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S1 Web Appendix A: Assumptions

Here we list the assumptions for the main results of this paper.

A1 There exist two independent latent vectors, aj and bj, such that Rij and Yij are con-

ditionally independent given Zij, aj, bj (i.e., Rij ⊥ Yij|Zij, aj,bj), and Rij depends

on Zij and aj only (i.e., Rij ⊥ bj|Zij, aj) and Yij depends on Zij and bj only (i.e.,

Yij ⊥ aj|Zij,bj); note that these assumptions imply that the data are missing at ran-

dom (i.e., that the outcome variable is independent of missingness, conditional on the

observed data: Rij ⊥ Yij|Zij)
1. In addition, all parameters that de�ne the joint dis-

tribution of Rij and aj given Zij are distinct from the parameters that de�ne the joint

distribution of Yij and bj given Zij (i.e., the model for the joint distribution for (Rj, aj)

conditional on Zj and the model for the joint distribution for (Yj,bj) conditional on

Zj do not share the parameters).

A2 The number of data records per cluster nj is bounded for all j = 1, ...,m.

A3 sup
θ
|m−1Sm(β;α, τ ,γ,φ)−E[g(Rj,Yj,Zj;β,α, τ ,γ,φ)]| →

p
0, where θ = (β,α, τ ,γ,φ).

A4 E[Sm(β;α
∗, τ ∗,γ∗,φ∗)] = 0 has a unique solution for β.
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A5 Sm(β) is twice continuously di�erentiable in the support of (R,Y,Z).

A6 There exists an integrable function f(·) such that ||∂2βSm(β)|| ≤ f(R,Y,Z) for any

value of β in a neighborhood of β∗.

A7 E||∂βSm(β)||2 <∞.

A8 E [∂βSm(β
∗)] exists and is non-singular.

S2 Web Appendix B: Proofs of Main Theoretical Results

S2.1 Proof of Lemma 1

The estimating functions can be re-written as the following, where π∗
ij(aj) = P̃ [Rij|Zij, aj;α

∗]

and ν∗ij(bj) = Ẽ[Yij|Zij,bj;γ
∗] based on the speci�ed working models:

Sm(β
∗;α∗, τ ∗,γ∗,φ∗)

=
∑
i,j

∫
Rij

π∗
ij(aj)

(Yij − µ(XT
ijβ
∗))∂βµ(X

T
ijβ
∗)p̃(aj|Rj,Zj;α

∗, τ ∗)daj

−
∑
i,j

∫
Rij

π∗
ij(aj)

p̃(aj|Rj,Zj;α
∗, τ ∗)daj

∫
(ν∗ij(bj)− µ(XT

ijβ
∗))∂βµ(X

T
ijβ
∗)p̃(bj|Rj,RjYj,Zj;γ

∗,φ∗)dbj

+
∑
i,j

∫
(ν∗ij(bj)− µ(XT

ijβ
∗))∂βµ(X

T
ijβ
∗)p̃(bj|Rj,RjYj,Zj;γ

∗,φ∗)dbj,

where p̃(aj|Rj,Zj;α
∗, τ ∗) ∝ p̃(aj; τ

∗)
∏nj

i=1 p̃(Rij|Zij, aj;α
∗) and p̃(bj|Rj,RjYj,Zj;γ

∗,φ∗) ∝

p̃(bj;φ
∗)
∏nj

i=1 p̃(Yij|Zij,bj;γ
∗)Rij .

∫ Rij

π∗
ij(aj)

p̃(aj|Rj,Zj;α
∗, τ ∗)daj = E

[
Rij

π∗
ij(aj)
|Rj,RjYj,Zj

]
if working model [Rj, aj|Zj;α, τ ] is speci�ed correctly, and

∫
(ν∗ij(bj)−µ(XT

ijβ
∗))∂βµ(X

T
ijβ
∗)

p̃(bj|Rj,RjYj,Zj;γ
∗,φ∗)dbj = E

[
(ν∗ij(bj)− µ(XT

ijβ
∗))∂βµ(X

T
ijβ
∗)|Rj,RjYj,Zj

]
if working

model [Yj,bj|Zj;γ,φ] is speci�ed correctly.

