

Supplementary Information for

Oxidative desulfurization pathway for complete catabolism of sulfoquinovose by bacteria

Mahima Sharma,¹ James P. Lingford,^{2,3} Marija Petricevic,^{4,5} Alexander J.D. Snow,¹ Yunyang Zhang,^{4,5} Michael A. Järvå,^{2,3} Janice W.-Y. Mui,^{4,5} Nichollas E. Scott,⁶ Eleanor C. Saunders,⁷ Runyu Mao,^{2,3} Ruwan Epa,^{4,5} Bruna M. da Silva,^{7,8} Douglas E.V. Pires,^{7,8} David B. Ascher,^{5,7} Malcolm J. McConville,⁷ Gideon J. Davies,^{1*} Spencer J. Williams,^{4,5*} Ethan D. Goddard-Borger^{2,3*}

Gideon J. Davies Email: <u>gideon.davies@york.ac.uk</u>

Spencer J. Williams Email: <u>sjwill@unimelb.edu.au</u>

Ethan D. Goddard-Borger Email: <u>goddard-borger.e@wehi.edu.au</u>

This PDF file includes:

Figures S1 to S20 Tables S1 to S6

Supplementary Figures

Fig. S1: Independent replicate of data in Figure 1a. Optical density of *A. tumefaciens* C58 culture (blue) and [SQ] (red), change in [sulfite] (green) and change in [sulfate] (yellow), with respect to time. Error bars denote observational error (derived by propagation of estimated random errors).

Fig. S2: ¹³C{¹H} NMR (100 MHz) spectrum of *A. tumefaciens* C58 culture grown on M9 media supplemented with 10 mM (¹³C₆)SQ at an OD₆₀₀ of 0.49. ¹³C-labelled bicarbonate is observed at δ = 160.2 ppm.

Fig. S3: Sulfonate substrates investigated as substrates for growth of *A. tumefaciens* C58 in M9 minimal media.

Fig. S4: Coomassie-stained SDS-PAGE gel of all recombinant proteins used in this study (5 μ g loaded per well).

Fig. S5: Independent replicate of data in Figure 2a. Isothermal titration calorimogram for SmoF titrated against its cognate ligand 2'*R*-SQGro.

Fig. S6: Conformational changes occurring upon binding of 2'*R*-SQGro to SmoF. DynDom analysis of the dynamic domains and hinge-bending motion of the SmoF(Atu3282)-apo structure (green) *vs.* 2'*R*-SQGro*SmoF(Atu3282) complex structure in 'closed' conformation (grey). The *x* and *y* axes cross at the centre of rotation and the hinge (*z*) axis is perpendicular to the origin.

Fig. S7: Thermal stability of SmoF in ligand-free state and with bound SQGro. Differential scanning fluorimetry (DSF) was used to determine the melting temperature (T_m) of SmoF in the presence and absence of SQGro. SQGro binding to SmoF increased the protein's T_m by 15.3 °C (from 43.9 °C to 59.2 °C).

Fig. S8: LC-MS analysis of the supernatant from heat-denatured samples of recombinant SmoA (Atu3277) and *Ro*SmoA. (a) Chromatograms showing absorbance and m/z 455 signals for authentic FMN. (b) Chromatograms showing absorbance and m/z 455 signals for heat-denatured SmoA. (c) Chromatograms showing absorbance and m/z 455 signals for heat-denatured *Ro*SmoA.

Fig. S9: Kinetic analysis of SmoA and *Ro*SmoA. Michaelis-Menten kinetics for SmoA-catalysed reduction of FMN (at 30 μ M) by (a) NADH and (b) NADPH, illustrating that NADH is the preferred nicotinamide cofactor for SmoA. (c) Michaelis-Menten kinetics for *Ro*SmoA-catalysed reduction of FMN (at 30 μ M) by NADH. Error bars denote observational errors (derived by propagation of estimated random error).

