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Supporting Information Text37

In this Supporting Information (SI), we first discuss the numerical methods that were used in order38

to simulate the four scenarios and to determine their time complexity exponents. In particular, in39

the paragraph ‘Just-in-sequence scenario’, we show how the concentrations for the various species in40

the just-in-sequence scenario were determined. In the next section, we discuss the Master equation of41

the system and show that the heterogeneity (distinguishability) of the building blocks is irrelevant for42

the dynamics in the limit of large particle numbers. Subsequently, we derive analytic estimates for43

the time complexity and control parameter exponents using mathematical calculations and scaling44

arguments. These analytic estimates for the exponents are the basis for the ‘theoretical values’45

presented in the main text. Afterwards, we demonstrate that our results, in particular the time46

complexity and control parameter exponents, are robust to modifications of the model and variations47

in the parameters. Finally, in order to demonstrate the broad applicability of the just-in-sequence48

scenario, we show how the supply strategy can be used in practice for the concrete example of49

artificial T=1 capsid assembly.50

1. Numerical methods and implementation of the scenarios51

Simulation. Particle-based, stochastic simulations of the reaction kinetics of the system were per-52

formed using Gillespie’s algorithm (1). In the simulation, we store the numbers of active and inactive53

monomers of the various species in two separate linear arrays of length S. We only consider binding54

reactions of a species i with species i ± 1 in the one-dimensional case, additionally with i ± L in the55

two-dimensional case and additionally with i±L2 in the three-dimensional case, see Fig. 1. All other56

binding rates are assumed to be 0. In the one-dimensional case, periodic boundary conditions were57

implemented by allowing binding reactions also between species 1 and S. Hence, the final structures58

represent closed rings. In the higher dimensional cases, open boundaries were implemented by59

reducing the number of possible binding partners of the boundary species accordingly.60

When a complex is initiated from the dimerization reaction of two monomers, we reserve for the61

complex a boolean array of size S, which contains ones for the species that are contained in the62

complex and zeros for all other species. When additional species subsequently attach to (or detach63

from) the complex, the respective sites are set to one (zero) until the complex is complete and64

contains no more zeros. In this way, the simulation respects all possible configurations of clusters65

that can emerge. In order to speed up the simulation, we store for each species i an array which66

references all complexes to which species i can attach. The total attachment rate of species i is67

thereby given by the product of the rate ν with the number of active monomers of species i and the68

total number of binding sites in complexes that species i can bind to. Likewise, the total dimerization69

rate of species i is given by the product of the dimerization rate with the number of monomers70

of species i and the total number of monomers species i can bind to. Note that in summing the71

dimerization rates of individual species in order to calculate the total dimerization rate of all species,72

a factor of 1/2 has to be included in order to avoid double counting. Whenever a species dimerizes or73

attaches to a complex, its number of monomers is reduced by one unit and when a species detaches74

from a complex, its number is increased by one unit.75

In order to keep track of the detachment rates of the constituents of each complex, we associate76

with each complex additional arrays that store the indices of the constituents that detach, respectively,77

with rate δ1, δ2, δ3... . Depending on the chosen values for A and EB, however, typically some78

δn = Ae−nEB become so small that they effectively do not influence the assembly dynamics and can79

therefore also be neglected in order to increase efficiency. For example, rates can be set to zero if80
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the expected total number of events they will invoke during the simulated time span is much lower81

than 1. In any case, we assumed that constituents that have the maximum number of neighbors in82

a structure are always stable by setting δ2d to zero (where d is the dimensionality of the structure).83

This ensures that complete structures are always stable, which allows us to directly compare the84

various self-assembly strategies. Note that for one-dimensional structures, δ2d = 0 implies that the85

structures do not break up in the middle but only grow and shrink by adding/detaching single86

monomer units at the ends. This is a reasonable assumption because by allowing structures to also87

break up in the middle, the assembly process would be extremely inefficient as larger structures88

would become increasingly more unstable. With the detachment events for a complex organized in89

the above-mentioned array structures, it is straight forward to calculate the total detachment rate90

for each complex and with it the total detachment rate for the system.91

This was a description of the basic structure of our simulation. Additional cross-references between92

the various data structures were implemented to enable efficient updating of the respective rates93

and events after an event has happened. Optimizing the efficiency of the simulation was necessary94

because, for example, the reversible binding scenario generally requires a large number of Gillespie95

steps (up to several billion per run for the large systems) due to the reversibility of binding reactions.96

With these optimizations, the simulation written in C++ was able to perform more than one million97

Gillespie steps per second on a 3.1 GHz CPU. The C++ code of the simulation is available online.98

The method of ‘homogenization’. We show in chapter 2 of this supplement, that in the case of99

periodic boundary conditions of the structures, the distinguishability (heterogeneity) of the species is100

irrelevant for the dynamics of the activation, dimerization and reversible binding scenario in the limit101

of large particle numbers. Therefore, these systems can also be simulated with only a single species102

that can occupy any site within a cluster (homogeneous system). The advantage of simulating a103

homogeneous rather than a heterogeneous system is that stochastic effects arising from fluctuations104

in the concentrations of the different species are thereby suppressed (2). Hence, in order to observe105

deterministic behavior, a smaller total number of particles is required for homogeneous systems,106

increasing the efficiency of simulations. We exploit this increase of efficiency in our simulations of107

the activation scenario, where stochastic effects are particularly strong. In order to simulate the108

system as a homogeneous system while leaving the structure of the simulation and all data types109

unchanged, two simple steps can be performed:110

• Make monomer creation and annihilation act on all species simultaneously (i.e. if a monomer111

of one species is added or subtracted, add or subtract one for all other species as well),112

• rescale the influx rate α and dimerization rate µ by S−1.113

The first step constrains all species to equal concentrations while the second rescales the rates as if114

there were only a single species. Computationally, however, it is more efficient to count only the115

monomers of one species explicitly instead of acting on S species simultaneously.116

Note, in particular, that in this way complexes are still represented by the same data structure (i.e.117

arrays of length S filled with zeros and ones as described above) but any site can now be occupied118

by any monomer, irrespective of its species.119

In the case of periodic boundary conditions of the structures, the homogeneous system is shown120

in chapter 2 to behave exactly like the heterogeneous system in the limit of large N . Hence, for121

one-dimensional structures, which we implemented with periodic boundary conditions, this approach122

is exact. In the case of non-periodic boundary conditions, however, the ‘homogenized’ system is123

only an approximation to the heterogeneous dynamics because not all species are equivalent any124
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more due to the presence of the boundary. Nevertheless, Figure S2 shows that this approximation125

is indeed very accurate for higher dimensional structures by comparing the deterministic behavior126

for systems with small structure size S. The overall accuracy of the approximation in the case of127

non-periodic boundaries is consistent with the finding that the boundary conditions as such do not128

have a big impact on the assembly time (see Fig. S5). We refer to this method of approximating129

a heterogeneous system as a homogeneous system as ’method of homogenization´. We used this130

method in particular for the simulations of the activation scenario in order to reduce stochastic131

effects and thereby avoid the necessity of simulating huge numbers of particles for the heterogeneous132

systems.133

Note that, in order to investigate the system’s deterministic behavior, in principle, one could134

also formulate and solve the chemical rate equations (ordinary differential equations). However,135

this approach would require a characterization of all possible cluster configurations. In other136

words, each state of the boolean array which describes a possible cluster configuration must be137

represented by a separate differential equation (‘state-based’ approach). Due to the large number138

of possible configurations for higher dimensional structures, this is not feasible without further139

approximations. In contrast, ‘homogenization’ allows to stick with a particle-based description and140

hence is significantly more efficient as it requires only the specification of a subset of all possible141

configurations (limited by the total number N of particles present in the system).142

In the following, we discuss the parameter settings and some particularities of the individual143

scenarios that are relevant for their simulation. In the subsequent section, we discuss the Master144

equations of the system and we show the equivalence between the heterogeneous and the homogeneous145

system for large particle numbers.146

Reversible binding scenario. For the reversible binding scenario, the parameters were set as follows:147

µ = ν = 1, α = ∞ (i.e. all monomers are available right from the outset), Ti = 0 ∀i and a variable148

binding energy per contact EB that fixes the detachment rates according to δn = Ae−nEB (Arrhenius’149

law). We fixed the pre-exponential factor at A = 1018Cν, which appears to be a realistic choice in150

the light of typical experimentally measured values for A (3, 4). However, we confirmed that the151

choice of the constant A does not qualitatively affect our results (in particular it does not affect the152

exponents) as long as A is large, and hence δ1 ≫ δn>1. If A is small (for example A = 106Cν or153

smaller), or when δn values are chosen independently of one another, the minimal assembly time154

and the measured exponents can differ slightly, as then δ2 is no longer negligible compared to δ1 (see155

Fig. S1).156

We simulated the reversible binding scenario with particle number N = 500. It is important that157

