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S1 Web Appendix A: Assumptions

Here we list the assumptions for the main results of this paper.

A1 There exist two independent latent vectors, a; and bj, such that R;; and Yj; are con-
ditionally independent given Zj, a;, by (i.e., Ri; L Y;j|Z;, a;,b;), and R;; depends
on Zi and a; only (ie., R;; L b;|Z;, a;) and Y;; depends on Z;; and b; only (i.e.,
Yi; L a|Z;;, b;); note that these assumptions imply that the data are missing at ran-
dom (i.e., that the outcome variable is independent of missingness, conditional on the
observed data: R;; L Y;;|Z;)*. In addition, all parameters that define the joint dis-
tribution of R;; and a; given Z;; are distinct from the parameters that define the joint
distribution of Y;; and bj given Z;; (i.e., the model for the joint distribution for (R;, a;)
conditional on Z; and the model for the joint distribution for (Yj,b;) conditional on

Z; do not share the parameters).
A2 The number of data records per cluster n; is bounded for all j =1,...,m.
A3 Sup|m_1sm</8; o, T,7, ¢>_E[Q<Rj7 YJ7 ZJ7 ﬁ7 «, T,7, ¢)” — 07 where 0 = (/67 o, T,7, ¢>
6 P

A4 E[S,(B; a*, 7*,4*, ¢*)] = 0 has a unique solution for 3.



A5 S,,(8) is twice continuously differentiable in the support of (R,Y,Z).

A6 There exists an integrable function f(-) such that [[035,.(8)|| < f(R,Y,Z) for any
value of 3 in a neighborhood of B*.

AT E||9S(8)|I? < .

A8 E[03S,(8*)] exists and is non-singular.

S2 Web Appendix B: Proofs of Main Theoretical Results

S2.1 Proof of Lemma 1

The estimating functions can be re-written as the following, where 7};(a;) = P[Ri;|Zs;, aj; ]

and v;(b;) = E[Y;;|Zs;, b;; v*] based on the specified working models:
Sm(IB*7a*7T*77*7 ¢*)
Ri‘ * *\ ~ * *
IZ/W;)(Kj—u(Xﬁ ))8ﬁM(X§ )D(a;| Ry, Zs; o, 7% ) da;
ij ij
RZ ~ * * * * *\ ~ * *
- Z/Wg')p(aﬂf%zj;a T )daj/(’/z“(bj) — 1(X58%)) 0 (X35 8)p(bs| Ry, Ry Y, Zs; v*, ¢*)dby

30 [ 07 09) = H(XEB™)) 0 (XE )by Ry, Ry Y3, gy, 7)oy,
Y]

where p(aj| Ry, Zj; o, 7) o< play; 7*) [[:2) B(Rij| Zsj, ay; ) and p(b;| Ry, Ry Y, Zys v, ¢*) o
B(by: ") T2 (Y| Zig, by y*) ™. [ s playl Ry, Zs o, 7)day = [%mijYij]
if working model [Ry, a;|Z;; ax, 7] is specified correctly, and [ (v;(b;) — u(X 8*))0p(X 8*)
p(b;| Ry, Ry Y, Zy;v*, ¢*)dby = E [(vj;(by) — u(XF 8*))9pu(XE 8%) Ry, RyYj, Zs] if working

model [Yj, bj|Z;; v, @] is specified correctly.

If working model [Rj, aj|Z;; o, 7] is correct:



Then substituting [ %ﬁ.)ﬁ(aﬂRj,Zj;a*,T*)daj =FE [%|Rj,Rij,Zj:| gives
5\ 5\

ESn(B% o, 7", 7", ¢7)[X]

Ry ) )
=Y E|E | =Yy — n(X{B"))0su(X8%) Ry, Ry Y, Z | X
i,j 71-z'j(a.])
R;; . . . .
“2F {E [w* (;-) /<’/iﬂ'(bj) — u(X358"))su(X55 B)p(bs IRy, Ry Y5, Zj; v*, ¢ )dbj\Rj,Rij,Zj} \Xj}
i i\

