
Supplementary Methods

nextNEOpi pipeline. nextNEOpi is a comprehensive and fully-automated bioinformatic pipeline that
enables prediction of tumor neoantigens starting from raw DNA sequencing (whole-exome or
-genome sequencing, WES or WGS) data and, optionally, RNA sequencing (RNA-seq) data
(Supplementary Figure 1). It is implemented in the workflow language Nextflow (Di Tommaso et al.,
2017) to assure easy usage, maximum reproducibility, portability, and parallelism. The use of conda
environments (Grüning et al., 2018) and singularity containers (Kurtzer et al., 2017), which are
automatically retrieved, installed, and run by Nextflow, saves the user from cumbersome installation of
dozens of different tools and their dependencies.
To run the pipeline, users need to provide sample identifiers and FASTQ or BAM files from WES/WGS
for tumor and matched normal samples. In addition, to call gene fusions and to assess the expression
of the predicted neoantigens, it is highly recommended to also provide FASTQ or BAM files from
tumor RNA-seq. The input data may be provided from the command line or, if multiple samples are
analyzed, in a CVS-formatted sample sheet. The raw reads are first subjected to quality control via
FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and optionally cleaned from
residual adapter sequences and low-quality sequences using fastp (Chen et al., 2018). Fastp was
selected for its fast processing and the ability to automatically detect the contaminating adapters.
DNA sequencing reads are then aligned to the reference genome (hg38) using BWA (Li and Durbin,
2009). Duplicate reads are marked with sambamba (Tarasov et al., 2015) in our benchmarks, it
performed better and required less temporary disk space compared to GATK4 (Van der Auwera et al.,
2013) markduplicates. Base-call quality score recalibration is performed with GATK4 (Van der Auwera
et al., 2013). The recalibrated BAM files of tumor- and matched normal samples are used as input
together with gnomAD (Karczewski et al., 2020) data as a source of known germline variants for
Mutect2 to call SNV and indels. The variant calling module of nextNEOpi relies on the usage of
multiple independent variant calling algorithms (Varscan2 (Reble et al., 2017), Manta (Chen et al.,
2016), Strelka2 (Sangtae Kim et al., 2018), and optionally Mutect1 (Cibulskis et al., 2013)), which are
run in addition to Mutect2. All variants called by Mutect2 and confirmed by at least one out of the other
variant callers are marked as “high-confidence” calls and are used for downstream neoepitope
prediction. For running Varscan2 and Mutect1, the recalibrated BAM files are first realigned around
known indels using GATK3. This realignment is not needed for Mutect2, haplotypecaller, Manta and
Strelka2, which all have integrated comparable methods. All variants are annotated using the
Ensembl variant effect prediction (VEP) tool (McLaren et al., 2016) which is one of the most widely
used and continuously curated variant annotation tools and it is required for generating the input of
pVACseq (Hundal et al., 2016, 2019) . Germline variants are called using the haplotypecaller program
from GATK4 and used together with the “high-confidence” somatic variants to generate a readbacked,
phased VCF file.
Subject-specific class-I and class-II HLA molecules are inferred from DNA data using Optitype (Szolek
et al., 2014) and HLA-HD (Kawaguchi et al., 2017) respectively. Both tools were chosen because they
performed best in our benchmarking tests. nextNEOpi can also make use of RNA-seq data to either
supplement (default) or supersede (“--HLA_force_RNA'' option) HLA typing calls obtained from DNA
data (WES/WGS). When both WES/WGS and RNA-seq data are provided, nextNEOpi uses by
default an RNA-seq-informed approach: RNA-seq calls are considered when the DNA calls for certain
HLA genes and samples are not available (i.e., missing gene) or when they are homozygous and
contained in the heterozygous RNA-seq calls (i.e., missing allele).