SmoA vs NADH

Fig. S10: Independent replicate of data in Figure 3a. Michaelis-Menten kinetics for SmoA-catalysed reduction of FMN by NADH. Error bars denote observational errors (derived by propagation of estimated random error).

Fig. S11: Independent replicate of data in Figure 3b. SmoC activity assessed using sulfite release assay with Ellman's reagent in the presence of FMN, flavin reductase, NADH and SQ. The data is representative of three independent experiments, error bars denote observational error (derived by propagation of estimated random errors).

Fig. S12: Proposed mechanisms and biochemical characterization of SmoC and *RoSmoC.* **(a) Proposed SQ monooxygenase mechanism involving nucleophilic attack at sulfur by a C4a-peroxide (alternatively, an N5-peroxide may be invoked). (b) Proposed SQ monooxygenase mechanism involving oxidation at C6 of SQ (alternatively, an N5-peroxide may be invoked). (c) Sulfite release assay using Ellman's reagent to quantify SmoC activity in absence** (–) or presence of FMN, flavin reductase (SmoA), NADH and SQ (extended controls). (d) pH profile for SmoC-catalyzed desulfurization of SQ. (e) Sulfite release assay using Ellman's reagent to quantify RoSmoC activity in presence of FMN, flavin reductase (*Ro*SmoA), NADH and SQ, as well as other controls.

Fig. S13: Independent replicate of data in Figure 3c. Isothermal titration calorimogram of interaction of SmoC with SQ as determined by ITC.

Fig. S14: SEC-MALS for SmoC. Molar mass plots show the light scatter trace as a solid red line, the refractive index trace (concentration measurement) as a dashed red line, and the UV trace as a dotted red line, normalised to the largest peak.

Fig. S15: Ribbon and topology diagrams of *Ro*SmoC. (a) Ribbon diagram of the *Ro*SmoC monomer showing $(\alpha/\beta)_8$ TIM barrel fold. (b) Secondary structure arrangement of *Ro*SmoC depicted in topology diagram showing $(\alpha/\beta)_8$ TIM barrel fold with additional inserts highlighted in grey (generated using the PDBsum server). (c) Overlay of *Ro*SmoC subunit A (in gold) with SsuD (PDB ID: 1M41, in grey): the peptide backbones have an r.m.s.d. of 1.3 Å. (d) Overlay of *Ro*SmoC subunit A (in gold) with SmoC (At3279) (in coral): the peptide backbones have an r.m.s.d. of 0.4 Å.

.

Fig. S16: Isothermal Titration Calorimetry for addition of NAD(P)H to recombinant SmoB. (a) Unprocessed heat and molar ratio plots of SmoB with NADPH. (b) Unprocessed heat and molar ratio plots of SmoB with NADH.

Fig. S17: SmoB (Atu3278) catalyzes formation of ¹⁸O₂-labelled glucose. Extracted ion chromatogram from LC-MS analysis of glucose incubated with SmoB and NADP⁺ in $H_2^{18}O$ followed by peracetylation.

Normal abundance:

C6-¹⁸O-labelled:

Fig. S18: Identification of ¹⁸O-labelled glucose. (Top) Structure of aldonitrile pentapropionate glucose and predicted m/z values for key fragments involving ¹⁸O incorporation at C6. (**Bottom**) Fraction of labelled fragments derived from incubation with SmoB and various control experiments, corrected for isotope natural abundance by DExSI analysis for 2.5 nmol of analysed glucose. Standards include: ¹²C₆-glucose, ¹³C₆-glucose, 1,2-¹³C₂-glucose, 6,6-²H₂-glucose. Only reactions containing enzyme, substrate and NADP⁺ gave M+4 product and labelling consistent with introduction of ¹⁸O at C6.

Fig. S19: 3D structures of SmoB-pET29a showing undesirable His6-tag interactions. SmoB (pET29 construct) showing C-terminal His6-tag (blue) from the adjoining subunit bound at the cofactor site within the physiologically-relevant trimer.