# 30| [ 0 b0) — KB ") a0 KB by Ry, Ry 2 )t X)

Since Rij = 0, 1 for all i, j, Rz‘j 1 Y;'j’Zij,aj,bj, and ij(aj) = E[Rij]Zij,aj] = E[Rij\Zij,aj,bj],

it can be shown that

= E[(Yi; — p(XFB))0pn(X58%)1X]
0
- E {E l/(ﬁj(bj) — (X35 8%))Oppn(X55 *)ﬁ(bﬂRj,Rij,Zj;'r*,¢*)dbj|zj,aj7bj] ‘Xj}
i
+> E [/(V?j(bj) — 1(X358)) dp( X5 *)ﬁ(bj\RjaRijaZj37*>¢*)dbjlxj]
i

= B[ — n(X§87)0en(X§A7)IX] = 0

If working model [Yj, bj|Z;; 7, ¢] is correct:
Then substituting [ (1;(b;) — (X35 8*))9pi(X55 B*)(b;| Ry, Ry Y, Zj; v*, ¢*)db;



= E [(v;;(bg) — (X)) 0p(X 8%) Ry, R; Y, Z;] gives

2

Ri; * %\~ * %
-y [ s 0 X0 X R, 207 7y X
P 77 J

- ZE [/ )ﬁ(aJ‘RJaZ.ha ,T*)day E [(vj;(bs) — p(X558%)) 0 (X5 8)Ry, Ry Y, Zs) |X;
+ ZE [E [(v);(b;) — (X35 8))0pi(X5 8%) IRy, Ry Y, Z] |X; ]
Since R;; L Yi;|Zs;, a5, by and vj5(by) = E[Yj;|Zs;, bs] = E[Yij|Zs, a3, bs], it can be shown that,

=3 |50y - n(XEB") e (X5

r—|

/ p(aj|R;, Zy; «*, 7%)day|Z;, a3, b } |X.]:|
R;;

_ZZ:E{(V;(bj)_M(Xg “))Oppt(XE )/ o 37 play|Ry, Zy; a*, T )daJ|X]

+ Z B (X58%))0su(X558%)1X]

—ZE (XE6))0pu(XEB*)IX;] = 0

E[Sn(B* o, 7%, v*, ¢*)] = E[E[S,,(8*; o*, 7*,7*,¢*)|X]| = E[0] =0
S2.2 Proof of Theorem 1

S2.2.1 Consistency of Bm

Let S(B" a,7,7,¢) = E[g(R,Y,Z; B, a, 7,7, 9)||(3 ., v0) I Em belongs to a compact
set containing B*, then every subsequence has a further subsequence ,3mk’l that converges
to some B; almost surely (by the Bolzano-Weierstrass Theorem). Therefore,

S(B\mk,ﬁ amk,w :"\mk,u'/)\’mk,m $mk,l) ? S(Bl? o*, T, y*, ¢*). Since

Smk,z (Bmk,ﬁ amk,u :’:mk,w;)\’mk,u amk,z) =0, and |S(B\mk,l; amk,u ?mk,ﬂ:)\/mk,l? $mk,l>| =

-1 3 ~ ~ ~ " oy ~ ~ ~ ™ .
|mk,l Smk,l (Bmk,l; amk,l ) ka,l ) ’Ymk,ﬂ ¢mkl) - S(lgmk,l; amkz,l’ ka,l ) '7mk,l’ ¢mkz)| ? 0 uni-



formly, then S(,él; a*, T v*, ¢*) = 0 for each B,. Since we assume that mS(B; a*, 7, v*, ¢p*) =
E[S(B; a*, 7*,v*, ¢*)] = 0 has a unique solution at 3 = 8%, then B, = 3* for every con-

vergent subsubsequence, and so 3,, — 3*.
p

S2.2.2 Asymptotic Distribution of m'/? <ﬁm — ,6*)

Step 1: Asymptotic distribution of m!'/? (,@m — ﬁ*) if (a, 7,7, ®) are known con-
stants

Note that m~1/? Z] 19(Ry, Y, Z;; B, o, T, v*, ¢*) converges to a normal distribution
with mean zero as m — oo, and m ™! > Os9(R, Y, Z; B*, o, 7%, v, @) ? C=
E0g9(R,Y,Z; B*, a*, 7*,v*, ¢*)] as m — oco. Therefore, using a Taylor series expansion
of Sp(Bm: @*, T*,7*, ¢*) around B*, we obtain m!/2 <Bm - ,3*> = —C'm~1/?