If working model [Rj, aj|Zj;α, τ ] is correct:
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Then substituting
∫ Rij

π∗
ij(aj)

p̃(aj|Rj,Zj;α
∗, τ ∗)daj = E

[
Rij

π∗
ij(aj)
|Rj,RjYj,Zj

]
gives

E[Sm(β
∗;α∗, τ ∗,γ∗,φ∗)|X]

=
∑
i,j

E

[
E

[
Rij

π∗
ij(aj)

(Yij − µ(XT
ijβ
∗))∂βµ(X

T
ijβ
∗)|Rj,RjYj,Zj

]
|Xj

]
−
∑
i,j

E

[
E

[
Rij

π∗
ij(aj)

∫
(ν∗ij(bj)− µ(XT

ijβ
∗))∂βµ(X

T
ijβ
∗)p̃(bj|Rj,RjYj,Zj;γ

∗,φ∗)dbj|Rj,RjYj,Zj

]
|Xj

]
+
∑
i,j

E

[∫
(ν∗ij(bj)− µ(XT

ijβ
∗))∂βµ(X

T
ijβ
∗)p̃(bj|Rj,RjYj,Zj;γ

∗,φ∗)dbj|Xj

]

SinceRij = 0, 1 for all i, j, Rij ⊥ Yij|Zij, aj,bj, and π
∗
ij(aj) = E[Rij|Zij, aj] = E[Rij|Zij, aj,bj],

it can be shown that

E[Sm(β
∗;α∗, τ ∗,γ∗,φ∗)|X]

=
∑
i,j

E
[
(Yij − µ(XT

ijβ
∗))∂βµ(X

T
ijβ
∗)|Xj

]
−
∑
i,j

E

[
E

[∫
(ν∗ij(bj)− µ(XT

ijβ
∗))∂βµ(X

T
ijβ
∗)p̃(bj|Rj,RjYj,Zj;γ

∗,φ∗)dbj|Zj, aj,bj

]
|Xj

]
+
∑
i,j

E

[∫
(ν∗ij(bj)− µ(XT

ijβ
∗))∂βµ(X

T
ijβ
∗)p̃(bj|Rj,RjYj,Zj;γ

∗,φ∗)dbj|Xj

]
=
∑
i,j

E
[
(Yij − µ(XT

ijβ
∗))∂βµ(X

T
ijβ
∗)|Xj

]
= 0

If working model [Yj,bj|Zj;γ,φ] is correct:

Then substituting
∫
(ν∗ij(bj)− µ(XT

ijβ
∗))∂βµ(X

T
ijβ
∗)p̃(bj|Rj,RjYj,Zj;γ

∗,φ∗)dbj
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= E
[
(ν∗ij(bj)− µ(XT

ijβ
∗))∂βµ(X

T
ijβ
∗)|Rj,RjYj,Zj

]
gives

E[Sm(β
∗;α∗, τ ∗,γ∗,φ∗)|X]

=
∑
i,j

E

[∫
Rij

π∗
ij(aj)

(Yij − µ(XT
ijβ
∗))∂βµ(X

T
ijβ
∗)p̃(aj|Rj,Zj;α

∗, τ ∗)daj|Xj

]
−
∑
i,j

E

[∫
Rij

π∗
ij(aj)

p̃(aj|Rj,Zj;α
∗, τ ∗)daj E

[
(ν∗ij(bj)− µ(XT

ijβ
∗))∂βµ(X

T
ijβ
∗)|Rj,RjYj,Zj

]
|Xj

]
+
∑
i,j

E
[
E
[
(ν∗ij(bj)− µ(XT

ijβ
∗))∂βµ(X

T
ijβ
∗)|Rj,RjYj,Zj

]
|Xj

]
Since Rij ⊥ Yij|Zij, aj,bj and ν

∗
ij(bj) = E[Yij|Zij,bj] = E[Yij|Zij, aj,bj], it can be shown that

E[Sm(β
∗;α∗, τ ∗,γ∗,φ∗)|X]

=
∑
i,j

E

[
(ν∗ij(bj)− µ(XT

ijβ
∗))∂βµ(X

T
ijβ
∗)E

[
Rij

∫
1

π∗
ij(aj)

p̃(aj|Rj,Zj;α
∗, τ ∗)daj|Zj, aj,bj

]
|Xj

]
−
∑
i,j

E

[
(ν∗ij(bj)− µ(XT

ijβ
∗))∂βµ(X

T
ijβ
∗)

∫
Rij

π∗
ij(aj)

p̃(aj|Rj,Zj;α
∗, τ ∗)daj|Xj

]
+
∑
i,j

E
[
(Yij − µ(XT

ijβ
∗))∂βµ(X

T
ijβ
∗)|Xj

]
=
∑
i,j

E
[
(Yij − µ(XT

ijβ
∗))∂βµ(X

T
ijβ
∗)|Xj

]
= 0

E[Sm(β
∗;α∗, τ ∗,γ∗,φ∗)] = E[E[Sm(β

∗;α∗, τ ∗,γ∗,φ∗)|X]] = E[0] = 0

S2.2 Proof of Theorem 1

S2.2.1 Consistency of β̂m

Let S(β′;α, τ ,γ,φ) = E[g(R,Y,Z;β,α, τ ,γ,φ)]|(β′,α,τ ,γ,φ). If β̂m belongs to a compact

set containing β∗, then every subsequence has a further subsequence β̂mk,l
that converges