Fig. S20: SEC-MALS plot of SmoB. *A*, pET29a(+) construct. *B*, YSBLIC3C construct (Molecular weight: 34 kDa). SEC-MALS plot reveals the oligomeric state of SmoB in solution. UV-trace and an average molecular weight trace (red), calculated from the refractive index and light scattering signal giving mass estimation of 96.5 and 100 kDa, respectively, which corresponds to a trimer.

Supplementary Tables

Table S1: Recombinant protein sequences.

Atu3277 (SmoA)	MTVVEAIKMPNEHVFVPGGENSRSFRNALGAFTTGVTVVTATTPEGPIGMTVNSFASVSLD PPLVLWSPAKSSSRHPAFSEATHFAIHVLSADQDVLSARFTRNGRAFDDLDWEINDEGVPV IPGTLARFECRRAAAHDAGDHTIIVGEVLRAAHRDGDPLCFSGGAFGRFSRQLEHHHHHH
Atu3282 (SmoF)	MDAELKIFVSSQHQPDIWRKALDQYEAKTPGVKVVIETGGNTSEMQAQYLNTVMSAKDSSL DVLMLDVIRPAQFATAGWTSDFSGKDLSAYLPTYAEANTVNGKIVALPAFADSMFLYYRKD LLDKYGIKPPTTWDELKEASKKVMEGEKNPELQGLSFQGKAIEGAVCTFLLPYWSEGKSLV ENGKLNFDNKAAVDSLKLWKSFVDDGISKKNISEVATDDTRKEFQAGKVLFAVNWSYAWTH FQGKESQVNDKVGVARLPAVKGGEQTTCLGGWEFGVSAYSKQQDEAKKLVEYLSSQDVSKF MAINAALLPTYAALYKDADVTKTIPWFADALPVVETAKARPVTPRYNEVSETIRTTVNGVL AGVMTPEDGAKQMESRLRRVLRLEHHHHHH
Atu3285 D455N E370A E371A (SmoI)	MHFETTKDGFTIAIGNRIILSHSPDKPAFFAGFGEERMDMYRGNFDIEDYVIERTALRHAE VSGDSVTLSSAPGQAPRLRLTLDGNAIRLTALDETINRLWLRVVAETDEHVWGGGEQMSYF DMRGRRFPLWTSEPGVGRDKTTEITFKSDVSGKAGGDYYNTNYPQPTWLSSRKYALHVETS AYSVFDFRNGDFHEIEIWAVPEKIEFFAGDSFADIVSALSLHFGRQPELPDWVYNGAIIGL KDGVNSFARLEKIRAAGTKVSGLWCEDWVGLRQTSFGARLFWDWQANDTRYPHLRQKIAEL ADQGIRFLGYVNPYLCVDGPLFPVAESAGYFATDVDGKTALVDFGEFDCGVVDFTNPAAAD WFAAAIIGKNMLDFGLSGWMADFGEYLPIDIKLSNGVDAKLMHNAWPTLWAEVNAKGVESR GKTGEALFFMRAGFTGVQAHCPLIWGGNQSVDFSRHDGLVTVICGALSSGLMGNAYHHSDI GGYTSLFGNVRTAELIMRWTEMAAFTPVMRTHEGNRPRDNLQIDQDETVLAHFARMTAIYV ALAPYLKSLSAEAAKTGLPVQRPLFLHYENEPQTYAVQDCYLYGADMLVAPVWKAGETQRS LYLPGHGEWVHLWSGKRHAGGRDITVETPLGEPAVFYRADSSHHRLFEQLRTIGLEHHHH H N.B. active site D455N and double surface E370A/E371A mutations are highlighted in red