ZTzl 9(R;, Y5, Zs; B*, o, 7%, v*, ¢*) + 0,(1), which converges to a normal distribution with

mearn Zero.

Step 2: Asymptotic distribution for m!/? (Bm — B*) if (o, 7,7, @) are estimated
In this case, m!/? (Bm - B*) —CIm!/? [— Py L9(Ry, Y5, Zi: B*, Qs Toms s Do)

0p(1). Using a Taylor series expansion of this expression around (a*, 7*), we obtain
12 (3 *

- 1 - * * % 2 0
=-C lm [EZ J,ZJ,,@,O{,T,"}’,d))]

1 * ok __k = *
Eza‘lﬁg(Rﬁ]?YMZJuB , O, T 777¢>] wa,T(Raz;a y T )+0p<1)7
j=1

where 9o () is defined in equation (5) in the main text. Further expanding the above



expression using a Taylor series expansion around (v*, ¢*), we obtain

m1/2 (Em - /B*>
1 m
=-—C'm!/? [— > (Rj,Yj,Zj;ﬁ*,a*,T*ﬁ*@*)]
m
J=1

- —1 . * * * * * * *
_C 1 EZaa,Tg(R‘“Yj’ZJ”B ,a ,T ,’Y 7¢) ) wa,r(R,Z;Oé 77- )

— 1 - * * * * * * *
_C ' Eza’vabg(R.i?Yj?Zj;/B 7a >T 77 7¢ ) w7,¢(RaRY>Z;’Y 7¢ )

— — 1 - * * % _ k%
—-C 1m 1/2 [EZ o, 77,09 R.]? jaZj;/6 O, T Y 7¢ )]

,lvbcx,T(R) Z7 a*v T*)q/J"/,qb(R’a RY? Z7 7*7 ¢*) + Op(1>7

where 1), 4(-) is defined in equation (6) in the main text. By the Weak Law of Large Numbers

and Slutsky’s Theorem,

ml/2 (Bm _ 5*>

:m_l/Q{E [aﬂg(R7 Ya Z; 6*7 Oé*, T*7 7*’ ¢*)]}_1 Z {_g(R‘]

i=1

Yj7 Zj;ﬁ*va*aT*77*7 ¢*)

+ E0a-9(R,Y,Z; B* *, 7% ~*, ¢*)| E[02 Lo, 7)) Onrlj(a*, )
+E[0,49(R, Y, Z; B, a*, 7%, 7", ") E[0] s1(v*, &) 0y,6l; (v, ") } + 0,(1)

which converges to a normal distribution with mean zero and covariance matrix

{E(0p9(R, Y, Z; 8%, ", 7%, 7", ¢")]}
E{-9(R,Y,Z; 8", ", 7", 7", ¢")
+ E0arg(R, Y, 2 8%, 0, 7%, 7", 6")] BOZ U0, 7)) O £l 77)
+ B10,09(R, Y, Z 8%, 0, Ty )] BIO2 417, 7)) D ol(v" %)}

{E[039(R,Y,Z; B*, o, 7%, v*, ™)} .