to some β̃l almost surely (by the Bolzano-Weierstrass Theorem). Therefore,

S(β̂mk,l
; α̂mk,l

, τ̂mk,l
, γ̂mk,l

, φ̂mk,l
)→

p
S(β̃l;α

∗, τ ∗,γ∗,φ∗). Since

Smk,l
(β̂mk,l

; α̂mk,l
, τ̂mk,l

, γ̂mk,l
, φ̂mk,l

) = 0, and |S(β̂mk,l
; α̂mk,l

, τ̂mk,l
, γ̂mk,l

, φ̂mk,l
)| =

|m−1
k,lSmk,l

(β̂mk,l
; α̂mk,l

, τ̂mk,l
, γ̂mk,l

, φ̂mk,l
) − S(β̂mk,l

; α̂mk,l
, τ̂mk,l

, γ̂mk,l
, φ̂mk,l

)| →
p

0 uni-
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formly, then S(β̃l;α
∗, τ ∗,γ∗,φ∗) = 0 for each β̃l. Since we assume thatmS(β;α∗, τ ∗,γ∗,φ∗) =

E[Sm(β;α
∗, τ ∗,γ∗,φ∗)] = 0 has a unique solution at β = β∗, then β̃l = β∗ for every con-

vergent subsubsequence, and so β̂m →
p
β∗.

S2.2.2 Asymptotic Distribution of m1/2
(
β̂m − β∗

)

Step 1: Asymptotic distribution of m1/2
(
β̂m − β∗

)
if (α, τ ,γ,φ) are known con-

stants

Note that m−1/2
∑m

j=1 g(Rj,Yj,Zj;β
∗,α∗, τ ∗,γ∗,φ∗) converges to a normal distribution

with mean zero as m→∞, and m−1
∑m

j=1 ∂βg(R,Y,Z;β
∗,α∗, τ ∗,γ∗,φ∗)→

p
C =

E [∂βg(R,Y,Z;β
∗,α∗, τ ∗,γ∗,φ∗)] as m → ∞. Therefore, using a Taylor series expansion

of Sm(β̂m;α∗, τ ∗,γ∗,φ∗) around β∗, we obtain m1/2
(
β̂m − β∗

)
= −C−1m−1/2∑m

j=1 g(Rj,Yj,Zj;β
∗,α∗, τ ∗,γ∗,φ∗)+ op(1), which converges to a normal distribution with

mean zero.

Step 2: Asymptotic distribution for m1/2
(
β̂m − β∗

)
if (α, τ ,γ,φ) are estimated

In this case, m1/2
(
β̂m − β∗

)
= −C−1m1/2

[
1
m

∑m
j=1 g(Rj,Yj,Zj;β

∗, α̂m, τ̂m, γ̂m, φ̂m)
]
+

op(1). Using a Taylor series expansion of this expression around (α∗, τ ∗), we obtain

m1/2
(
β̂m − β∗

)
=−C−1m1/2

[
1

m

m∑
j=1

g(Rj,Yj,Zj;β
∗,α∗, τ ∗, γ̂, φ̂)

]

−C−1

[
1

m

m∑
j=1

∂α,τg(Rj,Yj,Zj;β
∗,α∗, τ ∗, γ̂, φ̂)

]
ψα,τ (R,Z;α

∗, τ ∗) + op(1),

where ψα,τ (·) is de�ned in equation (5) in the main text. Further expanding the above
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expression using a Taylor series expansion around (γ∗,φ∗), we obtain

m1/2
(
β̂m − β∗

)
= −C−1m1/2

[
1

m

m∑
j=1

g(Rj,Yj,Zj;β
∗,α∗, τ ∗,γ∗,φ∗)

]

−C−1

[
1

m

m∑
j=1

∂α,τg(Rj,Yj,Zj;β
∗,α∗, τ ∗,γ∗,φ∗)

]
ψα,τ (R,Z;α

∗, τ ∗)

−C−1

[
1

m

m∑
j=1

∂γ,φg(Rj,Yj,Zj;β
∗,α∗, τ ∗,γ∗,φ∗)

]
ψγ,φ(R,RY,Z;γ

∗,φ∗)

−C−1m−1/2

[
1

m

m∑
j=1

∂α,τ ,γ,φg(Rj,Yj,Zj;β
∗,α∗, τ ∗,γ∗,φ∗)

]

ψα,τ (R,Z;α
∗, τ ∗)ψγ,φ(R,RY,Z;γ

∗,φ∗) + op(1),

where ψγ,φ(·) is de�ned in equation (6) in the main text. By the Weak Law of Large Numbers

and Slutsky's Theorem,

m1/2
(
β̂m − β∗

)
=m−1/2{E [∂βg(R,Y,Z;β

∗,α∗, τ ∗,γ∗,φ∗)]}−1

m∑
j=1

{−g(Rj,Yj,Zj;β
∗,α∗, τ ∗,γ∗,φ∗)