Atu3278 (SmoB) in pET29	MQRIALSDKLELSRIVYGMWRIGDDADTSPAHVQAKIEACLAQGITTMDQADIYGGYTAEA ILGGGLKAAPGLRDKIEIVTKCGIVAPAGRHSSARVKHYDTTAGHINVSVEASLRDMGTDH VDLLLIHRPDPLIDAEETGKALDALVASGKVKAVGVSNFRPWDFSLLQSAMSNRLVTNQIE MSLLATDTFTNGDLAYLQEKRVSPMAWSPLGGGSLFSGAYGGTMAALQRIGKEQGVDATAV AIAWLLRHPAKIVPVLGTNNLERIRTAADALRVTMDRQTWFELYTLAIGKEVALEHHHHHH
Atu3278 (SmoB) in YSBLIC3C	MGSSHHHHHHSSGLEVLFQGPAMQRIALSDKLELSRIVYGMWRIGDDADTSPAHVQAKIEA CLAQGITTMDQADIYGGYTAEAILGGGLKAAPGLRDKIEIVTKCGIVAPAGRHSSARVKHY DTTAGHINVSVEASLRDMGTDHVDLLLIHRPDPLIDAEETGKALDALVASGKVKAVGVSNF RPWDFSLLQSAMSNRLVTNQIEMSLLATDTFTNGDLAYLQEKRVSPMAWSPLGGGSLFSGA YGGTMAALQRIGKEQGVDATAVAIAWLLRHPAKIVPVLGTNNLERIRTAADALRVTMDRQT WFELYTLAIGKEVA
Atu3279 (SmoC)	MTVVPVTSADLDAAEVSWFSALCSDDYAYLGVPDGSLRSSFEHCSDIVKKAEELGFRNILC PSSYQVGQDTLSFVAGCAPISDRINFLAAIRCGEMQPIMLARTVATLDHMLKGRLTLNVIS SDFPGEVADSAFRYKRSHEVVEILRQAWTRDTIDHDGEIYQFKGVSTEPARPYQLNGGPLL YFGGYSPDALELCGAQCDVYLMWPETKDQLADRMRAAHERAAAHGRTLDYGLRVHMVVRDT EQEAREYADHLVSKLDDEYGQLIRNRAHDSGSLGVSHQARARELADKFGYVEPNLWTGIGR ARSGCGAALVGSTDQVLSALEEYQKMGIRAFILSGYPHLDEAEHFGTKVLPQMKTCSLPHA YGRVPSETPATPLGNGERHLEHHHHHH
<i>Ro</i> SmoA	MTISADITHGLNEQVFIPDASTARHYRNALGTFTTGVAVVTARTPDGPIGMTVNSFTSVSL DPPLVLWSPAKSSSRHRAFTAASYFVIHVLSAEQDRLSARFTRNGAGFEGLDWIENMEGVP VIPGTLARFECERSDLHDAGDHTLILGRVLRAAHREGDPLCFSRGTFGRFQSH
RoSmoC	MTVVPITSPDLDAAEVSWFAALCSDDYAYLGVPDDALKSSFEHCSEIVTRAETLGFRNILC PSSYQVGQDTLSFVAACSQITERINLLAAIRCGEMQPIMLARTVATLDHMLKGRLTLNVIS SDFPGEVADSAFRYRRSHEVVQILRQAWTRDTIDHEGEVYNFKGVTTEPARPYQQNGGPLL YFGGYSPDALELCGAQCDVYLMWPEPKEQIAERMKAVHARAEAHGRTLDYGLRVHMIVRDT EKEARDYAEHLVSKLDDEYGRLIRSRAHDSTSLGVSHQARTRELADKFGYVERHLWTGIGR ARSGCGAALVGSTDQVLSEIEAYKKMGVRAFIFSGYPHLDEAEHFGKKVLPQLKTCSLPHI YGRVPADTPATPLGAGRRH

