Supplemental Materials for:

Cell-free DNA Profiling Informs All Major Complications of Hematopoietic Cell Transplantation

Alexandre Pellan Cheng¹, Matthew Pellan Cheng^{2,3}, Conor James Loy⁴, Joan Sesing Lenz¹, Kaiwen Chen^{2,3}, Sami Smalling¹, Philip Burnham⁵, Kaitlyn Marie Timblin^{2,3}, José Luis Orejas^{2,3}, Emily Silverman^{2,3}, Paz Polak^{6,7}, Francisco M. Marty^{3,8}, Jerome Ritz^{2,8}, Iwijn De Vlaminck^{1,*}

¹Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
 ²Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
 ³Division of Infectious Disease, Brigham and Women's Hospital, Boston, MA, USA
 ⁴Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
 ⁵Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
 ⁶Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, NY, USA
 ⁷The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, NY USA
 ⁸Department of Medicine, Harvard Medical School, Boston, MA, USA
 *Corresponding author (vlaminck@cornell.edu)

Supplementary figure 1. Fragment length profiles of 170 cfDNA samples after bisulfite treatment. Inset: Fourier analysis reveals a 10.4 bp periodicity in the fragment length profiles of bisulfite treated cfDNA.

Supplementary figure 2. Total cfDNA concentration by timepoint.

Supplementary figure 3. Tissue of origin and cell-free DNA concentrations to identify graft-versushost disease. Top: Solid organ fraction. Middle: Solid organ fractional concentration. Bottom: Total concentration. Statistical tests for significance were performed with a two-sided Wilcoxon test. Receiving operating characteristic areas under the curve (AUCs) are shown for comparisons with a significant pvalue. *: p-value < 0.05; **: p-value < 0.01.

Supplementary figure 4. Skin-derived cfDNA in patients with GVHD. Left: skin cfDNA concentration by status (GVHD-, skin+). Middle: skin cfDNA concentration in 4 groups of patients (No GVHD, GVHD+/skin-, low-grade skin GVHD (grades 1 or 2), high grade skin GVHD (grades 3 or 4). Right: skin cfDNA proportion in 4 patient groups. Error bars represent standard error of the mean.

Supplementary figure 5. Comparative analysis between clinical detection and cell-free DNA detection of BK polyomavirus. Left: Boxplot comparison between the BK polyomavirus relative genomic abundance (RGE) in samples with clinical detection of BK in the blood and in samples without. Right: receiving operating characteristic curve analyzing the ability of BK RGE to identify BK polyomavirus in the blood. Note: at a cutoff of RGE > 0, there are 3 false positives and 2 false negatives identified. ***: p-value < 0.001.

Supplementary figure 6. Copy number profiles for patient 031.

Supplementary figure 7. Copy number profiles for patient 015.

Supplementary figure 8. Copy number profiles for patient 003.

Supplementary figure 9. Donor fraction in sex-mismatched patients who did not suffer from GVHD, relapse, or loss of graft during the first 6 months of their transplant.

Supplementary figure 10. Donor fractions in sex-mismatched hematopoietic cell transplant patients by day since transplant. Plot titles refer to patient IDs.

Age at enrollment median (range) (years)	60 (20-73)	Relation to donor no (%)	
Female sex no (%)	11 (41%)	Unrelated	21 (78%)
Race / Ethnicity no (%)		Related	6 (22%)
Caucasian	25 (93%)	Recipient CMV status no (%)	
American Indian/Alaskan Native	1 (4%)	R+	14 (52%)
Asian	1 (4%)	R-	13 (48%)
Reason for hematopoietic cell transplant no (%) ¹		GVHD status no (%) ²	
Acute myeloid leukemia	7 (26%)	Overall grade I	6 (22%)
Myelodysplastic syndrome	5 (19%)	Overall grade II	4 (15%)
Acute lymphocytic leukemia	5 (19%)	Overall grade III	2 (7%)
T-Cell lymphoma	3 (11%)	Overall grade IV	5 (19%)
Mantle cell lymphoma	2 (7%)	Skin staging I	3 (11%)
Aplastic anemia	2 (7%)	Skin staging II	3 (11%)
Chronic myelomonocytic leukemia	1 (4%)	Skin staging III	2 (7%)
Chronic lymphocytic leukemia	1 (4%)	Skin staging IV	3 (11%)
Myelofibrosis	1 (4%)	Liver staging I	3 (11%)
Paroxysmal nocturnal hemoglobinuria	1 (4%)	Liver staging II	0 (0%)
Cutaneous lymphoma	1 (4%)	Liver staging III	1 (4%)
Source of HCT no (%)		Liver staging IV	0 (0%)
Peripheral blood	19 (70%)	Gut staging I	1 (4%)
Bone marrow	5 (19%)	Gut staging II	1 (4%)
Umbilical cord	3 (11%)	Gut staging III	1 (4%)
HLA matching no (%)		Gut staging IV	2 (7%)
Match	17 (63%)	Conditioning regimen no (%)	
Mismatch	6 (22%)	Reduced intensity	25 (93%)
Haploidentical	4 (15%)	Myeloablative	2 (7%)
Conditioning regimen no (%)		Other characteristics no (%)	
Busulfan, Fludarabine	14 (52%)	Mortality	3 (11%)
Cyclophosphamide, Fludarabine, total body irradiation (TBI)	4 (15%)	Previous HCT	0 (0%)
Fludarabine, Melphalan	2 (7%)	Time to GVHD onset (median ± std)	71 ± 55 days
Cyclophosphamide, Fludarabine, TBI, anti-thymocyte globulin	2 (7%)	T-cell depletion	0 (0%)
Busulfan, Fludarabine, Venetoclax	1 (4%)	GVHD treatment – no (%)	
Busulfan, Fludarabine, Thiotepa	1 (4%)	Glucocorticoids	9 (33%)
Fludarabine, anti-thymocyte globulin, Melphalan	1 (4%)	ruxolitinib, glucocorticoids	2 (7%)
Cyclophosphamide, TBI	1 (4%)	Sirolimus, ruxolitinib, glucocorticoids	1 (4%)

Supplementary table 1. Clinical information

Cyclophosphamide, Fludarabine, TBI	1 (4%)	Tacrolimus, glucocorticoids	1 (4%)
GVHD prophylaxis no (%)		Mycophenolate mofetil, tacrolimus, glucocorticoids	1 (4%)
Methotrexate, Tacrolimus, Sirolimus	9 (33%)		
Methotrexate, Tacrolimus	9 (33%)		
Mycophenolate mofetil, Tacrolimus, Post-transplant cyclophosphamide	6 (22%)		
Tacrolimus, Sirolimus	2 (7%)		
Mycophenolate mofetil, Tacrolimus	1 (4%)]	

Two individuals received an HCT for two blood disorders
 Three individuals had two separate incidences of GVHD

Sequence (5'-3') oligo1 TTTAACGCATAAACATGCGTTTTGGGTAGTGTTTTTTGGAAACACAGATCCGTGCGCACACCTGGTGGAG oligo2 ATAAACATGCGTTTTGGGTAGTGTTTTTTGGAAACACAGATCCGTGCGCACACCT oligo3 GCGTTTTGGGTAGTGTTTTTTGGAAACACAGATCCGTGCG

Supplementary table 2. Oligonucleotides comprising nucleic acid control.

GGTAGTGTTTTTTGGAAACACAGAT

oligo4