N is chosen large enough, because for small N the measured assembly time fluctuates very strongly158

between independent runs and the average assembly time increases with N . Only if N is large159

enough does the average assembly time (measured relative to the reactive timescale Cν as in Fig. 2)160

converge and become independent of N . We verified that for N = 500 the remaining N -dependence161

is negligible. Alternatively, the method of homogenization described above can be used to reduce162

the role of fluctuations resulting from finite particle numbers and therefore allows the system to163

be simulated with fewer particles. In particular, the reversible binding scenario in one dimension164

can be simulated faster and more accurately in this way with a five-fold lower total particle number165

(Ntot = 100S).166

Generally, simulation of the reversible binding scenario is computationally much more expensive167

than that of the irreversible scenarios, since many more steps are generally needed owing to the168

fast detachment processes. Partly, a single run needed several billion Gillespie steps to complete. It169

is therefore useful to reduce the particle number in the simulations, as long as the results remain170
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accurate.171

We found that with N = 500, the standard deviation in the assembly time between different runs172

is already rather small compared to the mean. Thus, averaging over a rather small number of173

independent runs (between 1 and 10) is usually sufficient. We generally found that self-averaging of174

the system by choosing a large particle number N is usually more effective than averaging over a175

large number of independent runs. The quality of the statistics can be controlled either with the176

help of the empirical standard deviation in the interesting observable (yield or assembly time) or177

visually by verifying that neighboring data points line up into smooth curves as in Fig. 3B.178

Dimerization scenario. For the dimerization scenario we used α = ∞, Ti = 0 ∀i, δn = 0 and179

a variable dimerization rate µ as well as N = 1000. The dimerization scenario can be simulated180

most efficiently, because far fewer steps are needed due to the irreversibility of binding reactions.181

Furthermore, stochastic effects do not play an important role (2), so N can be chosen to be relatively182

small. Conversely, fluctuations in the assembly time between independent runs decrease with183

increasing N , allowing for greater accuracy in the determination of the exponents.184

Activation scenario. We defined the activation scenario by µ = ν = 1, Ti = 0 ∀i, δn = 0 and a185

variable influx rate α. Since the momentary concentration of active monomers is generally small186

for a low influx rate, the activation scenario is strongly affected by stochastic effects (see Ref.187

(2) for details). Furthermore, the magnitude of these stochastic effects strongly depends on the188

number of species, and hence on the size S of the target structure. Consequently, depending on189

S, a large number of particles N may be required to achieve a yield ≥ 90% in the activation190

scenario. By “homogenizing” the system, i.e. treating species as indistinguishable and simulating a191

homogeneous system instead of a heterogeneous system as described above, the computational cost192

of the simulation can be drastically reduced using a much smaller total number of particles.193

In the case of one-dimensional structures, which were implemented with periodic boundary194

conditions, the homogenized simulation is exact, in the sense that it reproduces the same yield and195

assembly time as obtained for the heterogeneous system in the limit of large N . In the case of196

open boundaries of the structures which have been implemented for the higher dimensional cases,197

“homogenization” yields an accurate approximation (see Fig. S2). We exploited this method to198

simulate the activation scenario efficiently with a total number of particles Ntot = 1000S, as in the199

dimerization scenario.200

Note that for two-dimensional structures in the activation scenario, apparently the approximation201

slightly underestimates the minimal assembly time (see Fig. S2). Hence, the time complexity202

exponent for heterogeneous 2D structures might in reality be even closer to its theoretic value than203

predicted by the approximation.204

Just-in-sequence scenario. For the JIS scenario, we set µ = ν = 1, α = ∞, δn = 0 and control205

the time points Ti at which the different species are supplied. Species with identical Ti define a ‘batch’.206

We only considered the case of equidistant intervals ∆T between successive batches. The supply207

protocol (see Fig. 5C) assigns the species to the batches and specifies the concentrations in which the208

species are supplied. In this work, we exclusively used the “onion-skin supply protocol” depicted in209

Fig. 5C, where structures grow radially from the center outwards. This protocol minimizes the total210

number of batches. As discussed in the main text, in the JIS scenario, choosing the concentrations211

of the species in specific, non-stoichiometric ratios is crucial in reducing competition for resources212

among the growing structures and enhancing the efficiency of assembly. In order to compensate213

for the increasing number of clusters that form through excess dimerization events, the number of214
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resources supplied is increased with each batch. This comes at the price, insofar as the maximum215

yield is limited to a value less than 1 corresponding to the number of initial seeds. The desired216

effect is that each species can be provided in an amount that allows all the structures currently217

present in the system to grow, thus reducing competition for resources to a minimum. The most218

efficient usage of resources is therefore achieved if all species are provided in the minimal amount so219

that all existing structures can grow. If a single species is provided in excess, additional nucleation220

events will be triggered and, consequently, all subsequent species must also be supplied in larger221

amounts in order to keep competition at a minimum. This would result in a lower resource- and time222

efficiency. The optimal concentration of a species, which allows to achieve maximal time efficiency,223

is therefore determined by the total number of structures formed during previous assembly steps224

that are capable of binding the species that has just been supplied. More precisely, for each species225

provided in the bth batch, we supply a number226

Nb = (1 − p)N + pSN
Zb

Ztot
[1]227

of monomers, where Z1 = 0 and Zi < Zj for i < j, see below. The first contribution, (1 − p)N ,228

which is identical for all species, is the basal particle number, which defines the maximum number229

of complete structures that can be built. The second contribution is the excess concentration, which230

provides additional resources for the growing total number ∼ Zb of complexes that have already231

formed through excess dimerization events. Here, pSN with p < 1 is the total amount of resources232

that is distributed unevenly among the species, and Zb/Ztot is the fraction of that amount assigned233

to the individual species supplied in the bth batch. The normalization factor Ztot := ∑S
i=1 Zb(i), with234

b(i) denoting the batch number of species i, sums the Zb over all species, and thereby fixes the235

average particle number N per species: N = 1
S

∑S
i=1 Nb(i) = (1 − p) N + pN = N . The basal fraction236

of resources (1 − p) determines the maximum yield, and hence should be at least 0.9 to meet our237

criterion for the assembly time. We found that p = 0.07 minimizes the assembly time T90 and,238

therefore, we used this value in the simulations.239

The success of the JIS strategy crucially depends on the choice of the numbers Zb. Optimally, in240

order to minimize competition and achieve maximal time efficiency, the excess concentrations Zb241

should reflect the number of the excess complexes relevant for a species supplied in the bth batch (see242

Fig. S3). Approximately, the number of previous excess dimerization events will be proportional to243

the total number of species supplied previous to the bth batch, i.e. provided by the batches 1 to244

b − 1. Since in the onion-skin protocol, species with batch number less than b form a d-dimensional245

volume (see Fig. 5C), for large b we obtain approximately: Zb ∼ bd. Correcting this count for small246

b (see Fig. S3) we can further improve the efficiency by setting:247

Zb ∼

 0 if b = 1
(b + 1)d if b > 1

[2]248

for two- and three- dimensional structures and Zb ∼ (b − 1) in the 1D case. It might be possible to249

improve the efficiency further by assigning particle numbers Ns individually for each species, rather250

than identically for all species in the same batch. However, we already achieve very good results251

with this choice of Zb. On the other hand, with all species in a batch being supplied in identical252

particle numbers, those species could likewise be indistinguishable. In this way, a regular target253

structure could be designed with only two distinct species, which alternately assemble the “skins of254

the onion” (the “homogenized” version of the JIS scenario; also see the example on capsid assembly255
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in section 5 of this SI). Furthermore, note that, if the particle numbers Nb for the different species256

are chosen appropriately on average, the system becomes robust to external noise up to a certain257

limit (see Fig. 5E and Fig. S7B).258

For reasons of computational efficiency, we would like to simulate the system with a small (average)259

particle number N. Note, however, that the implementation of non-stoichiometric concentrations260

requires a minimum N due to the discreteness of particle numbers: In order to ensure that the right-261

hand side of Eq.(1) reasonably maps onto integer values for the numbers Nb, the factor pSN/Ztot262

that multiplies Zb should be of the order at least O(1). In order to find a rough condition for N , we263

therefore estimate the normalization factor Ztot:264

Ztot :=
S∑

i=1
Zb(i) =

bmax∑
b=1

m(b)Zb ≈
∫ bmax

0
m(b)bddb , [3]265

where in the second step we change the sum over species to a sum over batches, with m(b) denoting266

the number of species in the bth batch (‘density of species’) and bmax = d
2L being the total number267

of batches (see Fig. 5C). Note that, in the onion-skin protocol, species with the same batch number268

lie on rhomboidal shapes around the center species. Furthermore, the densities are symmetric about269

bmax/2 (batches ii and iii have the same densities as v and vi, respectively, in the supply protocol270

depicted in Fig. 5C). Hence, we approximate the density of species by271

mb ∼

abd−1 b ≤ bmax
2

a(bmax − b)d−1 b > bmax
2 ,

[4]272

where the constant a is determined from the condition
∫ bmax

0 m (b) = S. Performing the calculation273

yields Ztot ∼ S2. Hence, in order to guarantee that the prescribed ratios of the particle numbers Nb274

can be met, the average particle number should be N ≳ S
p
.275

We used N = 104 in our simulations of the JIS scenario with non-stoichiometric concentrations,276

with p = 0.07 and a structure size S of maximally 103. By simulating individual runs with a larger277

particle number N = 105, we verified that the N -dependence of the assembly time is negligible for278