Table S	2: Oligon	ucleotides	used in	this	study.
I able b	2. Ongon	uciconucs	uscu m	uns	study.

ssDNA			
Atu3277 (smoA)	TTGGACATATGACAGTTGTAGAGGCAATCAAGATGC	sense	
	AGGATCTCGAGTTGCCTTGAAAAACGACCGAAG	antisense	
Atu3278 (smoB)	TTGGACATATGCAACGTATCGCTCTTTCTGAC	sense	
	AGGATCTCGAGCGCCACCTCTTTTCCAATCG	antisense	
At3278-LIC3C	TTCCAGGGACCAGCAATGCAACGTATCGCTCTTTCTG	sense	
	CATGCTAGCCATATGTTACGCCACCTCTTTTCCAATC	antisense	
Atu3279 (smoC)	TTGGACATATGACCGTCGTACCCGTTACATCTG	sense	
	AGGATCTCGAGGTGGCGTTCCCCGTTGCCG	antisense	
Atu3282 (smoF)	TTGGACATATGGACGCCGAACTGAAAATCTTCG	sense	
	AGGATCTCGAGTCTCAGAACGCGCCGCAGACG	antisense	
dsDNA			
RoSmoA	TGTAAAACGACGGCCAGTCATATGACCATCTCCGCAGATATCACCCACGGCCTGAACG AACAGGTGTTTATTCCGGATGCCAGCACCGCTCGTCATTATCGCAACGCGCTGGGCAC GTTTACCACCGGCGTCGCGGTGGTGACCGCCGCACGCCGGACGGCCCGATTGGCATG ACGGTGAACAGCTTTACCAGCGTGAGCCTCGATCCGCCGCTGGTGCTGTGGAGCCCGG CGAAAAGCAGTAGCCGCCATCGCGCGTTTACGGCGGCGAGCTACTTTGTGATTCATGT GCTGAGCGCGGAACAGGATCGTCTGAGCGCGCGGTTTCACCCGTAACGGCGCGGGCTTC GAAGGCCTGGACTGGA		
RoSmoC	<i>oC</i> TGTAAAACGACGGCCAGTCATATGACCGTGGTACCGATCACCTCCCCGGATCTGGA CTGCTGAGGTCAGTTGGTTTGCGGCGCCTCTGTTCAGATGATTATGCGTATCTGGGT CCCAGATGATGCCCTGAAATCATCGTTTGAACATTGCTCGGAGATTGTGACCCGTG GAAACGTTAGGTTTTCGGAAATCATCGTTTGAACATTGCTCGGAGATTGTGACCCGTG GATCCGTTGCGGTGAAATGCAGCCAGATTACGGAACGTATTAACCTTTTGGCG GATCCGTTGCGGTGAAATGCAGCCTATTATGCTGGCCCGTACCGTAGCGACACTGG CACATGTTGAAAGGCCGCCTGACTTTGAACGTGATTAGCAGCGATTTCCGGGTGA TGGCGGATAGCGCGTTCCGCTATCAGCCGTAGCCACGAAGTGGTGCAGATTCTGCGC GGCGTGGACCCGTGATACGATTGATCATGAAGGCGAGGTATATAATTTCAAAGGTG ACCACCGAACGGCACGTCCGTACCAGCAGAACGGCGGCCCGCTGCTGTATTTGG GCCTGAACCGAAAGAACAGATTGCGGAACTGTGCGGGGCACAGTGTGACCTGATG GCCCACGGCCGCAGCTGGATTATGCGGAACACTTGGTCAGCAAACTGGACGATGAAAAG GCCACCGCGAACTGGCCGATGATATGCGGAACATCTGGTCAGCAAACTGGACGATGAAAAT TAGATTAATTCGCAGTCGTGCCCATGATTCACGGCTGGCGCGCACCAGAGCACCGGCGCGCGC		

Table S3: Parameters used for ITC and the thermodynamic terms determined for ligand binding to SmoB (Atu3277), SmoC (Atu3279) and SmoF (Atu3282). Errors are provided as standard deviations (n=3).