To predict canonical neoantigens from single-nucleotide variants (SNVs) and insertions or deletions
(indels), nextNEOpi uses pVACseq (Hundal et al., 2016, 2019) considering the phased VCF file, - if
available - gene expression values inferred from RNA-seq data as transcripts per millions (TPM,
calculated in NeoFuse, see below), and the predicted patient’s HLA types. If desired, the user may
also provide an additional file listing HLA molecules to be included in neoantigen calling. By default,
pVACseq runs netMHCpan (Reynisson et al., 2020), MHCFlurry (O’Donnell et al., 2020), and
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NetMHCIIpan (Reynisson et al., 2020) as peptide-MHC binding predictors, but the list of predictors
can be extended via parameter setting to include any combination of pVACseq-supported algorithms.
pVACseq was chosen, because it comes with automated mutant peptide generation from VCF files
and has an excellent integration of multiple state-of- the-art peptide-MHC binding predictors. In
addition, nextNEOpi runs mixMHC2pred (Racle et al., 2019) for class-II peptide-MHC ligand
prediction. By default, nextNEOpi predicts class-I neoepitopes with lengths of 8-11 amino acids and
class-II epitopes of 15-25 amino acid-long, and uses the default filters from pVACseq to prioritize
candidate neoepitopes: median IC50 < 500nM, gene expression > 1, tumor variant allele frequency
(VAF) > 0.25, tumor RNA VAF 0,25, normal VAF < 0.02, normal coverage 5, tumor coverage 10,
tumor RNA coverage 10, transcript support level (TSL) <= 1. nextNEOpi provides also a relaxed filter
set (lowest IC50 < 500nM, lowest percentile rank < 2, gene expression > 2, tumor VAF > 0.02, normal
VAF < 0.01, tumor RNA VAF > 0.02, TSL <= 5) and the possibility of setting custom pVACseq filters
and peptide lengths, which can be specified via parameter settings. Relaxed or custom filters are
often useful, for instance, when the tumor sample is of low purity, the VAFs are often lower than the
default thresholds and result in the filtering of subclonal but potentially interesting neoantigens.
Similarly, increasing the “TSL” cut-off helps to retain non-canonical or alternative transcript variants for
which there was little supporting evidence for annotation (see
http://www.ensembl.org/info/genome/genebuild/transcript_quality_tags.html#tsl).
Fusion neoantigens are calculated from RNA-seq data and patient’s HLA types using a new
implementation of NeoFuse (Fotakis et al., 2019). NeoFuse integrates Arriba (Uhrig et al., 2021), the
winning tool of the ICGC-TCGA DREAM Somatic Mutation Calling in RNA (SMC-RNA) for fusion
detection (Creason et al., 2021), making it a robust tool for fusion neoantigen prediction. Structural
variants (SVs) that are automatically called from DNA (WES/WGS) data via Manta (Chen et al., 2016)
are supplied to the Arriba (Uhrig et al., 2021) process in NeoFuse to improve sensitivity and specificity
in fusion calling. As NeoFuse also calculates the expression of canonical genes, nextNEOpi uses this
information to inform pVACseq with expression data.
In order to assess the clonality of the predicted canonical class-I and class-II neoepitopes, nextNEOpi
performs copy number variation (CNV) analyses with ASCAT (Van Loo et al., 2010), Sequenza
(Favero et al., 2015), and CNVkit (Talevich et al., 2016). CNV data together with tumor purity and
ploidy information from ASCAT or, optionally, Sequenza (which is also a fallback for ASCAT), are used
to calculate the cancer cell fraction (CCF) and the probability of being clonal and subclonal of any
given SNV or indel (McGranahan et al., 2016).
nextNEOpi uses MIXCR (Bolotin et al., 2015) to predict the patient’s T-cell and B-cell receptor (TCR
and BCR) repertoire from DNA and RNA-seq data. Finally, nextNEOpi calculates tumor mutational
burden (TMB) using all variants on the entire read-covered genome, as well as TMB using all coding
variants in read-covered exons. Moreover, it uses clonality information (default CCF > 0.95 & p.clonal
> 0.95) to compute clonal TMB.