S3  Web Appendix C: Simulation Study with Binary Out-

come

S3.1 General Set-Up

We now present additional simulation studies, considering a binary outcome variable.
Data were simulated in the following way. One thousand datasets were simulated, each with
1000 clusters with 2 data records each (i.e., 1000 individuals with data for 2 time-points
each). Let j indicate the individual and i = 1,2 indicate the time-point. One time-varying
predictor variable of interest, X; = (ﬁ; ), was generated for each cluster from a multivariate
normal distribution, N ((12), (4 %)), where the first element of the random vector X;
corresponded to the first time-point and the second element corresponded to the second
time-point. Similarly, three time-varying auxiliary variables were generated for each cluster
based on the value of Xj: Z;; = (2;) ~ Ny <<8§ig§§;> (ol 015)>, Zoj = (gz;) ~
Ny ((8;1832;) (o 9%t )), and Zs;; ~ Exp(mean = |0.7 4+ 0.2X;;|). In addition, one time-
invariant auxiliary variable was generated for each cluster: Z,; = Zyq; ~ Bernoulli(0.5).
Two random intercepts, a; (used to generate missingness R;;) and b; (used to generate the
outcome Y;;), were independently generated from a normal distribution with mean 0 and
variance 1.

The proposed multilevel approach and comparison methods (available case analysis and
the marginal approach of Scharfstein et al.?) were implemented in a similar manner to the
simulation study presented in the main text, except that a logistic mixed effect model was
fit as the working model for the outcome Y;; using the proposed multilevel approach (i.e.,
logit{ P(Yi; = 1|Zs;,b;)} = Ziyy +b;), and an independent-data logistic regression model was
fit as the working model for the outcome Y;; using the marginal approach. Note that since
both working models had a non-identity link function (e.g., logistic regression), the marginal
working models were always misspecified, even when using the correct set of fixed effects,

because R;; and Y;; were generated based on models conditional on a random intercept.



S3.2 Misspecification of Working Models by Omitting an Important
Covariate

First, we considered the performance of the proposed method when either working model
was misspecified by omitting an important covariate. The outcome variable Y;; was generated
from a Bernoulli distribution with probability logit=(—1 + g — Zogj+ 3% Zsij + Zaij —
Xij + bj), where 73 equaled -0.2 (weak effect) or -1 (strong effect). An indicator that Yj;
was observed (R;;) was generated from a Bernoulli distribution with probability logit " (an —
Z14j 4 Zoij + oz x Zs 45 — Zaij + Xij + a;), where ag equaled 0.5 (20% missing) or -1 (35%
missing), and s equaled 0.2 (weak effect) or 1 (strong effect). For both the proposed
multilevel approach and the marginal approach, each working model was either fit using the
correct set of fixed effects, or by excluding Zs;; from the model.

Table S1 presents bias, empirical standard deviation of the estimates (SDE), average
estimated standard errors (ESE), mean square error (MSE), and coverage rates for 95%
confidence intervals (CP) for the proposed multilevel approach. Table S2 presents ratios
of the empirical variance and MSE for the multilevel approach to the available case and
marginal approaches. The proposed multilevel approach exhibited essentially no bias when
either the working model for [R;, a;|Z;] and/or the working model for [ Y}, b;|Z;] were specified
correctly, confirming the double robustness property. Bias for the multilevel approach tended
to decrease as the percent missing decreased and as the magnitude of the omitted effect
decreased. The 95% confidence interval coverage rates were also nearly at the nominal
level when at least one working model was specified correctly. The proposed standard error
estimator for the multilevel approach approximated the SDE well in most cases. Both
the empirical variance and MSE were almost always smaller for the proposed multilevel
approach than the marginal approach, although this improvement in the empirical variance
and MSE for the proposed method compared to the marginal method was smaller than for

the continuous outcome (results presented in the main text).



Table S1: Results from simulation study for the multilevel approach with a binary outcome

where working models were misspecified by omitting an important covariate

Bo

b

Effect %
strength Miss.

R* Y

Bias SDE ESE MSE CP

Bias SDE ESE MSE CP

Weak 20 T

—

T

-0.008 0.112 0.113 0.013 95.1
-0.009 0.112 0.113 0.013 95.5
-0.008 0.112 0.113 0.013 95.2
-0.013 0.112 0.113 0.013 95.5

0.005 0.070 0.069 0.005 94.7
0.005 0.070 0.069 0.005 94.8
0.005 0.070 0.069 0.005 94.9
0.005 0.070 0.069 0.005 94.9