Protein (30 µM)	ligand	Conc. (µM)	T (°C)	n	<i>K</i> _d (μM)	ΔH (kcal mol ⁻¹)	$\frac{\Delta S}{(cal \cdot mol^{-1} \cdot K^{-1})}$	-T∆S (kcal • mol ⁻¹)	$\Delta G \\ (kcal \cdot mol^{-1})$
SmoC	SQ	600	25	0.81 ± 0.06	3.27 ± 1.20	$\textbf{-4.17} \pm 0.26$	10.06 ± 1.53	-3.00 ± 0.46	-7.17 ± 0.52
SmoF	SQGro	200	25	0.85 ± 0.04	0.29 ± 0.17	$\textbf{-11.21} \pm 0.40$	-7.44 ± 2.26	2.22 ± 0.67	$\textbf{-9.00} \pm 0.78$
SmoB	NADH	1000	25	-	-	-	-	-	-
SmoB	NADPH	0.35	25	0.76 ± 0.01	1.22 ± 0.04	-24.25 ± 0.74	-54.34 ± 2.42	16.2 ± 0.72	$\textbf{-8.07} \pm 0.04$

Table S4: Data collection and refinement statistics for crystal structures of SmoF (Atu3282)

		1					
	Atu3285- D455N•SQGro	Atu3282-apo	Atu3282•SQGro				
Data collection							
Space group	P 1 21 1	P 1	P 1 21 1				
Cell dimensions							
<i>a</i> , <i>b</i> , <i>c</i> (Å)	97.53, 168.40, 100.69	54.21, 78.02, 83.32	53.80 137.80 54.07				
α, β, Υ (°)	90.0, 116.53, 90.0	109.0,106.9,104.7	90.0, 118.70, 90.0				
Resolution (Å)	61.51-2.15 (2.19-2.15)	1.30	47.19-1.70 (1.73-1.70)				
R _{merge}	0.077 (0.538)	0.040(0.515)	0.067 (0.709)				
R _{pim}	0.077 (0.534)	0.040(0.515)	0.064 (0.674)				
Ι / σΙ	8.1 (1.6)	8.9(1.1)	9.8 (1.4)				
Completeness	97.4 (98.9)	99.1(67.5)	98.3 (96.8)				
(%)							
Redundancy	2.9 (2.9)	2.1(1.6)	3.4 (3.4)				
Refinement	1	1	1				
Resolution (Å)	2.15	1.30	47.19-1.70				
No. unique	145522	270846	74,272				
reflections							
$R_{\rm work} / R_{\rm free}$	0.1946/0.2235	0.18/0.20	0.1494/0.1832				
No. atoms	1	1	1				
Protein	20405	8977	6,096				
Ligand/ion	80	8	40 (SQG), 40 (EDG)				
Water	439	1470	573				
<i>B</i> -factors ($Å^2$)	1		1				
Protein	31.38	16.6	24.4				
Ligand/ion	22.24	30.7	14.8 (SQGro); 39.6				
XX 7 4	22.27	27.6	(EDG)				
Water	23.37	27.6	37.6				
R.m.s. deviations	0.01.10	0.04.07	0.007				
Bond lengths (\mathring{A})	0.0143	0.0135	0.006				
(A) Bond angles (°)	1.81	1 011	0.776				
Bond angles () Ramachandran Pl	ot Residues	1.711	0.770				
In most	06 56	98.61	00 35				
favourable	90.50	90.01	77.33				
regions (%)							
In allowed	3 1	1 20	0.65				
regions (%)	5.1	1.27	0.05				
Outliers	0.34	0	0				
PDB code	70FX	7NBZ	70FY				

and SmoI (Atu3285). Numbers in brackets refer to data for highest resolution shells.

Table S5: Data collection and refinement statistics for crystal structures of SQ monooxygenases

SmoC (Atu3279) from Agrobacterium tumefaciens and RoSmoC from Rhizobium oryzae.