N ≥ 104. The simulations of the JIS scenario with stoichiometric concentrations were performed279

with N = 105, because the larger time intervals ∆T led to very small momentary concentrations,280

and hence required a larger overall particle number to achieve N -independent assembly times.281

Determination of T min
90 and the optimal parameter. In order to determine the minimal assembly282

time for a specified scenario and target structure, we first varied the respective control parameter283

roughly to find an estimate for its optimal value that minimizes the assembly time in the simulation.284

Afterwards, we sampled the parameter range around the estimated parameter value thoroughly by285

varying the control parameter in equidistant increments of approximately 2-4 percent precision. For286

each parameter value, the assembly time was averaged over several independent runs (50-100 for287

the irreversible scenarios and 5-50 for the reversible binding scenario). The minimal assembly time288

T min
90 was then determined as the minimum of the averaged assembly times, and the corresponding289

parameter value was chosen as the optimal parameter value. If the minimum of the assembly times290

was attained at the boundary of the sampled parameter range, we increased the range in the direction291

of the respective boundary and simulated additional parameter values. We repeatedly increased the292

range (or modified the parameter estimate) until we found a minimum that was attained somewhere293

in the middle of the sampled range to ensure that the global minimum has been identified.294
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2. Master equation and the irrelevance of the heterogeneity of the system295

Here we show the moment equations resulting from the stochastic Master equation that describe the296

assembly kinetics for one-dimensional structures. The higher dimensional cases are conceptually297

similar to the one-dimensional case but do not allow for a simple representation of all possible cluster298

configurations. Therefore, we restrict ourselves to illustrating the mathematical framework only299

for the 1D case. The moment equations are subsequently used to show that for structures with300

periodic boundaries, the heterogeneity (distinguishability of species) is irrelevant in the limit of large301

N . This is the basis of our ‘method of homogenization’, which exploits the equivalence between302

heterogeneous and homogeneous systems in order to increase the efficiency of the simulations.303

For one-dimensional structures, each possible kind of polymer can be characterized by two variables:304

the length ℓ of the polymer, and the monomer species s at its right end which will be referred to305

as the species of the polymer. We denote by ns
ℓ(t) with 2 ≤ ℓ < L and 1 ≤ s ≤ S the number of306

polymers of size ℓ and species s in the system at time t. Furthermore, ns
0 and ns

1 denote the number307

of inactive (not yet added) and active monomers of species s, respectively, and nL the number of308

complete structures.309

The subsequent set of equations can then be interpreted in two different ways: Either all terms
with a species index (upper index) outside the range 1 ≤ s ≤ S are considered as zero or species
indices are taken modulo S. The first case describes the self-assembly of structures with an open,
non-periodic boundary. In contrast, the second case describes the assembly process of a periodic
structure, i.e. a ring in this 1D case (the case considered in the main text). We show in section 4
of this SI that the choice of the boundary condition only has a small effect on the assembly time
and, in particular, does not affect the control parameter and time complexity exponents. By ⟨...⟩
we indicate (ensemble) averages. The system governing the evolution of the first moments (the
averages) of the {ns

ℓ} is then given by:

d

dt
⟨ns

0⟩ = −α Θ(t − Ts)⟨Θ(ns
0)⟩ , [5a]

d

dt
⟨ns

1⟩ = α Θ(t − Ts) ⟨Θ(ns
0)⟩ − µ

(
⟨ns

1n
s+1
1 ⟩ + ⟨ns

1n
s−1
1 ⟩

)
− ν

L−1∑
ℓ=2

(
⟨ns

1n
s+ℓ
ℓ ⟩ + ⟨ns

1n
s−1
ℓ ⟩

)
+ δ

L−1∑
ℓ=2

(
⟨ns+ℓ−1

ℓ ⟩ + ⟨ns
ℓ⟩

)
,

[5b]

d

dt
⟨ns

2⟩ = µ ⟨ns−1
1 ns

1⟩ − ν
(
⟨ns−2

1 ns
2⟩ + ⟨ns

2 ns+1
1 ⟩

)
+ δ

(
⟨ns

3⟩ + ⟨ns+1
3 ⟩ − 2⟨ns

2⟩
)

, [5c]

d

dt
⟨ns

ℓ⟩ = ν
(
⟨ns−ℓ+1

1 ns
ℓ−1⟩ + ⟨ns−1

ℓ−1 ns
1⟩ − ⟨ns−ℓ

1 ns
ℓ⟩ − ⟨ns

ℓ ns+1
1 ⟩

)
+ δ

(
⟨ns

ℓ+1⟩ + ⟨ns+1
ℓ+1⟩

)
1{ℓ≤L−2} − 2δ⟨ns

ℓ⟩ , 3 ≤ ℓ < L ,
[5d]

d

dt
⟨nL⟩ = ν

L∑
s=1

[
⟨ns−L+1

1 ns
L−1⟩ + ⟨ns−1

L−1 ns
1⟩

]
. [5e]

Eq. (5a) and the first term in Eq. (5b) describe the influx of monomers of species s into the system310

starting at time Ts with a constant rate α until all inactive monomers have been added (which, on311

average, will be at time Ts + 1
α
). Here, Θ denotes the Heaviside function. Besides the influx of312

monomers, the temporal change in the number of active monomers (Eq. (5b)) is governed by the313

following processes: dimerization of monomers at rate µ, binding of monomers to the left and to the314

right end of existing polymers at rate ν and detachment of monomers from the left and right end of315

polymers with rate δ.316
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Equations (5c) and (5d) describe the dynamics of dimers and larger polymers of size 3 ≤ ℓ < L,317

respectively. The terms account for dimerization of active monomers as well as all possible kinds of318

reactions of polymers with monomers, together with detachment of monomers from polymers. The319

indicator function 1{ℓ≤L−2} in Eq. (5d) (which equals 1 if the condition ℓ ≤ L − 2 is satisfied and 0320

otherwise) excludes source terms that would account for detachment from completed structures,321

which are assumed to be stable. Finally, the complete structures form an absorbing state and,322

therefore, include only the respective gain terms (cf. Eq (5e)).323

For sufficiently large particle numbers N , correlations between the particle numbers {ns
ℓ} in324

Eq. (5) can be neglected and the two-point correlator can be approximated as the product of the325

corresponding mean values (mean-field approximation):326

⟨ns
i n

k
j ⟩ = ⟨ns

i ⟩⟨nk
j ⟩ ∀s, k [6]327

Note that, in the case of periodic boundary conditions and if Ti = Tj ∀i, j, all species are equivalent.328

Mathematically, this is reflected by the invariance of Eq. (5) with respect to relabelling the upper329

indices if Ti = Tj. This symmetry of the system allows us to drop the distinction by species and to330

define the homogeneous concentrations331

⟨ns
ℓ⟩ = ⟨nk

ℓ ⟩ := cℓ V ∀s, k, [7]332

where V is the reaction volume. Setting Ti = Tj = 0 and rescaling the rate constants µ and ν by
a factor of V , Eq. (5) thereby reduces to a set of rate equations for a homogeneous (one species)
system in the deterministic limit N → ∞:

d

dt
c0 = −α Θ(c0) , [8a]

d

dt
c1 = α Θ(c0) − 2µc2

1 − 2ν
L−1∑
ℓ=2

cℓc1 + 2δ
L−1∑
ℓ=2

cℓ , [8b]

d

dt
c2 = µ c2

1 − 2ν c1c2 + 2δ (c3 − c2) , [8c]

d

dt
cℓ = 2ν (c1cℓ−1 − c1cℓ) + 2δ cℓ+11{ℓ≤L−2} − 2δcℓ , 3 ≤ ℓ < L , [8d]

d

dt
cL = ν c1cL−1 . [8e]

Note that, in transforming Eq. (5e), we had to multiply by a factor of L−1 because the complete rings333

on the left hand side of Eq. (5e) are not distinguished into species. Therefore, in the deterministic334

limit, the heterogeneous system decouples into S independent homogeneous assembly processes for335

the S different species. This means that, in the case of periodic boundary conditions and if the336

particle number N is large, the heterogeneity (distinguishability of species) is irrelevant; also see ref.337

(2) for more details. This holds true for the activation, dimerization and reversible binding scenario338

where Ti = Tj.339

The equivalence of species no longer holds exactly in the absence of periodic boundary conditions340

because then the species at the boundary of the structure violate the symmetry. However, the341

symmetry still holds approximately and the heterogeneous system can well be approximated by342

a corresponding homogeneous system for large N as described in the previous section. Figure S2343

shows that in the case of non-periodic boundaries, this approximation is still quite accurate by344

comparing the deterministic behavior for systems with small structure size S.345
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This result shows that our time complexity analysis of the activation, dimerization and reversible346

binding scenario does not depend on the heterogeneity of the system and therefore applies to a broad347

range of natural and artificial self-assembling systems. Furthermore, the (approximate) deterministic348

equivalence between heterogeneous and homogeneous systems can be exploited in order to speed349

up the simulations: While heterogeneous systems may be strongly affected by stochastic effects350

arising from fluctuations in the concentrations of the different species (for example in the activation351

scenario), homogeneous systems suppress these stochastic effects (2). Hence, in order to observe352

deterministic behavior, a smaller total number of particles is required for homogeneous systems,353

increasing the efficiency of simulations. We exploit this behavior in our ‘method of homogenization’354

as described in the previous section.355
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3. Scaling theory356