35

-0.008 0.162 0.152 0.026 94.6
-0.009 0.162 0.153 0.026 94.6
-0.008 0.162 0.152 0.026 95.0
-0.016 0.163 0.153 0.027 95.0

0.003 0.097 0.091 0.009 94.6
0.003 0.097 0.091 0.009 94.8
0.003 0.097 0.090 0.009 94.6
0.002 0.097 0.091 0.009 94.4

Strong 20

-0.012 0.120 0.113 0.014 93.9
-0.021 0.121 0.114 0.015 94.1
-0.012 0.119 0.113 0.014 94.2
-0.087 0.122 0.116 0.022 88.7

0.006 0.076 0.076 0.006 95.5
0.008 0.076 0.077 0.006 95.5
0.007 0.076 0.076 0.006 95.5
0.016 0.078 0.078 0.006 95.3

35

M HHmHE S 99 93 3979 49

F

F
T
F
T
F
T
F
T
F
T
F
T
F
T

F

-0.014 0.167 0.150 0.028 93.0
-0.036 0.172 0.155 0.031 91.9
-0.015 0.164 0.148 0.027 92.4
-0.175 0.176 0.159 0.061 80.9

0.007 0.105 0.098 0.011 94.8
0.011 0.108 0.102 0.012 94.0
0.008 0.102 0.097 0.010 94.1
0.017 0.112 0.105 0.013 94.2

¢ T = Working model specified correctly. F = Working model misspecified by excluding the covariate Z3 ;;.



Table S2: Comparison of multilevel approach with the marginal approach and the avail-
able case approach from simulation study for binary outcome where working models were
misspecified by omitting an important covariate

Bo B
Emp var ratio® MSE ratio® Emp var ratio® MSE ratio®

Effect % R® Y Av?::eble Marginal Available Marginal Av;i;lzzble Marginal Available Marginal
strength Miss. approach approach approach approach approach approach approach approach

Weak 20 T T 1.043 0.984 0.088 0.983 1.148 0.979 0.423 0.978

T F 1.042 0.984 0.088 0.985 1.145 0.978 0.422 0.978

F T 1.048 0.986 0.088 0.986 1.152 0.980 0.424 0.980

F F 1.048 0.986 0.089 0.986 1.152 0.979 0.424 0.979

35 T T 1.313 0.977 0.067 0.976 1.390 0.942 0.484 0.941

T F 1319 0.978 0.068 0.979 1.392 0.944 0.484 0.943

F T 1.318 0.969 0.067 0.969 1.396 0.939 0.485 0.938

F F 1327 0.972 0.068 0.972 1.407 0.941 0.489 0.940

Strong 20 T T 1.104 0.982 0.108 0.982 1.208 0.976 0.489 0.976

T F 1.118 0.994 0.111 1.017 1.216 0.983 0.494 0.989

F T 1.099 0.982 0.107 0.984 1.217 0.971 0.492 0.971

F F 1154 0.988 0.168 1.002 1.292 0.978 0.540 0.983

35 T T 1.267 0.984 0.072 0.985 1.438 0.940 0.543 0.942

T F 1344 1.000 0.079 1.040 1.521 0.956 0.578 0.963

F T 1.209 0.997 0.069 1.002 1.359 0.958 0.514 0.961

F F 1.396 1.008 0.157 1.042 1.636 0.969 0.629 0.980
@ T = Working model specified correctly. F' = Working model misspecified by excluding the covariate Z3 ;;.

b Ratio comparing multilevel approach to corresponding comparison method.
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S3.3 Misspecification of Working Models by Omitting a Non-Linear
Effect

We also considered the performance of the proposed method when either working model
was misspecified by omitting a quadratic term. The outcome variable Y;; was generated
from a Bernoulli distribution with probability logit™ (=14 Z1; — Zaij — Z3.j + Zai5 + 75 *
Z2

5. — Xij +b;), where 75 equaled 0.1 (weak effect) or 0.5 (strong effect). An indicator
that Y;; was observed (R;;) was generated from a Bernoulli distribution with probability
logit™ (o — Zvij + Zaij + Zsij — Zaij + s x Z3 ; + Xij + a;), where ag equaled 0.5 (20%
missing) or -1 (35% missing) and «; equaled -0.1 (weak effect) or -0.5 (strong effect). For
both the proposed multilevel approach and the marginal approach, each working model was
either fit using the correct set of fixed effects, or by excluding the quadratic term Z227Z-j from
the model.

