as mean values +/- standard deviations 153 

(n = 3 independent samples). Source data are provided as a Source Data file.  154 



 155 

Supplementary Figure 5. GRM adapted for growth rate prediction with double light sources. 156 

a, validation of the growth rate prediction by the GRM adapted for double light. b, Growth 157 

simulation suggests setting initial OD730 at 2.3 delivers highest biomass productivity. Source data 158 

are provided as a Source Data file.  159 



 160 

Supplementary Figure 6. Transmission electron microscopy reveals cell surface differences 161 

between Synechococcus elongatus PCC 7942 and UTEX 2973. UTEX 2973 showed relatively 162 

smooth cell surface compared to PCC 7942, where lots of pili formed. Similar results were found 163 

in two independents observations. Original images are provided as a Source Data File.  164 



 165 

Supplementary Figure 7. Comparison of growth between UTEX 2973 WT and L524. No 166 

significant growth differences were found between WT and L524 in the given growth conditions. 167 

Data are presented as mean values +/- standard deviations (n = 3 independent samples). Source 168 

data are provided as a Source Data file.  169 



 170 

 171 

Supplementary Figure 8. Standard curve used to normalize limonene productivity with 172 

recovery rate. Limonene concentrations of 250, 500, 750, 1000 µg/mL were used to spike the 173 

UTEX 2973 wildtype cells. Limonene was collected and measure as described in the Methods of 174 

the main text. Data are presented as mean values +/- standard deviations (n = 3 independent 175 

samples). Source data are provided as a Source Data file.  176 
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 177 

Supplementary Figure 9. Techno-economic analysis of the pond SAC platform. The NREL 178 

algae farm model projects a MBSP of approximately $281 per ton based on the outdoor trial yield. 179 

Cost breakdown suggests the dewatering process accounts for $24.50 per ton.   180 



 181 

 182 

Supplementary Figure 10. LDP prediction for open pond system and conversion between 183 

turbidity and OD730. The process of adapting LDPM for pond system prediction (a) and the 184 

calibration curve for OD-turbidity (Attenuation Unit, AU) conversion (b). Source data are 185 

provided as a Source Data file.  186 



Supplementary Table 1. Primers used in this study 187 

Primer name Sequence Note 

NS-DS-F cacgaggccctttcgtcttcaagaaATGGATCTGACCAACATG Building L524 

NS-US-R atcgatgataagctgtcaaacatgagaaAAACGCGCGAGGCAGGAT Building L524 

NSI-F TCAGCTGCTTTAGGCCCACCAGTTTGAAG Segregation 

NSI-R TTATCTCTCGGCTAGTGGACGCAAGCAGCG Segregation 

petB1-F CGACTGGTTCGAGGAGCGTC qRT-PCR, IS 

petB1-R TTGCAAAGCCGGTGGCAAAC qRT-PCR, IS 

LS1-F CTCGAATCTGCCCGCGAGTT qRT-PCR, LS 

LS1-R GATCCAGACCGGGGCATTGG qRT-PCR, LS 

 

 

IS, internal standard; LS, limonene synthase.  188 
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