In this section, we provide a mathematical scaling analysis in order to derive the characteristic357

exponents for the four scenarios analytically, supporting our numerical findings. We first discuss the358

reversible binding scenario for one-dimensional structures, followed by a unified approach to the359

irreversible scenarios as well as the reversible binding scenario for higher dimensional structures.360

Note that only the one-dimensional reversible binding scenario is fully reversible, while in the higher361

dimensional cases one can identify quasi-stable intermediate assembly products that form irreversibly.362

Exploiting the (stepwise) irreversibility of the assembly kinetics allows to analyze reversible binding363

for higher dimensional structures together with the irreversible scenarios in a unified approach,364

whereas reversible binding in one dimension needs to be analyzed separately.365

Reversible binding for 1D structures366

To mathematically analyze the scaling behavior of the one-dimensional reversible binding scenario,367

we need to identify the optimal value of the detachment rate δ := δ1 that minimizes the time taken368

to achieve a yield of 90%, depending on the size of the target structure. Since generally several369

unfinished structures exist at the same time and thereby compete for resources when growing, an370

exact analysis requires knowledge of the full temporal evolution of the polymer size distribution,371

which is very hard to obtain. Therefore, we will make two simplifying assumptions to obtain the372

scaling behavior: First, we employ a quasi-stationarity assumption, ∂tm = 0, for the monomer373

concentration. While this may seem to be a rather drastic postulate, the idea is rather intuitive:374

During the assembly process, structures grow by consumption of monomers and, vice versa, the375

number of monomers increases due to their detachment from structures. As a result, in the limit of376

large structure sizes where many attachment and detachment events occur before any structure is377

completed, the concentration of monomers adjusts itself over time in such a way that attachment378

and detachment roughly balance and the monomer concentration is constant. As we will show379

more explicitly below, in this case the polymer size distribution corresponds to a random walk on a380

one-dimensional lattice with constant hopping rates. To proceed, we then make a second, important381

assumption: We postulate that the scaling of the time to obtain a yield of 90% is the same as382

the scaling of the mean first-passage time of the approximate random walk to reach the absorbing383

boundary at x = S (complete structure). This amounts to assuming that growth of structures is384

the time-limiting step and that the corresponding timescale does not change considerably over the385

course of the assembly process, e.g. the times to obtain 50 or 90% yield scale similarly with the386

structure size. With these assumptions, we identify the time complexity exponent to be 4 and the387

control parameter exponent to be -2, as we will outline in more detail in the following.388

In the reversible binding scenario, we have Ts = 0 ∀s and α → ∞. With the reaction rate ν,
the dimerization rate µ and the detachment rate δ, the deterministic equations for the temporal
evolution of the concentrations are (see Eqs. (5) for the general case):

∂tm = −2µm2 − 2νm
S−1∑
j=2

cj + 2δ
S−2∑
j=2

cj

∂tc2 = µm2 − 2νmc2 − δc2 + 2δc3

∂tci = 2νm(ci−1 − ci) − 2δ(ci − ci+1) i = 3, . . . , S − 2 [9]
∂tcS−1 = 2νm(cS−2 − cS−1) − 2δcS−1

∂tcS = 2νmcS−1
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where m is the number of monomers per species and ci the number of i-mers. Defining K = ∑S−1
j=2 cj

to be the number of unfinished complexes, the temporal evolution for the monomers is given by

∂tm = −2µm2 − 2(νm − δ)K.

In the quasi-stationary limit, ∂tm = 0, the evolution of the polymer-size distribution ∂tci can389

be identified with a random walk on a one-dimensional lattice with constant hopping rates 2νm390

to the right and 2δ to the left, corresponding to monomer attachment and monomer detachment,391

respectively (see also the deterministic analogue in Eq. (9)). Since completed structures are stable,392

the right end at i = S is absorbing, implying that cS = 0 or, in the continuum limit, c(l = S) = 0.393

Furthermore, we assume that all particles are provided at t = 0 at the left end l = 0∗. The394

last two points imply that the polymer concentration c(t, l) decreases over time. As a measure395

for the quasi-stationary properties of the system, we therefore consider the temporally integrated396

concentration I(l) =
∫ ∞

0 dt c(t, l).397

In the continuum limit, Eq. (9) becomes ∂tc(t, l) = −2(νm − δ)∂lc(t, l) + (νm + δ)∂2
l c(t, l). Using

that c(t → ∞, l) = 0∀l and c(0, l) = 0∀l > 0, the integrated concentration satisfies v∂lI(l) = D∂2
l I(l)

where

v = 2(νm − δ)

is the drift coefficient and

D = νm + δ

is the diffusion constant of the random walk. Its solution is given by

I(l) = C(1 − ev(l−S)/D)

where C is an integration constant that is related to the number of injected particles. It will, however,398

not be relevant for the calculation of the first-passage time.399

We will use the integrated concentration to calculate the time-averaged mean size of unfinished
polymers. This quantity is helpful to determine the number of monomers self-consistently as
conservation of particles requires m + ∑S

j=2 jcj = N . Before yield sets in this can be rewritten as
m + ∑S−1

j=2 jcj = N . Furthermore, the sum can be expressed in terms of the average polymer size
of unfinished polymers ⟨j⟩ as ∑S−1

j=2 jcj = ⟨j⟩ ∑S−1
j=2 cj = ⟨j⟩K. In the continuum limit, we find the

following self-consistency equations:

N = m + ⟨l⟩K [10]

⟨l⟩ =
∫ S

0 dl lI(l)∫ S
0 dl I(l)

= −D

v
+ S2v

2(Sv + D(−1 + e−Sv/D)) . [11]

From the quasi-stationarity condition ∂tm = 0, we furthermore find

m2 + µ

µ
mK − δ

µ
K = 0. [12]

Taken together, we have three conditions (10), (11) and (12) to determine three unknown variables
m, K and ⟨l⟩ self-consistently (for fixed δ). Furthermore, we have another unknown, the optimal

∗
Since we are interested in the limit of large S, we approximate S − 2 ≈ S and, thus, do not distinguish whether particles are injected at l = 0, l = 1 or l = 2.

Florian M. Gartner, Isabella R. Graf and Erwin Frey 13 of 33



monomer detachment rate δopt. So, we need another equation, namely by minimizing the first-passage
time. The mean first-passage time for the above random walk is given by

⟨T ⟩ = L

v
− D

v2 (1 − e−vL/D). [13]

What is left to do is to determine m, K, ⟨l⟩ and δopt self-consistently from (10), (11) and (12) and400

from minimizing the mean first-passage time (13).401

As a first step, we use condition (12) to write δ = νm + µm2

K
. Correspondingly, we find

D = 2νm + µ
m2

K

v = −2µ
m2

K

for the drift and diffusion constant in terms of m and K. Using condition (11) together with the
particle conservation condition (10) and with the mean-first passage time (13), we end up with the
two defining equations for m and K:

N = m + ν

µ

K2

m
+ K

2 + S2K

2(S + ( ν
µ

K
m

+ 1
2)(1 − e

Sm
ν
µ K+ m

2 ))

⟨T ⟩ = − K

2µm2 (S + (ν

µ

K

m
+ 1

2)(1 − e
Sm

ν
µ K+ m

2 )).

To make progress, we make a last approximation, namely that m ≪ K. This assumption is justified
a posteriori and leads to

N = ν

µ

K2

m
+ S2K

2(L + ν
µ

K
m

(1 − eS µm
νK ))

⟨T ⟩ = − K

2µm2 (S + ν

µ

K

m
(1 − eS µm

νK ))

or, in slightly rewritten form,

(S µm
νK

)2

2(1 − µmN
νK2 )

= eS µm
νK − 1 − S

µm

νK
[14]

⟨T ⟩ = S2K2

4µm( ν
µ
K2 − Nm) . [15]

Intriguingly, the first condition (14) is recast in terms of two dimensionless variables a = Sµm
νK

and
b = Nµm

νK2 as

ea − 1 − a = 1
2(1 − b)a2 [16]

whose possible solutions are independent of all other parameters of the system and, in particular,
independent of S. Furthermore, the average first-passage time then becomes

⟨T ⟩ = µ

ν2
S4

4N

b

a2(1 − b) . [17]
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In order to minimize ⟨T ⟩, thus, the term b/(a2(1 − b)) has to be minimized under the constraint
(16). This minimization procedure is entirely independent of S and we conclude that the average
first-passage time scales as

⟨T ⟩ ∼ µS4

4ν2N
. [18]

Similarly, m and K behave as

m = ν

µ

N

S2
a2

opt

bopt

∼ νN

µS2

K = N

S

aopt

bopt

∼ N

S
.