Table S3 presents bias, SDE, ESE, MSE, and CP for the proposed multilevel approach.
Table S4 presents ratios of the empirical variance and MSE for the multilevel approach to
the available case and marginal approaches. These results were similar to the scenario based

on omitting an important covariate from the working models (presented in Tables S1 and

32).

S4 Web Appendix D: Sample SAS and R Code

Here we present sample SAS and R code to implement the proposed method in statistical
practice. Code is provided that corresponds to the situations explored in the simulation
studies presented in this paper, where there are two-level data, each hierarchical working
model includes a cluster-level random intercept, the working model for missingness is a
logistic mixed effects model, the working model for the outcome of interest is either a linear or
logistic mixed effects model, and all integrals are estimated using Gauss-Hermite quadrature.
The code could be modified to accommodate more general situations (e.g., different types of
working models, more than two levels of data). SAS code is provided to fit the hierarchical
working models for the outcome variable and missingness using PROC GLIMMIX. An R

function written by the authors is provided to solve the estimating equations for 8 (equation

11



Table S3: Results from simulation study for the multilevel approach with a binary outcome
where working models were misspecified by omitting a quadratic term

Bo
SDE ESE MSE CP

A1
Bias SDE ESE MSE CP

Effect %

a a
strength Miss. R%Y

Bias

Strong 20

20 T

—

H 944" 2 H 4994994

F

F
T
F
T
F
T
F

T
F
T
F
T
F
T
F

-0.013 0.116 0.114 0.014 95.2
-0.014 0.117 0.114 0.014 94.9
-0.013 0.115 0.114 0.013 94.9
-0.016 0.116 0.114 0.014 94.9
-0.006 0.149 0.152 0.022 96.5
-0.007 0.150 0.152 0.022 96.6
-0.006 0.146 0.150 0.021 96.6
-0.011 0.146 0.151 0.022 96.5
-0.004 0.110 0.114 0.012 96.7
-0.017 0.115 0.120 0.013 95.0
-0.004 0.108 0.113 0.012 96.6
-0.087 0.111 0.116 0.020 89.0
0.006 0.159 0.155 0.025 94.8
-0.018 0.172 0.169 0.030 95.5
0.008 0.153 0.152 0.023 94.5
-0.110 0.160 0.157 0.038 90.8

0.006 0.075 0.075 0.006 94.4
0.007 0.075 0.075 0.006 94.2
0.006 0.074 0.075 0.006 94.4
0.007 0.074 0.075 0.006 94.1
-0.002 0.100 0.098 0.010 95.8
-0.002 0.101 0.098 0.010 95.6
-0.002 0.098 0.097 0.010 95.5
-0.001 0.099 0.097 0.010 95.6
-0.001 0.066 0.068 0.004 95.7
0.001 0.069 0.072 0.005 96.0
-0.001 0.065 0.067 0.004 95.7
0.007 0.067 0.069 0.005 95.2
-0.006 0.091 0.090 0.008 94.9
-0.003 0.101 0.098 0.010 94.9
-0.008 0.087 0.088 0.008 95.2
-0.003 0.092 0.092 0.009 95.0

12

@ T = Working model specified correctly. F = Working model misspecified by excluding the quadratic term



Table S4: Comparison of multilevel approach with the marginal approach and the avail-
able case approach from simulation study for binary outcome where working models were
misspecified by omitting a quadratic term

Bo B
Emp var ratio® MSE ratio® Emp var ratio® MSE ratio®

Effect % a ya Av:ca,::eble Marginal Available Marginal AV?:;ble Marginal Available Marginal
strength Miss. approach pproach approach approach approach approach approach approach