+ E [∂α,τg(R,Y,Z;β
∗,α∗, τ ∗,γ∗,φ∗)]E[∂2α,τ l(α

∗, τ ∗)]−1∂α,τ lj(α
∗, τ ∗)

+E [∂γ,φg(R,Y,Z;β
∗,α∗, τ ∗,γ∗,φ∗)]E[∂2γ,φl(γ

∗,φ∗)]−1∂γ,φlj(γ
∗,φ∗)

}
+ op(1),

which converges to a normal distribution with mean zero and covariance matrix

{E [∂βg(R,Y,Z;β
∗,α∗, τ ∗,γ∗,φ∗)]}−1

E [{−g(R,Y,Z;β∗,α∗, τ ∗,γ∗,φ∗)

+ E [∂α,τg(R,Y,Z;β
∗,α∗, τ ∗,γ∗,φ∗)]E[∂2α,τ l(α

∗, τ ∗)]−1∂α,τ l(α
∗, τ ∗)

+ E [∂γ,φg(R,Y,Z;β
∗,α∗, τ ∗,γ∗,φ∗)]E[∂2γ,φl(γ

∗,φ∗)]−1∂γ,φl(γ
∗,φ∗)

}⊗2
]

{E [∂βg(R,Y,Z;β
∗,α∗, τ ∗,γ∗,φ∗)]}−1 .
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S3 Web Appendix C: Simulation Study with Binary Out-

come

S3.1 General Set-Up

We now present additional simulation studies, considering a binary outcome variable.

Data were simulated in the following way. One thousand datasets were simulated, each with

1000 clusters with 2 data records each (i.e., 1000 individuals with data for 2 time-points

each). Let j indicate the individual and i = 1, 2 indicate the time-point. One time-varying

predictor variable of interest, Xj =
(
X1j

X2j

)
, was generated for each cluster from a multivariate

normal distribution, N2 (( 1.5
1.5 ) , (

1 0.3
0.3 1 )), where the �rst element of the random vector Xj

corresponded to the �rst time-point and the second element corresponded to the second

time-point. Similarly, three time-varying auxiliary variables were generated for each cluster

based on the value of Xj: Z1,j =
(
Z1,1j

Z1,2j

)
∼ N2

((
0.2+0.2X1j

0.2+0.2X2j

)
, ( 1 0.5

0.5 1 )
)
, Z2,j =

(
Z2,1j

Z2,2j

)
∼

N2

((
0.7+0.2X1j

0.7+0.2X2j

)
, ( 1 0.1

0.1 1 )
)
, and Z3,ij ∼ Exp(mean = |0.7 + 0.2Xij|). In addition, one time-

invariant auxiliary variable was generated for each cluster: Z4,1j = Z4,2j ∼ Bernoulli(0.5).

Two random intercepts, aj (used to generate missingness Rij) and bj (used to generate the

outcome Yij), were independently generated from a normal distribution with mean 0 and

variance 1.

The proposed multilevel approach and comparison methods (available case analysis and

the marginal approach of Scharfstein et al.2) were implemented in a similar manner to the

simulation study presented in the main text, except that a logistic mixed e�ect model was

�t as the working model for the outcome Yij using the proposed multilevel approach (i.e.,

logit{P (Yij = 1|Zij, bj)} = Zijγ+bj), and an independent-data logistic regression model was

�t as the working model for the outcome Yij using the marginal approach. Note that since

both working models had a non-identity link function (e.g., logistic regression), the marginal

working models were always misspeci�ed, even when using the correct set of �xed e�ects,

because Rij and Yij were generated based on models conditional on a random intercept.
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S3.2 Misspeci�cation of Working Models by Omitting an Important

Covariate

First, we considered the performance of the proposed method when either working model

was misspeci�ed by omitting an important covariate. The outcome variable Yij was generated

from a Bernoulli distribution with probability logit−1(−1 +Z1,ij −Z2,ij + γ3 ∗Z3,ij +Z4,ij −

Xij + bj), where γ3 equaled -0.2 (weak e�ect) or -1 (strong e�ect). An indicator that Yij

was observed (Rij) was generated from a Bernoulli distribution with probability logit−1(α0−

Z1,ij + Z2,ij + α3 ∗ Z3,ij − Z4,ij +Xij + aj), where α0 equaled 0.5 (20% missing) or -1 (35%

missing), and α3 equaled 0.2 (weak e�ect) or 1 (strong e�ect). For both the proposed

multilevel approach and the marginal approach, each working model was either �t using the

correct set of �xed e�ects, or by excluding Z3,ij from the model.