From these scaling functions, we can finally determine the scaling of δopt from (12):

δopt = ν2

µ
(m + m2

K
) = ν2

µ
( N

S2
a2

opt

bopt

+ N

S3
a3

opt

bopt

) ∼ ν2

µ

N

S2 ,

where we neglected the higher-order scaling ∼ N
S3 . This yields the parameter exponent ϕ = −2.402

As a last step, we can actually determine aopt and bopt numerically from minimizing b/(a2(1 − b))
under the constraint (16). This procedure yields

aopt ≈ 2.687
bopt ≈ 0.672

and plugging in these values into the formulas for ⟨T ⟩ and δopt we get:

⟨T ⟩ ≈ 0.07 µS4

ν2N
[19]

δopt ≈ ν2

µ
(10.74 N

S2 + 28.87 N

S3 ) ≈ 10.74ν2

µ

N

S2 . [20]

Combining the scaling behavior of m and δopt, we find that the drift coefficient D vanishes to lowest403

order and the polymer size distribution behaves as a purely diffusive process. Intriguingly, this is404

true not only in the optimal case but follows more generally from the quasi-stationarity assumption:405

the system self-organizes into a diffusion process without drift where growth of structures and406

detachment of monomers balance. The optimal parameter choice thus corresponds to maximizing407

the diffusive flux through the system.408

Universal approach to the irreversible scenarios and reversible binding for409

2D/3D structures410

For the irreversible scenario as well as the reversible binding scenario in higher dimensions, one411

can use a unified scaling approach by demanding a specified ratio between the total nucleation412

and attachment rate. For reversible binding in higher dimensions, this approach works as well413

because during their growth processes, clusters pass through stable intermediate stats whose decay414

rate is negligible against their growth rate. Hence, transitions between these stable intermediates415

can effectively be considered as irreversible. Consequently, the reversible binding scenario for416
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higher dimensional structures is fundamentally different from the reversible binding scenario for417

one-dimensional structures, whose dynamics was described by a random walk. After we introduce418

the general ansatz, we will first use it to derive the parameter and time complexity scaling for the419

irreversible scenarios and afterwards for the higher-dimensional reversible binding scenario.420

It is possible to derive simple scaling relations for the time efficiency, because the simulations show421

that in the irreversible scenarios, the respective control parameter is optimal (achieving a minimal422

T90 assembly time) close to where the final yield is approximately 90% (see main text Fig. 4A,B).423

This is plausible because in all scenarios the control parameter defines the rate limiting time scale424

and hence the parameter is optimal close to where the desired yield is barely reached. Therefore,425

the scaling of the optimal parameter can be determined by identifying a scaling relation that fixes426

a constant final yield. In order for the final yield to be independent of the size S of the target427

structure, the ratio between the total nucleation and total attachment rate must scale inversely with428

S. To put it simply: if the size of the target structure is doubled, in order to achieve a constant429

yield, there need to be twice as many growth events relative to the same number of initiation events.430

total number of nucleation events per time
total number of attached monomers per time := µtot

νtot

!∼ 1
S

. [21]431

(By the exclamation mark we indicate that we demand the relation to hold in order to guarantee432

a constant yield.) This formula provides the starting point of our argument. In the following433

paragraphs we identify the total nucleation rate µtot and total attachment rate νtot for the three434

irreversible scenarios as well as for the reversible binding scenario in higher dimensions.435

Dimerization scenario436

In the dimerization scenario, we focus on one-dimensional structures only. The higher dimensional437

cases are related to the one-dimensional case via rescaling of the reaction rate ν → νS(d−1)/d as438

explained in the main text.439

The total nucleation rate depends quadratically on the momentary concentration of active440

monomers m per species and linearly on S (number of possible dimerization partners).441

µtot = µm2S [22]442

The total attachment rate is given by the product of the total concentration of complexes K in the443

system and the concentration of monomers per species.444

νtot = νKm [23]445

Note that the total concentration of complexes K will scale with C = N
V

(which sets the scale for all446

concentrations in the system) but can be assumed to be independent of S as we demand a constant447

yield (note that a constant yield implies a constant fraction of complexes K/C). Therefore,448

µtot

νtot
∼ µSm

νC
!∼ 1

S
, [24]449

in order to obtain a constant yield. In the dimerization scenario, all particles are active from the450

outset, hence m ∼ C and therefore, µopt ∼ ν
S2 . Because dimerization is the time-limiting process in451

the dimerization scenario, this implies for the minimal assembly time452

T min
90 ∼ C

µopt
tot

∼ 1
SCµopt ∼ S

Cν
. [25]453
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So, the argument reproduces the control parameter exponent ϕ = −2 and the time complexity454

exponent θ = 1 for the dimerization scenario for one-dimensional structures. By rescaling ν →455

νS(d−1)/d the respective parameter- and time complexity exponents for the higher dimensional cases456

are obtained.457

Activation scenario458

In the activation scenario, we focus again on one-dimensional structures and obtain the scaling459

laws for higher dimensional structures by our rescaling argument. In contrast to the dimerization460

scenario, in the activation scenario the monomers are not active right from the outset. Instead, there461

is a constant influx of monomers that balances a steady consumption of monomers due to binding.462

Hence, the stationary concentration m of active monomers is determined from the condition that463

the total influx of monomers equals their consumption due to binding:464

total influx rate of monomers = total consumption of monomers due to binding. [26]465

With the total influx rate of monomers given by αCS, this translates into466

αCS = νtot ∼ νKm, [27]467

where we neglected the consumption of monomers due to dimerization, because for large S dimer-468

ization is negligible compared to attachment (compare Eq. (21)). Demanding a constant yield,469

we can again assume K ∼ C (constant yield implies a constant fraction of complexes K/C), and470

hence, m ∼ S α
ν
. The total nucleation and attachment rate are again given by Eqs. (22) and (23),471

respectively, and therefore Eq. (24) applies identically, yielding472

αopt ∼ ν2C

µ

1
S3 . [28]473

Furthermore, because the influx rate limits the assembly time,474

T min
90 ∼ 1

αopt ∼ µ

Cν2 S3 , [29]475

confirming the control parameter exponent ϕ = −3 and time complexity exponent θ = 3 for the476

one-dimensional activation scenario, as well as a quadratic dependence on ν that is relevant for the477

rescaling procedure: Replacing ν → νS(d−1)/d, the respective exponents for the higher dimensional478

cases are obtained in the usual way. Note that Eqs. (28) and (29) were derived for a general479

dimerization rate µ, although the activation scenario was originally defined with µ = ν. Performing480

the argument with a general µ is, however, crucial in order to obtain the correct quadratic dependence481

on ν to execute the rescaling argument. This is important because the dimensionality affects the482

typical growth rate of clusters but has no effect on the rate at which clusters nucleate. Therefore, µ483

and ν must be distinguished in order to correctly perform the rescaling to higher dimensionality.484

JIS scenario485

In the JIS scenario the different species are provided sequentially in consecutive batches. In order to486

estimate the total nucleation and attachment rate in Eq. (21), we calculate the total number of487

nucleation and binding events per species in a single assembly step. The number of nucleation events488

will crucially be determined by the number of active monomers that are still unbound when the489
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next batch is supplied: Since the subsequent batch is supplied when most monomers of the previous490

batch have already bound, the remaining monomers encounter many partners to form dimers while491

there are only few remaining binding sites in the clusters. Therefore, the remaining monomers will492

dimerize to the largest extent. In order to estimate the total dimerization rate per assembly step,493

we therefore need to estimate the concentration of remaining monomers in relation to ∆T . We do494

this in the following by considering the dynamics of the concentration of monomers of an arbitrary495

species in the sequence.496

Let m denote the concentration of monomers of a species i and k the concentration of structures497

(binding sites) to which species i can attach. We assume that at time t = 0, species i is supplied498

in initial concentration m(0) = M ≈ C. Each binding event involving species i reduces both the499

concentration of binding sites k and the concentration of monomers m by one unit. Therefore,500

u := m − k = const is a constant which denotes the excess concentration (i.e. the amount by501

which the total number of monomers M exceeds the number of binding sites k(0) := K). Indeed, u502

corresponds to the increase in concentration from one batch to the next if species are provided in503

non-stoichiometric concentrations. For the dynamics of m it then follows that504

d

dt
m = −νmk = −νm2 + νum. [30]505

By solving the differential equation, we find the monomer concentration m at time t = ∆T :506

m(∆T ) = 1
1
u

+
(

1
M

− 1
u

)
e−uν∆T

≈ 1
1
u

+
(

1
M

− 1
u

)
(1 − uν∆T )