Weak 20 T T 1.110 0.953 0.107 0.954 1.252 0.939 0.500 0.939

T F 1.118 0.957 0.108 0.959 1.258 0.941 0.503 0.942

F T 1.091 0.952 0.105 0.953 1.231 0.939 0.492 0.939

F F 1.097 0.955 0.106 0.957 1.236 0.940 0.494 0.941

35 T T 1.315 0.970 0.062 0.969 1.575 0.939 0.567 0.939

T F 1319 0.966 0.062 0.966 1.578 0.938 0.568 0.938

F T 1.256 0.955 0.059 0.954 1.513 0.930 0.545 0.930

F F 1.262 0.953 0.060 0.953 1.522 0.930 0.548 0.930

Strong 20 T T 1.032 0.972 0.080 0.972 1.093 0.956 0.479 0.956

T F 1.118 0.969 0.088 0.988 1.213 0.943 0.531 0.942

F T 0.993 0.976 0.077 0.976 1.061 0.963 0.464 0.963

F F 1.046 0.983 0.130 1.011 1.128 0.968 0.499 0.971

35 T T 1.231 0.985 0.063 0.985 1.288 0.975 0.609 0.975

T F 1452 0.949 0.075 0.959 1.598 0.952 0.752 0.951

F T 1.145 0.982 0.059 0.982 1.185 0.965 0.562 0.965

F F 1247 098  0.094 1.019 1.337 0971  0.629  0.969

@ T = Working model specified correctly. F = Working model misspecified by excluding the quadratic term
Z22,ij'
b Ratio comparing multilevel approach to corresponding comparison method.
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(4) in the main text) and estimate the covariance matrix (based on equation (8) in the main

text), using the estimated working model parameters.

SAS code for hierarchical working models. The following code fits the hierarchical
working models for the outcome variable and missingness using PROC GLIMMIX. Let the
dataset named dat have one row per data record (e.g., if there are two levels in the data,
where j = 1, ..., m indicates the cluster, and 7 = 1, ..., n; indicates the data record, then there
is one record for each combination of ¢ and j). The dataset dat has the following variables

for each data record for each combination of subscripts ¢ and j:

e ID is a unique identifier variable for each cluster (i.e., corresponding to subscript i)

Y is the outcome of interest

[ ]

e R is an indicator that Y is observed (i.e., non-missing)

e X1,...,Xp is the set of predictors of interest for Y (does not include an intercept)

e 721, ...,72q is the set of covariates that will be included in the hierarchical work-

ing models (does not include an intercept, should include the predictor variables

X1l,...,%Xp)

First, the following code fits a logistic mixed effects model for missingness, with a cluster-level

random intercept.

proc glimmix data=dat method=quadrature(qpoints=25) noclprint;
class ID;
model R(event="1") = Z1 ... Zq / s dist=binary;

random intercept / subject=ID;

ods output ParameterEstimates=coefparm r CovParms—=covparm r

Next, the following code fits a linear mixed effects model (e.g., for a continuous outcome)
or a logistic mixed effects model (e.g., for a binary outcome) for the outcome of interest,

with a cluster-level random intercept.
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/* Linear mixed effects model (e.g., for a continuous outcome) */
proc glimmix data=dat method=quadrature(qpoints=25) noclprint;
class ID;
model Y = Z1 ... Zq / s dist=normal;
random intercept / subject=ID;
ods output ParameterEstimates—=coefparm y CovParms—=covparm y

run;

/* Logistic mixed effects model (e.g., for a binary outcome) =/
proc glimmix data=dat method=quadrature(qpoints=25) noclprint;
class ID;
model Y(event="1") = Z1 ... Zq / s dist=binary;

random intercept / subject=ID;

ods output ParameterEstimates—=coefparm y CovParms—=covparm y

Then, the following code combines the parameter estimates from both working models
into the same dataset, prepares the variable names in the combined dataset to be used by the
R function written by the authors to estimate Bm and the covariance matrix, and exports

the parameter estimates dataset as a CSV data file that can be read into R.

