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Fig. S1 A) Experimental protein expression for the 178 positions of the RBD as a function of the predicted effect

by the IND model. The effects of 3355 single mutations in the 178 positions of the RBD measured by the

experimental protein expression in the x-axis and predicted by the DCA model (B) and the IND model (C) in the

y-axis.



Fig. S2. A) Distributions of observed variability using the genomes available at July 2020, December 2020 and

May 2021. The vertical dashed lines represent the median of each distribution and is used as a cutoff to

distinguish between low- and high-variability positions. B) AUC for ROC curves using cutoffs of variability in the

interval [1,56]. The mean AUC is shown in the legend.

Fig S3. ROC curves for positions with low versus high observed variability for the 3 predictors with observed

variability derived from all the SARS-CoV-2 genomes available at May 2021 (A), December 2020 (B), and July

2020 (C). ROC curves for positions with low versus high observed variability, where the observed variability is

quantified with the SARS-CoV-2 genomes available at July 2020, December 2020, and May 2021 for the

prediction coming from the DCA model (D), IND model (E), and protein expression (F).



Fig. S4. Observed variability (estimated with GISAID data till May 2021, panels A and C; December 2020, B and

D; July 2020, E) compared to the DCA predictions. The whole range of observed variabilities is shown in panels

A, B, and E. In panels C and D, a more restricted interval of observed variabilities is shown to improve the

visibility.



Fig. S5. A) Scatter plot between protein expression and DeepSequence scores. Comparison between observed

variability and DeepSequence scores for the whole range of observed variability in May 2021 (B) and in the

interval of [0,80] (D). C) DeepSequence scores as a function of the DCA model scores.



Fig. S6. The IEDB-Response Frequency as a function of the IND mutability score (upper panel) or protein

expression (lower panel) for each position of the RBD domain. The enrichment of VOC/VOI mutations becomes

less pronounced as compared to the DCA score.



Fig. S7 - The IEDB-Response Frequency versus the DCA mutability score with updated IEDB response frequencies

(data download 22 Nov 2021). We highlight in red the positions that are mutated in the 5 current VOCs, as of

Dec 2021, indicated in https://cov-lineages.org/index.html: B.1.1.7 Alpha (Panel A), B.1.351 Beta (Panel B), P.1

Gamma (Panel C), B.1.617.2 Delta (Panel D), B.1.1.529 Omicron (Panel E) . We observe a pronounced

enrichment for the Omicron variant in the upper right corner, i.e. positions that are likely to mutate (high DCA

score), and whose mutations may cause immune escape (high IEDB - RF).  Interestingly,  the model predicts the

positions S371, S373, S375, G496  - mutated in the Omicron variant (Panel E) -  to be deleterious, even if they

are neutral in the expression experiments (Panel F). As discussed in the main text, this is likely to be due to (a)

limited datasets of functional sequences or (b) mutations without effect on expression that may still be

deleterious for overall protein fitness. Currently available data are not able to discriminate between these two

possibilities.

https://cov-lineages.org/index.html
https://cov-lineages.org/global_report_B.1.1.7.html
https://cov-lineages.org/global_report_B.1.351.html
https://cov-lineages.org/global_report_P.1.html
https://cov-lineages.org/global_report_B.1.617.2.html
https://cov-lineages.org/global_report_B.1.1.529.html


Fig S8. The IEDB-response frequency considering only B (upper panel) and T (lower panel) cell epitopes, and the

DCA mutability score for each position of the RBD domain.



Fig S9. T cell immunoprevalent epitopes, i.e. predicted to be shared by at least the 10%(upper panel) and

40%(lower panel) of the world population. No clear correlation patterns between DCA and the IEDB emerge

with the data available to date. Interestingly, no positions mutated in VOIs/VOCs were identified in T cell

immunoprevalent epitopes.