≈ 1
ν∆T

, [31]507

where in the second step we assumed ∆T ∼ 1/(Mν) ≪ 1/(uν) (because u ≪ M) and in the last508

step we again used 1/M ≪ 1/u. Note that according to Eqs. (1) and (2), the excess concentration509

will be of order u ∼ (Nb+1 − Nb) ∼ pCS−1/d, with p ≈ 0.1, and hence can be assumed to be small510

compared to C and the initial monomer concentration: u ≪ M .511

The total number of dimerization events during one assembly step can now be estimated as the512

concentration of monomers of species i that are still unbound at time ∆T when the next binding513

partner, species i + 1, is supplied (in concentration ≈ M). More specifically, the total number of514

dimerization events per assembly step is ∼ m(∆T )M ∼ µtot, while the total number of attachment515

events per assembly step is ∼ KM ∼ νtot where K := k(0) ∼ C. Therefore, with Eq. (21),516

µtot

νtot
∼ 1

νC∆T
!∼ 1

S
. [32]517

and thus,518

∆T opt ∼ S

Cν
, [33]519

yielding the control parameter exponent ϕ = 1. In order to obtain the total assembly time, ∆T must520

be multiplied by the total number of batches, which is bmax ∼ S1/d in the case of the ‘onion-skin’521

supply protocol (see Fig. 5C). Therefore,522

T min
90 ∼ ∆T opt S1/d ∼ S1+ 1

d

Cν
, [34]523

yielding the time complexity exponent θ = 1 + 1
d
, where d is the dimensionality.524
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Reversible binding for 2D and 3D structures525

For the reversible binding scenario in two and three dimensions we can use the same approach as for526

the irreversible scenarios, starting from Eq. (21). The key insight is that during the assembly process527

stable intermediate assembly products form that decay only with rate δ2 ≪ δ1 or δ3 ≪ δ1 and hence528

are considered as long-lived on the relevant timescale. In contrast, intermediate states that decay529

with rate δ1 are highly unstable and decay quickly as δ1 is typically large compared to the reactive530

timescale Cν in the reversible binding scenario. Figure S4 shows how the resulting total nucleation531

rate µtot (µtot here denotes the total nucleation rather than dimerization rate) and total attachment532

rate νtot can be estimated. Here nucleation is an effective four-particle reaction that proceeds via533

two unstable intermediate states. If the detachment rate δ1 is large, the effective per capita rate for534

the four-particle reaction can be approximated as µν2/δ2
1 and the total nucleation rate is given by535

µtot ∼ µν2

δ2
1

m4S (the factor S accounts for the fact that there are S possible combinations of species536

that can form a nucleus). Attachment typically proceeds in two steps. The first step, analogous to537

the nucleation process, can be approximated as an effective two-particle reaction passing through an538

unstable intermediate state (see Figure S4). The effective total rate for the first step is therefore539

∼ ν2

δ2
1
Km2S

d−1
d , where K is the total concentration of complexes and the factor S

d−1
d estimates the540

number of possible binding sites for the first monomer (surface area of an average cluster). Once a541

new stable state has formed, a cascade of subsequent stable states can be traversed by attachment542

of additional monomers. Because in this second step the complex only passes through stable states,543

the second step can be assumed to be fast compared to the first step. We estimate the average544

number of monomers attaching in the second step to scale again proportionally to the cluster surface545

∼ S
d−1

d . This yields an additional stoichiometric factor to be accounted for in the total attachment546

rate, resulting in νtot ∼ ν2

δ1
Km2S(2− 2

d
). With Eq. (21), it follows that547

µtot

νtot
∼ µC

δ1
S( 2

d
−1) !∼ 1

S
, [35]548

and, therefore,549

δopt
1 ∼ µCS

2
d , [36]550

with a control parameter exponent ϕ = 2
d
. Since nucleation is the slowest step, we expect the551

minimal assembly time to scale approximately as the timescale of nucleation:552

T min
90 ∼ C

µtot
∼ C

µ
(

ν
δopt

1

)2
m4S

∼ µ

ν(Cν)S
4
d

−1 , [37]553

yielding a time complexity exponent θ = 4
d

− 1. Although the theoretical estimates for the exponents554

in the reversible binding scenario in higher dimensions do not coincide perfectly with the simulated555

values (compare main text Fig. 2B,C and Fig. 3B), their tendency and the dependence on the556

dimensionality of the structure are correctly predicted and explained. We suspect that the main557

reason for the deviations is a slight actual dependence of the average monomer concentration m on558

S, which has been neglected in this scaling argument.559

In conclusion, note that for all four scenarios, the scaling exponents for one-dimensional structures560

could be derived exactly from our scaling analysis. In contrast, for higher dimensional structures,561

the theoretical estimates generally do not fit the simulated values exactly. This may have various562

reasons like, for example, deviations from the presumed effective growth rate νS ∼ νS
d−1

d that we563

used to rescale the exponent for the dimerization and activation scenario.564
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Furthermore, note that in the scaling argument applied to the reversible binding scenario in565

higher dimensions we used some specificities of the structure, most importantly, the number of566

unstable intermediate states in the processes of nucleation and attachment. This suggests that the567

exponents and the time efficiency of the reversible binding scenario are not fully generic but depend568

on the shape of the structure and the constituents. In contrast, the scaling arguments for the other569

scenarios are fully generic, so we do not expect a significant dependence of the time efficiency on570

specificities of the structure in the irreversible scenarios.571
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4. Robustness to model modifications572

To verify that our time complexity analysis is robust to model modifications, we investigated three573

variants of the original model and the assembly kinetics. Figure S5 shows the minimal assembly574

time for these variants in all four scenarios. The results of the analysis are discussed in the following.575

Structures with periodic boundaries. First we simulated the minimal assembly time for structures576

with periodic boundaries. While in the main text we only considered higher dimensional structures577

with an open boundary, some typical examples of self-assembling systems comprise the formation of578

closed structures with periodic boundaries, for instance, two-dimensional shells and capsids such579

as, for example, virus capsids (5, 6). To assess the relevance of the boundary, we simulated the580

minimal assembly time for two-dimensional periodic structures or tori. In all scenarios we measured581

almost the same time complexity exponent as in the original model. Only in the reversible binding582

scenario the exponent appears to be slightly larger. In the activation, dimerization and reversible583

binding scenario, the time efficiency increases as a consequence of the modified boundary condition584

since a closed boundary effectively enhances the possibility of a cluster to grow, thereby increasing585

the effective binding rate. In the JIS scenario, the time efficiency slightly decreases because the586

species at the boundary induce an increased excess dimerization rate compared to the case with587

non-periodic boundary. Also note that, in the JIS scenario, we simulated periodic structures only588

with an even edge length L, since for odd L it would have been necessary to modify the supply589

order of our protocol in order to make sure that species supplied in the same batch do not bind each590

other. Moreover, we increased the excess concentrations Zn (see Eqs. (1) and (2)) of the species591

at the boundary by a factor of 2 or 4, respectively, to achieve optimal efficiency for the modified592

boundaries.593

Heterogeneous binding rates. Next, we investigated the impact of heterogeneous binding rates on594

the assembly time. Considering a heterogeneous system, the assumption of identical binding rates for595

all species is an idealization. More realistically, the rates will vary to a certain extent. We therefore596

simulated the system with heterogeneous rates for the different species, drawn independently from a597

(truncated) normal distribution with a coefficient of variation of 50%. We truncated the normal598

distribution for values that are below 20% of the mean in order to guarantee that individual rates do599

not become negative or very small. For each run the binding rates were chosen independently and the600

assembly times were averaged over 10-100 independent runs. We did not perform the simulations for601

the activation scenario since the simulation of the activation scenario is based on the homogeneous602

approximation and the results would thus not be reliable for heterogeneous rates of the species.603

In the other scenarios, the measured time complexity exponents are almost identical to those of604

the original model with homogeneous rates. Only in the dimerization scenario the time complexity605

exponent seems somewhat smaller, probably because heterogeneity in the rates influences the typical606

shapes in which clusters grow. In all cases, the time efficiency was reduced as a consequence of607

heterogeneous rates because small rates influence the overall effective timescale more significantly608

than the large rates.609

Reduced resource efficiency. Finally, we altered the definition of the assembly time and explored610

its effect on the time complexity. In the main text we chose 90% yield as termination criterion611

for the assembly process. Here, we asked whether the exponents are invariant if a lower resource612

efficiency of only 50% yield is demanded. In all scenarios, the minimal time T min
50 required to achieve613

50% yield is significantly smaller than T min
90 . With the exception of the activation scenario, however,614

the corresponding time complexity exponents are indistinguishable from those determined for T min
90 .615
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For the activation scenario, the exponent appeared to be a bit larger, very close to the theoretical616

value Θth = 2. We relate this slight discrepancy between the two exponents to the fact that the617

yield transition curves in the activation scenario (compare main text Fig. 4B) become steeper if S is618

increased. This indicates that the real asymptotic exponent for the activation scenario lies between619

the exponents measured for T min
50 and T min

90 . Note that, among the four scenarios, the time efficiency620

of the reversible binding scenario increases the most if lower resource efficiency is demanded.621