/* define the correlation between the random effects from both x/

/* working models as 0 (i.e., independent random effects) %/
data rho;

Parameter="rho’; Estimate=0; output;
run;

* combine the parameter estimates from both working models, =*
8
/* and adjust variable names to be used by R function =/

data parms(keep=parameter estimate );
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length Parameter $ 50;
set coefparm r(keep—effect estimate in—coefr)
coefparm y(keep=effect estimate in=coefy)
covparm_r (keep=covparm estimate in=covr)
covparm_y (keep=covparm estimate in=covy)
rho;
if covparm=’Residual’ then parameter=’sigma’;
if covparm=’Intercept’ then do;

if covr then parameter="tau’;

if covy then parameter="phi’;
end ;
if coefr then parameter=cats(’'r ’,strip (effect));
if coefy then parameter=cats(’y ’,strip(effect));

run;

/* export parameter estimates dataset as a CSV data file =%/
proc export data=parms
outfile="path/parms.csv"

dbms—csv

replace;

R code to prepare data. The following code loads a CSV dataset containing the pa-
rameter estimates from the hierarchical working models that were estimated using SAS, and
saves the variables that will be used to estimate the doubly robust regression coefficients and

covariance matrix.

# LOAD PARAMETER ESTIMATES DATASET FROM SAS
parms=read .csv ("path/parms.csv" header=TRUE)

# ASSIGN VARIABLES THAT WILL BE NEEDED FOR DOUBLY ROBUST ANALYSIS
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n=nrow (dat) # number of data records

m=length (unique (dat$ID)) # number of clusters

nj=table (dat$ID) # number of data records for each cluster
y=dat$Y

x=as . matrix (cbind (rep (1, times=n),dat|,c('X1" ,...,’Xp’)]))
colnames(x)=c(’intercept’,’X1’ ... 'Xp’

z . r=as.matrix (cbind (dat|,c(’Z1’ ,..., Zq")]))
z.y=as.matrix (cbind (dat|,c(’Z1" ,..., '"Zq’)]))

alpha=parms$Estimate [ substr (parms$Parameter ,1,2)=="r1r ’|

gamma-parms$Estimate | substr (parms$Parameter,1,2)=="y 7|

sigma=parms$Estimate [ parms$Parameter—"sigma ’ |

phi=parms$Estimate [ parms$Parameter—"phi’ |

tau=parms$Estimate [parms$Parameter—"tau’ |

R function to solve the estimating equations for 3 and estimate the covariance
matrix. The authors have written an R function that uses the methods described in this pa-
per to estimate the doubly robust regression coefficients of interest, and estimate the covari-
ance matrix for this doubly robust estimator. The R function, called DoublyRobust_Multilevel.R,
is provided as supporting information for this paper. The following code calls the function
DoublyRobust_Multilevel to obtain doubly robust regression coefficent and covariance
matrix estimates, for the case where a linear mixed effects model is used for the working
model for the outcome variable, and an identity link is used for x(-) in the estimating equa-

tions in (4) in the main text (e.g., for a continuous outcome).

DR Results=DoublyRobust Multilevel (n,m,nj,y,x,z.r,z.y,qpoints =25,
alpha ,gamma, sigma , tau , phi,
dist="gaussian’,link="identity ’,
conv=.0001, maxiter=50,maxpiinv=100,

se—TRUE, verbose—FALSE)
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# Doubly robust regression estimates for beta

DR Results$beta

# Standard errors for beta
sqrt (diag (DR Results$var.beta))

In addition, the following code calls the function DoublyRobust_Multilevel for the
case where a logistic mixed effects model is used for the working model for the outcome
variable, and a logit link is used for u(-) in the estimating equations in (4) in the main text

(e.g., for a binary outcome).

DR Results=DoublyRobust Multilevel (n,m,nj,y,x,z.1,2z.y,qpoints=25,
alpha ,gamma, sigma=NULL, tau , phi ,
dist="bhinomial ’ ,link="1logit ’,
conv—=.0001,maxiter =50, maxpiinv=100,

se=TRUE, verbose=FALSE)

# Doubly robust regression estimates for beta

DR Results$beta

# Standard errors for beta
sqrt (diag (DR Results$var.beta))
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