Table S1 presents bias, empirical standard deviation of the estimates (SDE), average

estimated standard errors (ESE), mean square error (MSE), and coverage rates for 95%

con�dence intervals (CP) for the proposed multilevel approach. Table S2 presents ratios

of the empirical variance and MSE for the multilevel approach to the available case and

marginal approaches. The proposed multilevel approach exhibited essentially no bias when

either the working model for [Rj, aj|Zj] and/or the working model for [Yj, bj|Zj] were speci�ed

correctly, con�rming the double robustness property. Bias for the multilevel approach tended

to decrease as the percent missing decreased and as the magnitude of the omitted e�ect

decreased. The 95% con�dence interval coverage rates were also nearly at the nominal

level when at least one working model was speci�ed correctly. The proposed standard error

estimator for the multilevel approach approximated the SDE well in most cases. Both

the empirical variance and MSE were almost always smaller for the proposed multilevel

approach than the marginal approach, although this improvement in the empirical variance

and MSE for the proposed method compared to the marginal method was smaller than for

the continuous outcome (results presented in the main text).
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Table S1: Results from simulation study for the multilevel approach with a binary outcome
where working models were misspeci�ed by omitting an important covariate

β0 β1

E�ect
strength

%
Miss.

Ra Ya Bias SDE ESE MSE CP Bias SDE ESE MSE CP

Weak 20 T T -0.008 0.112 0.113 0.013 95.1 0.005 0.070 0.069 0.005 94.7

T F -0.009 0.112 0.113 0.013 95.5 0.005 0.070 0.069 0.005 94.8

F T -0.008 0.112 0.113 0.013 95.2 0.005 0.070 0.069 0.005 94.9

F F -0.013 0.112 0.113 0.013 95.5 0.005 0.070 0.069 0.005 94.9

35 T T -0.008 0.162 0.152 0.026 94.6 0.003 0.097 0.091 0.009 94.6

T F -0.009 0.162 0.153 0.026 94.6 0.003 0.097 0.091 0.009 94.8

F T -0.008 0.162 0.152 0.026 95.0 0.003 0.097 0.090 0.009 94.6

F F -0.016 0.163 0.153 0.027 95.0 0.002 0.097 0.091 0.009 94.4

Strong 20 T T -0.012 0.120 0.113 0.014 93.9 0.006 0.076 0.076 0.006 95.5

T F -0.021 0.121 0.114 0.015 94.1 0.008 0.076 0.077 0.006 95.5

F T -0.012 0.119 0.113 0.014 94.2 0.007 0.076 0.076 0.006 95.5

F F -0.087 0.122 0.116 0.022 88.7 0.016 0.078 0.078 0.006 95.3

35 T T -0.014 0.167 0.150 0.028 93.0 0.007 0.105 0.098 0.011 94.8

T F -0.036 0.172 0.155 0.031 91.9 0.011 0.108 0.102 0.012 94.0

F T -0.015 0.164 0.148 0.027 92.4 0.008 0.102 0.097 0.010 94.1

F F -0.175 0.176 0.159 0.061 80.9 0.017 0.112 0.105 0.013 94.2
a T = Working model speci�ed correctly. F = Working model misspeci�ed by excluding the covariate Z3,ij .
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Table S2: Comparison of multilevel approach with the marginal approach and the avail-
able case approach from simulation study for binary outcome where working models were
misspeci�ed by omitting an important covariate

β0 β1

Emp var ratiob MSE ratiob Emp var ratiob MSE ratiob

E�ect
strength

%
Miss.

Ra Ya
Available
case

approach

Marginal
approach

Available
case

approach

Marginal
approach

Available
case

approach

Marginal
approach

Available
case

approach

Marginal
approach

Weak 20 T T 1.043 0.984 0.088 0.983 1.148 0.979 0.423 0.978

T F 1.042 0.984 0.088 0.985 1.145 0.978 0.422 0.978

F T 1.048 0.986 0.088 0.986 1.152 0.980 0.424 0.980

F F 1.048 0.986 0.089 0.986 1.152 0.979 0.424 0.979

35 T T 1.313 0.977 0.067 0.976 1.390 0.942 0.484 0.941

T F 1.319 0.978 0.068 0.979 1.392 0.944 0.484 0.943

F T 1.318 0.969 0.067 0.969 1.396 0.939 0.485 0.938

F F 1.327 0.972 0.068 0.972 1.407 0.941 0.489 0.940

Strong 20 T T 1.104 0.982 0.108 0.982 1.208 0.976 0.489 0.976

T F 1.118 0.994 0.111 1.017 1.216 0.983 0.494 0.989

F T 1.099 0.982 0.107 0.984 1.217 0.971 0.492 0.971

F F 1.154 0.988 0.168 1.002 1.292 0.978 0.540 0.983

35 T T 1.267 0.984 0.072 0.985 1.438 0.940 0.543 0.942

T F 1.344 1.000 0.079 1.040 1.521 0.956 0.578 0.963

F T 1.209 0.997 0.069 1.002 1.359 0.958 0.514 0.961

F F 1.396 1.008 0.157 1.042 1.636 0.969 0.629 0.980
a T = Working model speci�ed correctly. F = Working model misspeci�ed by excluding the covariate Z3,ij .
b Ratio comparing multilevel approach to corresponding comparison method.
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S3.3 Misspeci�cation of Working Models by Omitting a Non-Linear