	<i>Ro</i> SmoC	Atu3279				
Data collection						
Space group	P 2 ₁ 2 ₁ 2 ₁	P62 2 2				
Cell dimensions						
<i>a</i> , <i>b</i> , <i>c</i> (Å)	71.16, 100.40, 104.65	203.76 203.76 110.73				
α, β, Υ (°)	90, 90, 90	90, 90, 120				
Resolution (Å)	72.45 - 1.9 (1.94-1.90)	48.94-3.40 (3.67-3.40)				
R _{merge}	0.165 (1.739)	0.117 (0.344)				
R _{pim}	0.067 (0.709)	0.042 (0.173)				
Ι σΙ	12.7 (3.6)	16 (5.1)				
Completeness (%)	100.0 (100.0)	99.9 (99.9)				
Redundancy	13.4 (13.8)	15.8 (8.9)				
Refinement						
Resolution (Å)	72.01-1.90	48.00-3.40				
No. unique	59830 (3774)	19137 (3864)				
reflections						
$R_{\rm work}$ / $R_{\rm free}$	0.1673/0.1961	0.2179/0.2615				
No. atoms						
Protein	5558	5392				
Ligand/ion	-	-				
Water	491	-				
<i>B</i> -factors (Å ²)						
Protein	25.65	85.03				
Ligand/ion	-	-				
Water	31.05	-				
R.m.s. deviations						
Bond lengths (Å)	0.01473	0.0105				
Bond angles (°)	1.80	2.01				
Ramachandran Plot Residues						
In most	95.96	91.92				
favourable regions						
(%)						
In allowed regions	4.04	7.40				
(%)						
Outliers	0.0	0.68				
PDB code	7OH2	70LF				

Numbers in brackets refer to data for highest resolution shells.

Table S6: Data collection and refinement statistics for 6-oxo-glucose reductase SmoB (Atu3278)

	Atu3278-apo (YSBLIC3C)	Atu3278• NADPH	Atu3278•NADP H•Glc	Atu3278-apo (pET29a)		
Data collection			·			
Space group	C 2 2 2 ₁	P 63	P 63	P 2 ₁ 3		
Cell dimensions						
<i>a</i> , <i>b</i> , <i>c</i> (Å)	89.34, 137.6,	82.93, 82.93,	82.85, 82.85,	108.93, 108.93,		
	153.8	77.52	77.26	108.93		
α, β, Υ (°)	90,90,90	90,90,120	90,90,120	90,90,90		
Resolution (Å)	1.77	1.27	1.50	1.83		
R _{merge}	0.120(1.877)	0.108(0.932)	0.079(1.548)	0.189(4.196)		
R _{pim}	0.064(0.99)	0.046(0.799)	0.035(0.801)	0.039(0.865)		
Ι/σΙ	11.2(1.2)	9.6(0.6)	14.7(1.4)	14.1(1.0)		
Completeness	100(100)	98.6(85.5)	100(99.9)	100(100)		
(%)						
Redundancy	8.4(8.3)	10.1(3.2)	11.9(9.0)	24.5(24.9)		
Refinement			·			
Resolution (Å)	1.77	1.27	1.50	1.83		
No. unique	92215	78502	48123	38208		
reflections						
R _{work} / R _{free}	0.18/0.21	0.18/0.20	0.17/0.19	0.24/0.27		
No. atoms						
Protein	6698	2179	2178	2237		
Ligand/ion	0	48	60	10		
Water	536	307	230	183		
<i>B</i> -factors (Å ²)						
Protein	29.06	17.71	22.22	34.32		
Ligand/ion	-	15.67	24.01	54.13		
Water	32.23	28.9	31.67	37.34		
R.m.s. deviations						
Bond lengths (Å)	0.0151	0.0178	0.0120	0.0145		
Bond angles (°)	1.90	2.11	1.73	1.810		
Ramachandran Plot Residues						
In most	97.97	98.96	99.31	97.97		
favourable						
regions (%)						
In allowed	2.03	1.04	0.69	1.36		
regions (%)						
Outliers	0	0	0	2		
PDB code	7BBZ	7BC0	7BC1	7BBY		

structures. Numbers in brackets refer to data for highest resolution shells.

sugar	retention time	ion m/z	relevant carbons
glucose	17.52	259	4,5,6
glucose	17.52	284	1,2,3,4
glucose	17.52	173	5,6
glucose	17.52	370	1,2,3,4,5

 Table S7: Glucose fragmentation data (for aldonitrile pentapropionate glucose).