Annealing (reversible binding scenario). The reversible binding scenario is controlled by the ratio622

between the detachment rate and the growth rate, given by the product of the binding rate ν and the623

concentration of monomers (see main text, paragraph reversible binding scenario). However, when624

more and more particles get attached during the assembly process, the concentration of monomers -625

if not replenished - gradually decreases. Consequently, the controlling parameter increases during626

the assembly process. In order to counteract this effect, a frequently used experimental approach627

consists in ‘annealing’ the system by decreasing the temperature (7). Typically, one starts at high628

temperature and gradually cools the system down to room temperature. Since the detachment629

rate decreases with decreasing temperature, δ ∼ e−EB/(kBT ), if applied optimally, annealing allows630

to keep the ratio between detachment rate and growth rate constant during the assembly process.631

Here we ask how the time efficiency in the reversible binding scenario behaves under an optimal632

annealing protocol. To this end, we assume that the temperature adapts instantaneously to the633

momentary concentration of monomers such that the ratio between detachment rate and monomer634

concentration remains constant throughout the simulation. By varying this fixed ratio we determine635

the minimal assembly time T min
90 as in the main text. Indeed we find that the assembly efficiency636

can be significantly increased with an optimal annealing protocol, however, the time complexity637

exponent remains invariant (see Figure S5A, star marker).638

Alternate input functions (activation scenario). For the activation scenario in the main text we639

assumed a constant influx of active monomers until all inactive monomers are depleted. Hence, the640

input as a function of time has a rectangular shape. A natural question that arises is whether the641

efficacy of the activation scenario can be altered by changing the temporal form of the input. To642

answer this question we simulated various different input functions which correspond to different643

biophysical processes providing the active monomers. Here we discuss one particular example for644

such a differing form of the temporal input which plays an important role in biology (8). Specifically,645

we assume that activation of monomers is no longer irreversible but, instead, monomers can switch646

back and forth between an assembly-active and inactive configuration (reversible activation cycle).647

Furthermore, we assume that this switching dynamics is fast compared to the assembly time scale648

and hence can be considered to be at equilibrium. The control parameter is the equilibrium constant649

K, which describes the ratio between the concentrations of active and inactive monomers. By650

measuring the minimal assembly time in the usual way, we find that the activation scenario becomes651

slightly more efficient through the reversible activation cycle but that the time complexity exponent652

remains invariant (see Fig. S5C, star marker).653

Theoretically, the input can be described by any arbitrary function that integrates to the total654

particle number N . Note that input via fast reversible activation has a special significance because655

through equilibration it allows the net influx rate to dynamically adopt to the current state of the656

assembling system (fast binding of active monomers → fast net influx, and vice versa). We also657

tested some other input functions and observed that it generally seems to be favourable for the time658

efficiency if the input is higher at the beginning of the assembly process and lower towards the end.659

The measured time complexity exponents however remained invariant for all tested input functions.660
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This leads us to hypothesise that the time complexity exponent cannot be altered by the form the661

monomer input as long as all species are treated indifferently.662

In conclusion, we tested how robust our results are with respect to modifications of the model,663

affecting the boundary of the structures, heterogeneities in the rates or the demanded resource664

efficiency. Furthermore, we investigated differing experimental protocols like annealing or variable665

input functions for the activation scenario. We found that while the assembly time does indeed666

depend on details of the model and the assembly protocol, the time complexity exponents - apart667

from minor deviations - remain invariant to such variations. Furthermore, the general trend in668

response to a particular model variation is typically the same in the different scenarios (an exception669

is the modification of the boundary condition in the JIS scenario). This confirms that the general670

conclusions in the main text on the time efficiency of the different scenarios and their relative671

ranking remain largely valid if details of the system are changed. On a broader perspective, this672

shows that the time complexity analysis yields a reliable, robust and informative characterization673

of self-assembly processes and the distinction of the four scenarios, characterized by different time674

complexity exponents, is meaningful and useful.675
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5. Experimental JIS supply protocol for the assembly of an artificial T=1 capsid676

In this last chapter we aim to demonstrate the applicability of the just-in-sequence supply strategy677

for actual experimental problems of interest by proposing a specific supply protocol for the assembly678

of an artificial T = 1 capsid.679

Artificial shells and capsids have important potential biotechnological applications ranging from680

the compartmentalization of chemical reactions to the usage as vesicles that enable pinpoint delivery681

of drugs or other material to specific loci within an organism (9, 10). Other applications intend to682

use artificial shells with an aperture in order to trap virus particles inside and thereby prevent them683

from interacting with the host cells (11). The hope is that in this way a broadly applicable antiviral684

platform can be created that can be utilized to combat a broad range of viral infections. Due to685

these promising applications, we illustrate the usage of the Jis strategy for the asssembly of artificial686

capsids.687

The simplest icosahedral capsid is the T = 1 capsid (classification by Caspar and Klug (12)),688

which is assembled from 60 proteins. In the following, we discuss two possibilities to assemble689

artificial T=1 capsids irreversibly with high yield solely by regulating the supply of constituents.690

These strategies thereby avoid the necessity of fine-tuning the binding strengths or other molecular691

properties. The first possibility assumes a partly homogeneous design of the capsid (see Fig. S6A),692

while the second possibility relies on a fully heterogeneous design (Fig. S6C) of the structure.693

In principle, the T = 1 capsid can be build fully homogeneously out of 60 identical units. However,694

in order to use the just-in-sequence supply strategy as described in the main text, some degree of695

heterogeneity is necessary: constituents that are provided in the same batch should not be able to696

bind each other but only to the existing structures. We therefore propose the partly heterogeneous697

design depicted in Fig. S6A, which exploits the symmetry of the target structure. Components that698

are indicated by the same letter are identical and bind specifically only with those species that are699

adjacent to them.700

Designing structures as homogeneously as possible has three practical advantages. First, a lower701

number of different components needs to be produced and counted, which reduces the experimental702

effort. Second, self-assembly is faster if a single type of constituent can bind to several distinct sites703

in the structure and finally, as we discuss below, the absolute tolerance to external noise in particle704

numbers increases if structures are more homogeneous.705

Note, however, that for the assembly of spherical objects like the T=1 capsid, a difficulty arises706

concerning the upper and the lower ”cap“, denoted here by A and L, respectively: If the caps are707

composed of several copies of a single species, these copies would be able to form homo-multimers708

when they are supplied, thereby undermining the JIS strategy. This challenge can be circumvented709

either by designing the caps heterogeneously or by making the respective bonds between the cap-710

species weak and reversible, thereby preventing spurious nucleation. Another possibility is to produce711

the caps A and L separately and supply them as single, complete units. In the following, for the712

assembly of the partly homogeneous capsid, we further discuss the second possibility, considering713

the caps A and L as single units.714

Figures S6B and D show possible supply protocols for the assembly of the partly homogeneous715

and the heterogeneous T=1 capsid, respectively. Both of these protocols were found by maximizing716

the yield in the simulation. The second column in the tables indicates the species that are supplied717

in the respective batch, while the third column shows the numbers Zb that describe the excess718

concentrations supplied for the species in the respective batch, see Eqs. (1) and (2). The total719

number Nb of particles for each species supplied in the bth batch (fourth column) is given by (compare720
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Eq. (2))721

Nb = deg ·
(

(1 − p)N + pSN
Zb

Ztot

)
, [38]722

where deg is the degeneracy of the species, denoting the number of distinct binding positions per723

structure for this species in the respective assembly step. For the partly homogeneous capsid, the724

degeneracy is deg = 5 for all species except for the caps which are provided as complete units with725

degeneracy deg = 1. It is likely that the efficiency of the supply strategy can be further improved726

by allowing the pairs of species C and D, F and G, as well as I and J, which are supplied in the727

same batches, to be assigned different particle numbers. For simplicity, however, in this example we728

assign particle numbers only in correspondence to the batch number.729

Figure S7A shows the yield plotted against the interval ∆T between successive batches both for730

the partly homogeneous and the heterogeneous T = 1 capsid. Black circles indicate the position731

of the optimal interval ∆Topt that minimizes the time required to achieve 90% yield. The partly732

homogeneous capsids can be assembled in shorter time (provided that the same number of structures733

is assembled) because the binding speed is larger roughly by a factor of 5 compared to the fully734

heterogeneous T = 1 capsid.735

In applications, particle numbers can only be determined with limited accuracy. Hence, it is an736

essential question how robust this approach is to extrinsic noise in the particle numbers. In order737

to test the robustness to extrinsic noise we choose particle numbers randomly from a Gaussian738

distribution and quantify the noise level in terms of the coefficient of variation (CV), defined as739

the standard deviation of the particle numbers relative to their respective mean. For simplicity, we740

assume that the CV is the same for all species. Figure S7B shows the yield plotted against the time741

interval ∆T for the partly homogeneous T = 1 capsid depending on the coefficient of variation. The742

inset shows the maximum yield (achieved for sufficiently large ∆T ) plotted against the CV, both743

for the partly homogeneous and the heterogeneous design. As a rough estimate, for the two supply744

protocols discussed here, particle numbers would need to be chosen with an accuracy of about 1% in745

order to achieve high yield. For a fixed relative strength of noise compared to the mean (CV), the746

partly homogeneous capsid is slightly more robust than the heterogeneous structure. This implies747

that the absolute tolerable variability in the number of particles per species is larger by at least a748

factor of 5 for the partly homogenous capsid compared to the heterogeneous capsid.749