E�ect

We also considered the performance of the proposed method when either working model

was misspeci�ed by omitting a quadratic term. The outcome variable Yij was generated

from a Bernoulli distribution with probability logit−1(−1 +Z1,ij −Z2,ij −Z3,ij +Z4,ij + γ5 ∗

Z2
2,ij − Xij + bj), where γ5 equaled 0.1 (weak e�ect) or 0.5 (strong e�ect). An indicator

that Yij was observed (Rij) was generated from a Bernoulli distribution with probability

logit−1(α0 − Z1,ij + Z2,ij + Z3,ij − Z4,ij + α5 ∗ Z2
2,ij +Xij + aj), where α0 equaled 0.5 (20%

missing) or -1 (35% missing) and α5 equaled -0.1 (weak e�ect) or -0.5 (strong e�ect). For

both the proposed multilevel approach and the marginal approach, each working model was

either �t using the correct set of �xed e�ects, or by excluding the quadratic term Z2
2,ij from

the model.

Table S3 presents bias, SDE, ESE, MSE, and CP for the proposed multilevel approach.

Table S4 presents ratios of the empirical variance and MSE for the multilevel approach to

the available case and marginal approaches. These results were similar to the scenario based

on omitting an important covariate from the working models (presented in Tables S1 and

S2).

S4 Web Appendix D: Sample SAS and R Code

Here we present sample SAS and R code to implement the proposed method in statistical

practice. Code is provided that corresponds to the situations explored in the simulation

studies presented in this paper, where there are two-level data, each hierarchical working

model includes a cluster-level random intercept, the working model for missingness is a

logistic mixed e�ects model, the working model for the outcome of interest is either a linear or

logistic mixed e�ects model, and all integrals are estimated using Gauss-Hermite quadrature.

The code could be modi�ed to accommodate more general situations (e.g., di�erent types of

working models, more than two levels of data). SAS code is provided to �t the hierarchical

working models for the outcome variable and missingness using PROC GLIMMIX. An R

function written by the authors is provided to solve the estimating equations for β (equation

11



Table S3: Results from simulation study for the multilevel approach with a binary outcome
where working models were misspeci�ed by omitting a quadratic term

β0 β1

E�ect
strength

%
Miss.

Ra Ya Bias SDE ESE MSE CP Bias SDE ESE MSE CP

Weak 20 T T -0.013 0.116 0.114 0.014 95.2 0.006 0.075 0.075 0.006 94.4

T F -0.014 0.117 0.114 0.014 94.9 0.007 0.075 0.075 0.006 94.2

F T -0.013 0.115 0.114 0.013 94.9 0.006 0.074 0.075 0.006 94.4

F F -0.016 0.116 0.114 0.014 94.9 0.007 0.074 0.075 0.006 94.1

35 T T -0.006 0.149 0.152 0.022 96.5 -0.002 0.100 0.098 0.010 95.8

T F -0.007 0.150 0.152 0.022 96.6 -0.002 0.101 0.098 0.010 95.6

F T -0.006 0.146 0.150 0.021 96.6 -0.002 0.098 0.097 0.010 95.5

F F -0.011 0.146 0.151 0.022 96.5 -0.001 0.099 0.097 0.010 95.6

Strong 20 T T -0.004 0.110 0.114 0.012 96.7 -0.001 0.066 0.068 0.004 95.7

T F -0.017 0.115 0.120 0.013 95.0 0.001 0.069 0.072 0.005 96.0

F T -0.004 0.108 0.113 0.012 96.6 -0.001 0.065 0.067 0.004 95.7

F F -0.087 0.111 0.116 0.020 89.0 0.007 0.067 0.069 0.005 95.2

35 T T 0.006 0.159 0.155 0.025 94.8 -0.006 0.091 0.090 0.008 94.9

T F -0.018 0.172 0.169 0.030 95.5 -0.003 0.101 0.098 0.010 94.9

F T 0.008 0.153 0.152 0.023 94.5 -0.008 0.087 0.088 0.008 95.2

F F -0.110 0.160 0.157 0.038 90.8 -0.003 0.092 0.092 0.009 95.0
a T = Working model speci�ed correctly. F = Working model misspeci�ed by excluding the quadratic term
Z2
2,ij .
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Table S4: Comparison of multilevel approach with the marginal approach and the avail-
able case approach from simulation study for binary outcome where working models were
misspeci�ed by omitting a quadratic term

β0 β1

Emp var ratiob MSE ratiob Emp var ratiob MSE ratiob

E�ect
strength

%
Miss.

