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Supplementary Information Text 

Construction of yeast metabolic model integrated with enzyme kinetic data. The consensus 
genome-scale metabolic model (GEM) of Saccharomyces cerevisiae Yeast8 (version 8.4.2) (1) 
was used in this study. To integrate enzyme kinetic data, the GECKO (2) and sMOMENT (3) 
frameworks with modifications were adopted. All reversible enzymatic reactions in the model 
were split into forward and reverse reactions. For each enzymatic reaction, a pseudo-metabolite 
named “protein_cost[c]” was added as a substrate with its coefficient being –MW/kcat, in which 
MW is the molecular weight of the enzyme (or minimum MW if there are multiple isozymes) and 
kcat is the in vitro turnover number of the enzyme (maximum kcat for isozymes) collected from the 
BRENDA database (4) based on the previous criteria (5). The protein cost of an enzymatic 
reaction (calculated by MW/kcat) represents protein mass required per unit of flux through the 
reaction (6). By doing so, the in vitro protein cost information can be integrated into the 
corresponding reaction. Additionally, an exchange reaction of the pseudo-metabolite 
“protein_cost[c]” was added to estimate total protein mass for a given metabolic state. As a result, 
the yeast GEM integrated with in vitro enzyme kinetic data was constructed.  
 
To improve model performance, the yeast in vivo enzyme catalytic rates (kapp values) (7) can be 
integrated into the model by replacing the corresponding in vitro kcat values. Note that two types 
of the in vivo data were used, i.e., the maximum kapp values (kmax values), and condition-specific 
kapp values, which resulted in a kmax model and various condition-specific kapp models. 
 
Model construction was performed in MATLAB using the COBRA toolbox (8). 
 
Estimation of glucose and protein costs of synthesizing amino acids. Normally, to estimate 
the cost of synthesizing a metabolite, one should direct the flux from the substrate to the 
metabolite, which could be achieved by maximizing the metabolite synthesis rate (typically the 
exchange reaction of the metabolite) while fixing the substrate uptake rate or minimizing the 
substrate uptake rate while fixing the metabolite synthesis rate. This is however not applicable to 
the amino acid case as the amino acid exchange reactions in the model are responsible for their 
secretion rather than the incorporation into the biomass. The flux distribution that an amino acid is 
incorporated into the biomass can be estimated by simulating two states: one is the reference 
state in which there is a non-zero synthesis rate of the amino acid and the other is the case state 
in which the synthesis rate of the amino acid is changed. The case state can be achieved by 
adding a slight increase or decrease in the stoichiometric coefficient of the amino acid in the 
biomass equation while maintaining the growth rate the same as that in the reference state, in 
which there is no modification on the model (9). 
 
The simulations were performed on minimal media with glucose as the carbon source (1). For 
simulating the reference state, the growth rate was fixed at a feasible value μ so that the 
synthesis rates of all amino acids have non-zero values, and the glucose uptake rate was 
minimized. As a result, the flux distribution, i.e., rates of all involved reactions, of the reference 
state can be obtained. For simulating the case state, a slight increase Δs was added in the 
stoichiometric coefficient of the amino acid of interest in the biomass composition so that an 
increased synthesis rate of the amino acid was required for achieving the original growth rate. As 
a result, the flux distribution of the case state can be also obtained. The change in the flux 
distributions of the two states (the case state minus the reference state) could be therefore seen 
as the flux distribution (referred to as “the new flux distribution” for clarification, in which reaction 
rates are marked with vi) associated with a biosynthetic flux (the value is μ·Δs) of the amino acid. 
The new flux distribution can be used to estimate the cost of synthesizing the amino acid. The 
glucose cost of synthesizing the amino acid can be calculated by vglucose/μ/Δs, in which vglucose is 
the value of the glucose uptake reaction in the new flux distribution, i.e., the change in the 
simulated rates of the glucose uptake reaction of the reference and case states. The protein cost 
of synthesizing the amino acid can be calculated by the sum of the products of rates vi in the new 
flux distribution and the corresponding reaction protein cost pci over the biosynthetic flux of the 
amino acid, i.e., Σvi·pci/μ/Δs. The reaction protein cost is calculated by MW/kcat, representing 
protein mass per unit of flux for the reaction. 
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Note that there is already an exchange reaction of the pseudo-metabolite “protein_cost[c]” in the 
model, and the simulated value of the reaction represents the total protein mass for a given 
metabolic state, which is calculated by the sum of the products of rates and reaction protein costs 
of all reactions. Therefore, the protein cost of synthesizing the amino acid Σvi·pci/μ/Δs can be 
converted: Σvi·pci/μ/Δs = Σ(vcase_state,i-vref_state,i)·pci/μ/Δs = Σ(vcase_state,i·pci -vref_state,i·pci)/μ/Δs = 
(pmcase_state – pmref_state)/μ/Δs, in which pm represents the total protein mass. 
 
The simulations were performed using the kmax model and condition-specific kapp models, which 
resulted in kmax-based and condition-specific kapp-based protein costs of amino acids. Note that 
the kmax model and condition-specific kapp models resulted in the same glucose costs of 
synthesizing amino acids as the calculation of glucose costs is independent of protein cost 
information. 
 