Computational resource recommendations. We recommend to run nextNEOpi on a server or high
end workstation with multiple CPUs (> 16 cores) and a minimum of 64GB of memory. The needed
disk space strongly depends on the amount of data that is processed, but there should be at least a
couple of TB of free space available. For processing large sample cohorts it should be considered to
run nextNEOpi on a HPC cluster (see also Supplementary Table 7). However, by tuning the memory
and CPU parameters in the nextNEOpi config files it should also be possible to run nextNEOpi on
systems with lower CPU and memory resources.

HLA typing benchmarking. Raw WES/WGS and RNA-seq data from the 1000 Genomes Project
(1000 Genomes Project Consortium et al., 2015) was accessed through the Sequence Read Archive
(https://www.ncbi.nlm.nih.gov/sra, accessions: SRP000540, SRP000808, SRP001294, SRP000542,
SRP000547, SRP000031, SRP004060, SRP004058, SRP004078, SRP004073, SRP004074,
SRP047053) and ArrayExpress (https://www.ebi.ac.uk/arrayexpress, accession: E-GEUV-1),
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respectively. For WES/WGS data, only non-withdrawn, paired-end samples showing the highest read
coverage were selected for each individual. Gold-standard class-I (HLA-A, HLA-B, and HLA-C) and
class II (HLA-DRB1, HLA-DQB1) HLA types from the same individuals were made available by two
studies (Abi-Rached et al., 2018; Gourraud et al., 2014). We selected only individuals having calls for
every HLA gene in both studies and, after conversion of all HLA types to four-digit resolution, we
defined the final consensus types as the intersection of the HLA types reported by both studies for
each individual and HLA gene. Finally, we selected only samples for which both sequencing data and
gold-standard HLA types were available, for a total of 247 individuals.
Optitype (Szolek et al., 2014) and HLA-HD (Kawaguchi et al., 2017) were used to call class-I and -II
HLA types, respectively, and were run as in the nextNEOpi pipeline. Briefly, HLA-HD was run on both
WES/WGS and RNA data with default parameters, except for the “-m” argument, which was set
according to read length. Prior to Optitype analysis, raw reads were mapped to the indexed
“hla_reference_rna” and “hla_reference_dna” Optitype reference files for WES/WGS and RNA-seq
data, respectively, using YARA (Dadi et al., 2018), run with default parameter settings except “-e 3”.
The unmapped reads were filtered out from the BAM file using samtools (Li H. et al. 2009). Finally,
Optitype was run with default options, specifying the “--dna” or “--rna” argument for WES/WGS and
RNA-seq data, respectively. The output HLA calls were reduced to four-digit resolution for
benchmarking.
Each inferred HLA allele was compared to the gold-standard to identify the number of correct
(“match”) and wrong (“mismatch”) calls, as well as percentage with respect to the total possible calls
(i.e., twice the number of the analyzed samples for each HLA gene). Missing calls for HLA genes and
alleles were reported as NA. In addition, the capability of the tools to correctly distinguish between
heterozygous and homozygous HLA types was tested, disregarding the correctness of the calls. True
positives (TP) were defined as correctly identified heterozygous alleles, true negatives (TN) as
correctly identified homozygous alleles, false positives (FP) as homozygous alleles wrongly called as
heterozygous, and false negatives (FN) as heterozygous alleles wrongly called as homozygous
alleles (Supplementary Figure 2). Data analysis and visualization was performed in R.

Analysis of TESLA data. WES and RNA-seq data from all patients except Pat_10 was available with
controlled access via Synapse (https://www.synapse.org/#!Synapse:syn21048999/wiki/603788),
whereas information on the immunogenicity of a set of neoepitopes predicted to bind to the relevant
MHC class-I molecules (pMHC) assessed in vitro was available from the article supplementary
material (Wells et al., 2020). The data were analyzed running nextNEOpi with adapter and quality
trimming enabled for DNA- and RNA-seq reads. We used the RNA-seq-informed HLA typing
approach, which is the default when both WES and RNA-seq data are provided. Candidate
neoantigens selected with relaxed filtering (“--pVACseq_filter_set relaxed”) were identified as those
with max.Best.MT.Score lower than 500, max.Best.MT.Percentile lower than 2, min.Gene. Expression
higher than 2, tumor DNA and RNA VAF > 0.02, and normal DNA VAF < 0.01. T-cell receptor (TCR)
clonotype counts were computed with nextNEOpi using MiXCR (Bolotin et al., 2015, 2017) from
bulk-tumor RNA-seq data and analyzed with the “aindex” function from the DiversitySeq R package
(Finotello et al., 2018) to derive richness (index = “Richness” option), Shannon diversity (index =
“Shannon”), and evenness index (index = “RLE”, q = 1). Data analysis and visualization were
performed in R.
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Supplementary Figures

Supplementary Figure 1. nextNEOpi pipeline. Basic representation of the main processing
modules of nextNEOpi. Sequencing data from whole-exome/genome (WES/WGS) and
RNA-sequencing (RNA-seq) in FASTQ or BAM format and, optionally, a list of known patient’s HLA
types are used as input for neoantigen prediction. After pre-processing, Human Leukocyte Antigen
(HLA) types are computed using OptiType and/or HLA-HD, mutations and copy-number variations are
called using GATK4, CNVkit, Sequenza, ASCAT, and different variant callers. Mutations are annotated
with VEP, and pVACseq is used to call expressed HLA-binding neoepitopes. NeoFuse is used to
predict neoantigens originating from gene fusions using RNA-seq data. Clonality, tumor mutational
burden (TMB), and CSiN scores are computed for the individual neoantigens and samples. MiXCR is
used to predict T- and B-cell receptor (TCR and BCR) repertoires.
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Supplementary Figure 2. Assessment of HLA zygosity calls. Schematization of the approach
used to define true positives, true negatives, false positives, and false negatives considering the
zygosity of the predicted HLA types compared to the gold standard. In this evaluation, the correctness
of the called HLA types is not taken into consideration.
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Supplementary Figure 3. Validation of the predicted class-I and II HLA types. Percentage of
correct (Match), incorrect (Mismatch), and missing (NA) HLA calls inferred by Optitype (for class-I
genes) or HLA-HD (for class-II genes) using whole-exome/genome sequencing (DNA) and RNA
sequencing (RNA) data from the 1000 Genomes project (Gourraud et al., 2014; Abi-Rached et al.,
2018). “‘DNA-RNA” indicates the consensus approach that corrects for missing alleles and genes in
DNA-based calls (see Supplementary Methods for more details).