Ra Ya
Available
case

approach

Marginal
approach

Available
case

approach

Marginal
approach

Available
case

approach

Marginal
approach

Available
case

approach

Marginal
approach

Weak 20 T T 1.110 0.953 0.107 0.954 1.252 0.939 0.500 0.939

T F 1.118 0.957 0.108 0.959 1.258 0.941 0.503 0.942

F T 1.091 0.952 0.105 0.953 1.231 0.939 0.492 0.939

F F 1.097 0.955 0.106 0.957 1.236 0.940 0.494 0.941

35 T T 1.315 0.970 0.062 0.969 1.575 0.939 0.567 0.939

T F 1.319 0.966 0.062 0.966 1.578 0.938 0.568 0.938

F T 1.256 0.955 0.059 0.954 1.513 0.930 0.545 0.930

F F 1.262 0.953 0.060 0.953 1.522 0.930 0.548 0.930

Strong 20 T T 1.032 0.972 0.080 0.972 1.093 0.956 0.479 0.956

T F 1.118 0.969 0.088 0.988 1.213 0.943 0.531 0.942

F T 0.993 0.976 0.077 0.976 1.061 0.963 0.464 0.963

F F 1.046 0.983 0.130 1.011 1.128 0.968 0.499 0.971

35 T T 1.231 0.985 0.063 0.985 1.288 0.975 0.609 0.975

T F 1.452 0.949 0.075 0.959 1.598 0.952 0.752 0.951

F T 1.145 0.982 0.059 0.982 1.185 0.965 0.562 0.965

F F 1.247 0.985 0.094 1.019 1.337 0.971 0.629 0.969
a T = Working model speci�ed correctly. F = Working model misspeci�ed by excluding the quadratic term
Z2
2,ij .

b Ratio comparing multilevel approach to corresponding comparison method.
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(4) in the main text) and estimate the covariance matrix (based on equation (8) in the main

text), using the estimated working model parameters.

SAS code for hierarchical working models. The following code �ts the hierarchical

working models for the outcome variable and missingness using PROC GLIMMIX. Let the

dataset named dat have one row per data record (e.g., if there are two levels in the data,

where j = 1, ...,m indicates the cluster, and i = 1, ..., nj indicates the data record, then there

is one record for each combination of i and j). The dataset dat has the following variables

for each data record for each combination of subscripts i and j:

� ID is a unique identi�er variable for each cluster (i.e., corresponding to subscript i)

� Y is the outcome of interest

� R is an indicator that Y is observed (i.e., non-missing)

� X1,...,Xp is the set of predictors of interest for Y (does not include an intercept)

� Z1,...,Zq is the set of covariates that will be included in the hierarchical work-

ing models (does not include an intercept, should include the predictor variables

X1,...,Xp)

First, the following code �ts a logistic mixed e�ects model for missingness, with a cluster-level

random intercept.

proc glimmix data=dat method=quadrature ( qpo int s=25) no c l p r i n t ;

c l a s s ID ;

model R( event=' 1 ' ) = Z1 . . . Zq / s d i s t=binary ;

random in t e r c e p t / sub j e c t=ID ;

ods output ParameterEstimates=coefparm_r CovParms=covparm_r ;

run ;

Next, the following code �ts a linear mixed e�ects model (e.g., for a continuous outcome)

or a logistic mixed e�ects model (e.g., for a binary outcome) for the outcome of interest,

with a cluster-level random intercept.
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/* Linear mixed e f f e c t s model ( e . g . , f o r a cont inuous outcome ) */

proc glimmix data=dat method=quadrature ( qpo int s=25) no c l p r i n t ;

c l a s s ID ;

model Y = Z1 . . . Zq / s d i s t=normal ;

random in t e r c e p t / sub j e c t=ID ;

ods output ParameterEstimates=coefparm_y CovParms=covparm_y ;

run ;

/* Log i s t i c mixed e f f e c t s model ( e . g . , f o r a binary outcome ) */

proc glimmix data=dat method=quadrature ( qpo int s=25) no c l p r i n t ;

c l a s s ID ;

model Y( event=' 1 ' ) = Z1 . . . Zq / s d i s t=binary ;

random in t e r c e p t / sub j e c t=ID ;

ods output ParameterEstimates=coefparm_y CovParms=covparm_y ;

run ;

Then, the following code combines the parameter estimates from both working models

into the same dataset, prepares the variable names in the combined dataset to be used by the

R function written by the authors to estimate β̂m and the covariance matrix, and exports

the parameter estimates dataset as a CSV data �le that can be read into R.