In this study, the growth rate μ was fixed at 0.4 /h, which is a feasible value of S. cerevisiae at 
unlimited conditions, and the slight increase Δs was 0.0001, which ensures a slight perturbation 
on the simulations. Note that the glucose and protein costs were almost unchanged using other μ 
values (0.1, 0.2 and 0.3 /h) and Δs values (0.00001 and 0.001).  
 
All simulations were performed in MATLAB and run with the COBRA toolbox using the Gurobi 
solver (https://www.gurobi.com/). 
 
Amino acid substitution analysis. For each amino acid, the stoichiometric coefficient in the 
biomass equation was increased by Δs, while the stoichiometric coefficient of each of the other 
19 amino acids was decreased by Δs at a time. Subsequently, the glucose uptake rate and the 
total protein mass were re-estimated, which were normalized by the corresponding values of the 
reference state in which there was no change in any amino acid’s stoichiometric coefficient. The 
simulations were also performed with μ of 0.4 /h and Δs of 0.0001. 
 
Calculation of relative abundances of amino acids of yeast cells under diverse conditions. 
The relative abundance of an amino acid in a proteome, i.e., the fraction of the amount of the 
amino acid in the amount of all 20 amino acids in the proteome, was calculated by: 

∑ 𝑁𝑖 × 𝐶𝑖
𝑛
𝑖=1

∑ 𝐿𝑖 × 𝐶𝑖
𝑛
𝑖=1

 

in which 𝑛 is the number of all detected proteins in a proteomics dataset, 𝑖 represents an 

individual protein among them, 𝑁𝑖 is the number of the amino acid of interest in the sequence of 
the protein, 𝐿𝑖 is the length (total amino acid number) of the sequence of the protein, and 𝐶𝑖 is the 

copy number of the protein. The relative abundances of all 20 amino acids were calculated for 
yeast cells under diverse conditions using various absolute proteomics datasets (10–13). 
 
Calculation of contributions of different enzyme kinetic sources to the estimated protein 
costs of synthesizing amino acids. This was only performed for the kmax-based protein costs of 
synthesizing amino acids, which were estimated using the kmax model. Due to the low coverage of 
in vivo data, the kmax model still has a lot of enzymatic reactions that were parameterized by in 
vitro or even non-yeast kinetic data. Based on the sources of enzyme kinetic data, the enzymatic 
reactions in the kmax model were marked as reactions with yeast kmax, yeast in vitro kcat, and non-
yeast kcat. For each amino acid, the increase in the total protein mass from the reference state to 
the case state, in which the synthesis rate of the amino acid is increased, should be contributed 
by the changes in the protein demands of individual enzymatic reactions ∆𝑝𝑑. The contribution of 

reactions with yeast kmax (can also be yeast in vitro kcat or non-yeast kcat) to the estimated protein 
cost of the amino acid can be calculated by: 

∑ |∆𝑝𝑑𝑗|𝑚
𝑗=1

∑ |∆𝑝𝑑𝑖|𝑛
𝑖=1

 

in which 𝑛 is the number of all enzymatic reactions and 𝑚 is the number of the reactions with 

yeast kmax (can also be yeast in vitro kcat or non-yeast kcat). In other words, the denominator is the 
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sum of the absolute values of changes in the protein demands of all enzymatic reactions in the 
model, and the numerator only accounts for the sum of the absolute values of changes in the 
protein demands of reactions with yeast kmax (can also be yeast in vitro kcat or non-yeast kcat).  
 
Sensitivity analysis. Given that yeast kmax data are of high confidence, the uncertain kcat, i.e., 
yeast in vitro kcat and non-yeast kcat, were investigated. For each uncertain kcat, a value was 
randomly sampled from a uniform distribution between 0.01 and 100 folds of the original value. All 
the uncertain kcat were randomly sampled simultaneously while the yeast kmax were unchanged, 
and protein costs of synthesizing 20 amino acids were re-estimated. Subsequently the re-
estimated protein costs were correlated with the logarithms of the average relative abundances of 
amino acids, which resulted in a new Pearson’s r value. This workflow was run 1000 times and 
1000 Pearson’s r values were obtained, which can be compared with the Pearson’s r value of 
correlation between glucose costs of synthesizing 20 amino acids and the logarithms of the 
relative abundances of amino acids. The 1000 Pearson’s r values can be obtained here 
(https://github.com/SysBioChalmers/Amino_acid). 

Dataset S1 (separate file). Glucose and protein costs of synthesizing 20 proteinogenic amino 
acids in S. cerevisiae. 

Dataset S2 (separate file). Amino acid substitution analysis. 

Dataset S3 (separate file). Growth conditions where absolute proteomics data and in vivo 
enzyme catalytic rates were adopted. 

Dataset S4 (separate file). Pearson's r values of correlations between glucose and protein costs 
of synthesizing amino acids. 

Dataset S5 (separate file). Relative abundances of amino acids of yeast cells under diverse 
conditions. 

Dataset S6 (separate file). Pearson's r values of correlations between relative abundances of 
amino acids of yeast cells under diverse conditions. 

Dataset S7 (separate file). Pearson's r values and p values of correlations between amino acid 
frequencies of individual proteins and cellular average relative abundances of amino acids. 

Dataset S8 (separate file). Pearson's r values of correlations between costs of synthesizing 
amino acids and logarithms of relative abundances of amino acids of yeast cells under various 
conditions. 

Dataset S9 (separate file). Contributions of three types of enzyme kinetic data to the estimated 
protein cost for each amino acid. 
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