Fig S10. ROC curve for the DCA (blue) and IND (green) models for all 39 PFAM domains of the SARS-CoV-2

proteome, dividing between (upper panel) domains with more than 50 effective sequences (17 domains, 3491

positions) and (lower panel) less than 50 effective sequences (26 domains, 4546 positions). In bold, the mean

ROC curves.



Fig S11. Spearman’s correlation between the DCA model and the observed variability using different thresholds

of coverage (filtering out sequences that do not cover that fraction of the reference sequence) (A) or the

reweighting parameter (B) for model training.



Table S1. List of Pfam protein domains in the SARS-CoV-2 proteome, and the number of effective sequences and

positions in the corresponding MSA

Protein/ORF Pfam identifier Pfam accession N. eff. seq. N. positions

Envelope CoV_E PF02723.15 53 66

Membrane CoV_M PF01635.19 40 201

Nucleocapsid CoV_nucleocap PF00937.19 48 341

ORF1a bCoV_NAR PF16251.6 19 98

ORF1a bCoV_NSP1 PF11501.9 12 135

ORF1a bCoV_NSP3_N PF12379.9 9 171

ORF1a bCoV_SUD_C PF12124.9 2 64

ORF1a bCoV_SUD_M PF11633.9 10 143

ORF1a CoV_NSP10 PF09401.11 25 123

ORF1a CoV_NSP2_C PF19212.1 22 167

ORF1a CoV_NSP2_N PF19211.1 25 241

ORF1a CoV_NSP3_C PF19218.1 58 488

ORF1a CoV_NSP4_C PF16348.6 33 96

ORF1a CoV_NSP4_N PF19217.1 58 354

ORF1a CoV_NSP6 PF19213.1 71 262

ORF1a CoV_NSP7 PF08716.11 31 83

ORF1a CoV_NSP8 PF08717.11 30 197

ORF1a CoV_NSP9 PF08710.11 33 113

ORF1a CoV_peptidase PF08715.11 103 319

ORF1a Macro PF01661.22 10075 107

ORF1a Peptidase_C30 PF05409.14 41 291

ORF1b CoV_Methyltr_1 PF06471.13 27 522

ORF1b CoV_Methyltr_2 PF06460.13 31 296

ORF1b CoV_NSP15_C PF19215.1 42 153

ORF1b CoV_NSP15_M PF19216.1 40 97

ORF1b CoV_NSP15_N PF19219.1 38 61

ORF1b CoV_RPol_N PF06478.14 31 352

ORF1b RdRP_1 PF00680.21 61 489

ORF1b Viral_helicase1 PF01443.19 81660 225

ORF3a bCoV_viroporin PF11289.9 3 274

ORF6 bCoV_NS6 PF12133.9 4 61

ORF7a bCoV_NS7A PF08779.11 8 106

ORF7b bCoV_NS7B PF11395.9 3 42

ORF8 bCoV_NS8 PF12093.9 4 118

Spike bCoV_S1_N PF16451.6 103 305



Spike bCoV_S1_RBD PF09408.11 83 178

Spike CoV_S1_C PF19209.1 6231 57

Spike CoV_S2_C PF19214.1 50 40

Spike CoV_S2 PF01601.17 79 522

Table S2. Pfam domains and the number of effective sequences in the MSAs obtained starting with full-length

protein sequence or the domain sequence. In bold, the domains where there is a substantial difference.

Protein/ORF Pfam identifier N. eff. seqs. full-length N. eff. seqs. domain

Envelope CoV_E 53 49

Membrane CoV_M 40 37

Nucleocapsid CoV_nucleocap 48 47

ORF3a bCoV_viroporin 3 3

ORF6 bCoV_NS6 4 4

ORF7a bCoV_NS7A 8 8

ORF7b bCoV_NS7B 3 3

ORF8 bCoV_NS8 4 4

Spike bCoV_S1_N 103 48

Spike bCoV_S1_RBD 83 26

Spike CoV_S1_C 123 6231

Spike CoV_S2_C 50 7

Spike CoV_S2 78 79

Table S3. Strongest inter-domain epistatic couplings for pairs of domains with a maximum (out of all the

possible inter-domain epistatic couplings between the pair of domains) coupling higher than 0.5.