/* de f i n e the c o r r e l a t i o n between the random e f f e c t s from both */

/* working models as 0 ( i . e . , independent random e f f e c t s ) */

data rho ;

Parameter=' rho ' ; Estimate=0; output ;

run ;

/* combine the parameter e s t imate s from both working models , */

/* and ad jus t v a r i ab l e names to be used by R func t i on */

data parms ( keep=parameter e s t imate ) ;
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l ength Parameter $ 50 ;

s e t coefparm_r ( keep=e f f e c t e s t imate in=co e f r )

coefparm_y ( keep=e f f e c t e s t imate in=coe fy )

covparm_r ( keep=covparm est imate in=covr )

covparm_y ( keep=covparm est imate in=covy )

rho ;

i f covparm=' Res idua l ' then parameter=' sigma ' ;

i f covparm=' In t e r c ep t ' then do ;

i f covr then parameter=' tau ' ;

i f covy then parameter=' phi ' ;

end ;

i f c o e f r then parameter=cat s ( ' r_' , s t r i p ( e f f e c t ) ) ;

i f coe fy then parameter=cat s ( ' y_' , s t r i p ( e f f e c t ) ) ;

run ;

/* export parameter e s t imate s datase t as a CSV data f i l e */

proc export data=parms

o u t f i l e="path/parms . csv "

dbms=csv

r ep l a c e ;

run ;

R code to prepare data. The following code loads a CSV dataset containing the pa-

rameter estimates from the hierarchical working models that were estimated using SAS, and

saves the variables that will be used to estimate the doubly robust regression coe�cients and

covariance matrix.

# LOAD PARAMETER ESTIMATES DATASET FROM SAS

parms=read . csv ( "path/parms . csv " , header=TRUE)

# ASSIGN VARIABLES THAT WILL BE NEEDED FOR DOUBLY ROBUST ANALYSIS
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n=nrow( dat ) # number o f data records

m=length (unique ( dat$ID ) ) # number o f c l u s t e r s

nj=table ( dat$ID) # number o f data records f o r each c l u s t e r

y=dat$Y

x=as .matrix (cbind ( rep (1 , t imes=n ) , dat [ , c ( 'X1 ' , . . . , 'Xp ' ) ] ) )

colnames ( x)=c ( ' i n t e r c e p t ' , 'X1 ' , . . . , 'Xp ' )

z . r=as .matrix (cbind ( dat [ , c ( 'Z1 ' , . . . , 'Zq ' ) ] ) )

z . y=as .matrix (cbind ( dat [ , c ( 'Z1 ' , . . . , 'Zq ' ) ] ) )

alpha=parms$Estimate [ substr ( parms$Parameter ,1 ,2)== ' r_' ]

gamma=parms$Estimate [ substr ( parms$Parameter ,1 ,2)== 'y_' ]

sigma=parms$Estimate [ parms$Parameter==' sigma ' ]

phi=parms$Estimate [ parms$Parameter==' phi ' ]

tau=parms$Estimate [ parms$Parameter==' tau ' ]

R function to solve the estimating equations for β and estimate the covariance

matrix. The authors have written an R function that uses the methods described in this pa-

per to estimate the doubly robust regression coe�cients of interest, and estimate the covari-

ance matrix for this doubly robust estimator. The R function, called DoublyRobust_Multilevel.R,

is provided as supporting information for this paper. The following code calls the function

DoublyRobust_Multilevel to obtain doubly robust regression coe�cent and covariance

matrix estimates, for the case where a linear mixed e�ects model is used for the working

model for the outcome variable, and an identity link is used for µ(·) in the estimating equa-

tions in (4) in the main text (e.g., for a continuous outcome).

DR_Resu l t s=DoublyRobust_Mul t i l e v e l (n ,m, nj , y , x , z . r , z . y , qpo int s =25,

alpha ,gamma, sigma , tau , phi ,

d i s t=' gauss ian ' , l ink=' i d e n t i t y ' ,

conv=.0001 , maxiter=50,maxpiinv=100 ,

se=TRUE, verbose=FALSE)
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# Doubly robus t r e g r e s s i on e s t ima t e s f o r be ta

DR_Resu l t s$beta

# Standard e r ro r s f o r be ta

sqrt (diag (DR_Resu l t s$var . beta ) )

In addition, the following code calls the function DoublyRobust_Multilevel for the

case where a logistic mixed e�ects model is used for the working model for the outcome

variable, and a logit link is used for µ(·) in the estimating equations in (4) in the main text

(e.g., for a binary outcome).

DR_Resu l t s=DoublyRobust_Mul t i l e v e l (n ,m, nj , y , x , z . r , z . y , qpo int s =25,

alpha ,gamma, sigma=NULL, tau , phi ,

d i s t=' binomial ' , l ink=' l o g i t ' ,

conv=.0001 , maxiter=50,maxpiinv=100 ,

se=TRUE, verbose=FALSE)

# Doubly robus t r e g r e s s i on e s t ima t e s f o r be ta

DR_Resu l t s$beta

# Standard e r ro r s f o r be ta

sqrt (diag (DR_Resu l t s$var . beta ) )
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