In conclusion, we found that both the partly homogeneously as well as the heterogeneously designed750

T = 1 capsid could be assembled efficiently with an irreversible just-in-sequence supply strategy751

provided that particle numbers can be determined accurately enough. The supply protocols discussed752

here still leave space for improvement, for example, by assigning particle numbers individually for753

each species rather than only in correspondence to the batch number. Furthermore, the excess754

concentrations were chosen in order to guarantee maximal yield for ∆T → ∞ but have not been755

optimized for maximal robustness to external noise. Those improvements might allow to even further756

improve the efficiency and robustness of the approach. Hence, provided that experimental methods757

for the accurate counting of molecules can be established, the JIS scenario offers a versatile strategy758

for the realization of biotechnologically relevant macromolecular structures. Our work therefore759

highlights how new experimental strategies to control concentrations could advance nanotechnology760

and its applications.761
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Supplementary Figures762
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Fig. S1. Reversible binding scenario: influence of the preexponential factor on the assembly time. A, assembly time T90 versus the binding energy EB for small
preexponential factor A = 106Cν (marker: circle) for three-dimensional structures of size S = 125. For comparison, we also plotted the stepwise irreversible case (marker:
triangle) setting all detachment rates except for δ1 to 0. The stepwise irreversible case is equivalent to choosing A large (in the main text: A = 1018Cν) as in both cases only
δ1 is effectively larger than 0 and all other detachment rates are negligible at close-to-optimal binding energies. Hence, a small preexponential factor A slightly decreases the
minimal assembly time (compared to large A) at the cost of a reduced variability in the binding energy (fine tuning of EB (or of the concentration C) becomes more critical with
small A). B, minimal assembly time T min

90 versus the structure size S for large (stepwise irreversible) and small (fully reversible) preexponential factor A. The minimal assembly
time that can be achieved as well as the time complexity exponent are slightly smaller for a small preexponential factor.
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Fig. S2. Accuracy of the homogeneous approximation in the activation scenario. Final yield (A) and assembly time T90 (B) versus the activation rate. Both quantities were
simulated for two-dimensional structures with and without periodic boundaries as well as with distinguishable (heterogeneous, blue drawn line) and indistinguishable particle
species (homogeneous approximation, red dashed line). For structures with periodic boundaries and large particle number N , the homogeneous and heterogeneous simulation
coincide exactly as predicted by the theory. For structures with non-periodic boundaries, the homogeneous system yields an accurate approximation of the heterogeneous
system, in particular if the target structure is small. For larger target structures in 2D, small deviations in the minimal assembly time are observed. For three-dimensional
structures, these deviation are extremely tiny even for large target structures. We exploited this equivalence to reduce the computational cost by simulating the activation
scenario as a homogeneous system with lower particle number. Generally, the heterogeneous system is subject to stochastic effects arising from fluctuations between
the concentrations of the different species, unless the particle number N is large (see (2)). The homogeneous system, in contrast, can be simulated with a much smaller
total number of particles. The observed deviations suggest that the approximation slightly underestimates the time complexity exponent for two-dimensional heterogeneous
structures by a few percent.
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Fig. S3. Assigning particle numbers in the Jis scenario. The just-in-sequence scenario requires specified ratios between particle numbers in order to avoid excessive
competition for resources (see Eq. (1)). Shown is the onion supply protocol (analogous to Fig. 5C) for a two-dimensional structure of size L=9 (S=81). Roman numbers
indicate the batch number (assembly step) in which species are supplied. The shaded square marks all species that can initiate a complex potentially able to bind the
species highlighted in red in the seventh assembly step. In order to minimize competition for resources, the species in the seventh batch must hence be supplied in excess
concentration Z7 proportional to the area of the square to allow all clusters present at the seventh assembly step to grow. Generalizing, we hence find the excess concentration

Zn ∼
(

(n+1)
2

)2
for a species supplied in the nth batch (compare Eq. (2)).
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Fig. S4. Scaling analysis of the reversible binding scenario. In the reversible binding scenario, a stable nucleus forms by passing through two unstable intermediate states
that decay with rate δ1. Hence, the effective rate for the nucleation process is µeff ∼ δ2

1 . Attachment typically proceeds in two steps. In the first step, a monomer first binds
reversibly and must subsequently be stabilized by a second monomer. Because one unstable state is passed, the first step effectively happens at rate νeff

1 ∼ δ1
1 . Subsequently

to the first step, additional monomers can attach ‘filling the row‘, while the configuration is continuously stable. Therefore, the second step can be assumed to be fast compared
to the first step which, in turn, is fast compared to nucleation: µeff ≪ νeff

1 ≪ νeff
2 . By setting the total nucleation rate into relation with the total effective attachment rate as

detailed in section 3 of this SI, a rough estimate for the control parameter exponent and for the time complexity exponent can be derived.
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Fig. S5. Scaling of the minimal assembly time for variants of the model and assembly kinetics. The minimal time required to achieve 90% (T min
90 ) or 50% yield (T min

50 )
in the different scenarios (A, reversible binding; B, dimerization; C, activation and D, just-in-sequence scenario) is shown in dependence of the target structure size S for
two-dimensional structures and different variants of the original model. In each subpanel (scenario), the curve labeled T min

90 corresponds to the assembly time in the original
model. Furthermore, each subpanel shows T min

90 for 2D structures with periodic boundary (tori) as well as for variable or heterogeneous rates of the constituent species (not
available for the activation scenario), see section 4 of this SI. The curve labelled T min

50 shows the minimal assembly time for a lower resource efficiency of only 50% yield. While
the assembly time varies for the different model variants, the measured time complexity exponents are, aside from small deviations, largely invariant. This indicates that the time
complexity analysis of the self-assembly scenarios is robust and independent of many details of the model.
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batch
number

supplied 
species

excess 
conc. Zb

particle 
number Nb

1 A 0 0.9N
2 B 1 4.59N
3 C,D 2 4.69N
4 E 4 4.88N
5 F,G 5 4.97N

6 H 7 5.16N

7 I,J 10 5.45N

8 K 18 6.20N

9 L 40 1.66N

A B

batch
number

supplied 
species

excess 
conc. Zb

particle 
number Nb

1 A2 0 0.930N
2 A1, A3 1 0.932N
3 A4 3 0.935N
4 A5 4 0.937N
5 B 5 0.939N
6 C,D 10 0.948N
7 E 20 0.966N
8 F, G 25 0.975N
9 H 35 0.993N

10 I,J 50 1.02N
11 K 90 1.09N
12 L1 95 1.10N
13 L2, L5 130 1.16N
14 L4 170 1.24N
15 L3 200 1.29N
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Fig. S6. Capsid structure and supply protocols. A, Partly homogeneous design of the T=1 capsid consisting of 60 subunits and 12 different species. Species of subunits are
indicated by capital letters. It is assumed that each species binds specifically only with those species adjacent to it. Furthermore, we assume that the caps, each consisting of 5
subunits of A and L, respectively, are assembled separately and are supplied as complete single units. B, Just-in-sequence supply protocol that was simulated in order to
assemble the capsid with the structure defined in (A). Columns indicate the species that are supplied in a respective batch, their excess concentration and their resulting total
particle numbers assuming a fraction of unevenly distributed resources of p = 0.07 (cf. Eq. (38). Here, N is the number of complete structures to be built if the yield were
100%. C, Heterogeneous design of the T=1 capsid consisting of 60 subunits and 60 different species. Each species occupies a single specified position in the structure. D,
Just-in-sequence supply protocol for the heterogeneous structure described in (B). Letters without indices in the protocol represent all 5 corresponding species (for example
B = {B1, B2, B3, B4, B5}), which are supplied simultaneously. Note that for the heterogeneously designed capsid the caps are assembled from monomers as well.
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Fig. S7. Jis scenario for the T=1 capsid. A, Final yield plotted against the interval ∆T between subsequent batches both for the partly homogeneous and the heterogeneous
capsid (see Fig. S6). Black circles indicate the position of the optimal interval ∆Topt and the corresponding minimal assembly time T min

90 . Simulations were performed for a
maximal number of complete structures N = 104 and a fraction of resources that are distributed unevenly of p = 0.07 (cf. Eq. (38), which limits the yield to 93%. The partly
homogeneous structure can be assembled faster than the heterogeneous structure, mainly because the binding speed is larger by a factor of 5 in the partly homogeneous
capsid. B, Yield plotted against the interval ∆T for different levels of external noise in the particle numbers for the partly homogeneous capsid. For each species, the particle
number from the protocol was perturbed independently with a specified coefficient of variation (CV := Gaussian standard deviation / mean). Inset shows the maximal yield for
sufficiently large ∆T plotted against the coefficient of variation for the partly homogeneous and the heterogeneous structure. The fraction p of resources that were distributed
unevenly was chosen as follows: p = 0.07 for CV≤0.5%, p = 0.15 for CV=1%, p = 0.2 for CV=2%, p = 0.3 for CV=3%, p = 0.36 for CV=4% and p = 0.5 for CV=5%.
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