First
protein/ORF

First
domain

Second
protein/ORF

Second
domain

Max.
coupling

ORF1a CoV_NSP2_N ORF3a bCoV_viroporin 0.85

ORF3a bCoV_viroporin ORF8 bCoV_NS8 0.63

ORF1a CoV_RPol_N Spike bCoV_viroporin 0.57

ORF1b CoV_NSP2_N ORF3a bCoV_S1_RBD 0.56



SI text

Sequence data

Sequence data in FASTA format were downloaded from the following databases: GISAID (release 16

May 2021), Uniref90 (ref, release December 2020), ViPR (downloaded in September 2020), NCBI viral

genomes (downloaded in September 2020) and MERS coronavirus database ( downloaded in

September 2020). The amino acid sequence of isolate Wuhan-Hu-1 was used as the reference

proteome (genbank identifier: MN908947). Protein domains were detected using the HMMER suite

(ref, version 3.1b2) and the HMM profiles from Pfam. After running the command hmmsearch from

the HMMER suite (ref, version 3.1b2) on the reference proteome using the HMM profiles of

SARS-CoV-2 provided by Pfam, the domain amino acid sequence of the full-length protein were

trimmed accordingly to the hmmsearch output to obtain a reference sequence for each domain. We

kept all non-overlapping pfam domains with a domain e-value lower than .10−5

A global sequence database including distant species was built by combining Uniref90, ViPR,

NCBI viral genomes and MERS coronavirus database. Starting with the domain sequences, we built

MSAs by running jackhmmer with 5 iterations. For the proteins not belonging to the ORF1ab (which

is too long to apply this procedure), we also built MSAs with jackhmmer with 5 iterations starting

with the full-length reference protein sequences instead of domain sequences. The resulting

full-length protein MSAs were decomposed and trimmed to domain alignments by keeping the

corresponding columns. When two MSAs from the global database were obtained (one coming from

the full-length sequence and another coming from the domain sequence), the one with the highest

number of sequences non-redundant at 80% was kept for further analysis for each Pfam domain.

Although both strategies usually recover a similar number of sequences, there exists a substantial

difference for most domains in the Spike protein (Table S2), allowing us to increase the available

sequence data in their MSAs. As quality controls, all sequences including non-standard amino acids

were removed as well as repeated sequences or sequences covering less than 80% of the reference

domain sequence. To avoid a bias toward the reference sequence, all sequences closer than 90%

sequence identity to the Wuhan-Hu-1 reference were filtered out.

For the GISAID database, an MSA for each domain sequence was built using the command

jackhmmer from the HMMER suite with only 1 iteration as the GISAID sequences are very similar to

those in the reference proteome. We filtered sequences including non-standard amino acids,

coverage lower than 80%, and those belonging to a non-human host. Only non-identical sequences

were considered to avoid the strong sequencing bias due to the highly diverse number of genomes

sequenced in different countries. The variability of each position was estimated by counting the

number of sequences that have a different amino acid in the corresponding position compared to

the reference.



Co-alignments of domains

Starting with the 39 raw alignments of domains constructed using both the alignments of distant and

close sequences (Materials and methods), we build 741 co-alignments (all possible combinations of

two domains) by joining the sequences coming from the same genome (thanks to the genome

accession number). Co-alignments with fewer than 50 effective sequences were discarded to

increase the reliability of the predictions. Note that the number of effective sequences is higher in

this analysis compared to the mutability predictions because of the large number of close sequences.

From the remaining 601 co-alignments, we computed the models as in case of single domains (see

Material and methods) and obtained the APC scores from the DCA model between each pair of

inter-domains positions. The pairs of domains with at least one APC score higher than 0.3 are linked

in Fig. 4D. The 4 predictions with the highest APC scores can be found in Table S3.