Supplementary Figure 4. Validation of the zygosity of the predicted class-I and II HLA types.
Percentage of correct true positives (TP), true negatives (TN), false positives (FP), false negatives
(FN), and missing (NA) HLA gene calls inferred by Optitype (for class-I genes) or HLA-HD (for class-II
genes) using whole-exome/genome sequencing (DNA) and RNA sequencing (RNA) data from the
1000 Genomes project (Gourraud et al., 2014; Abi-Rached et al., 2018). “DNA-RNA” indicates the
consensus approach that corrects for missing alleles and genes in DNA-based calls using the
RNA-seq-based results (see Supplementary Methods for more details). True heterozygous alleles
according to the gold standard that were called as heterozygous or homozygous, were defined as TP
and FN, respectively. True homozygous alleles according to the gold standard that were called as
heterozygous or homozygous were defined as FP and TN, respectively (see also Supplementary
Figure 1). The correctness of the inferred HLA types was not considered in this analysis, and was
instead evaluated in the analysis reported in Supplementary Figure 3.
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Supplementary Figure 5. Features of patient-specific neoepitopes computed with nextNEOpi.
Jittered violin plots of neoepitope features from melanoma (Mel) and non-small cell lung cancer
(NSCLC) patients considered in the TESLA study (Wells et al., 2020), coloured according to patients’
response: complete response (CR), partial response (PR), progressive disease (PD), unknown (Ukn).
The plots show a subset of nextNEOpi neoepitope features: best IC50 (Best MT Score) and percentile
rank (Best MT Perc), median IC50 fold-change of the mutated versus wild-type peptide (Median FC),
expression level of the mutated gene in TPM (Gene Expr), clonality estimated as cancer cell fraction
(CCF), with corresponding 5% (CCF 05) and 95% (CCF 95) confidence intervals, and probability of
the neoepitope-generating mutation of being clonal (pClonal) or subclonal (pSubclonal).The diamond
represents the median of the distribution. P-values were computed with the Wilcoxon test.
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Supplementary Figure 6. Patients’ cancer-immunology features computed with nextNEOpi. Bar
plots of patient-specific features from the patients considered in the TESLA study (Wells et al., 2020),
coloured according to patients’ response: complete response (CR), partial response (PR), progressive
disease (PD), unknown (Ukn). The plots show a subset of nextNEOpi patients’ features: tumor
mutational burden (TMB), clonal TMB, coding clonal TMB, richness, Shannon diversity, and evenness
of the T-cell receptor (TCR) repertoires computed from tumor RNA-seq data.
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Supplementary Tables

Supplementary Table 1. Neoantigen prediction methods. Summary of the features of state-of the-art pipelines for the computational prediction of
neoantigens from high-throughput sequencing (HTS) data: types of neoantigens predicted, type and format of input data, preprocessing of raw HTS data,
classes of neoantigens predicted, internal HLA typing, computation of neoantigen clonality. Desirable features are highlighted in green. a Proteogenomics
pipeline.b No BCR/TCR profiling, but allows the quantification of tumor-infiltrating immune cells from RNA-seq data. List of abbreviations: BCR: B-cell
receptor; HLA: human leukocyte antigen; indels: insertions and deletions; MGF: mascot generic format; MS: mass spectrometry; SNVs: single-nucleotide
variation; TCR: T-cell receptor; TMB: tumor mutational burden; VCF: variant call format; WES: whole-exome sequencing; WGS: whole-genome sequencing.

Method Neoantige
n types Input data Perform data

preprocessing
Neoantigen

class HLA typing Immune
repertoires Clonality Ref.

nextNEOpi SNVs,
indels,
gene
fusions

WES/WGS and
RNA-seq or
WES/WGS
only, as raw
FASTQ files

Yes Class I and
II

Yes TCR and
BCR

Yes This study

Antigen.garnish SNVs,
indels,
gene
fusions

VCF of
mutations, gene
fusions, or
transcripts or
peptide
sequences

No Class I and
II

No No No (Richman et
al., 2019)

CloudNeo SNVs VCF of somatic
mutations and
BAM (DNA- or
RNA-seq)

No Class I Yes No No (Bais et al.,
2017)

DeepHLApan SNVs CSV files No Class I No No No (Wu et al.,
2019)

Epidisco SNVs,
indels,

WES and
RNA-seq

Yes Class I Yes No No (Alex
Rubinsteyn et
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splice
variants,
gene
fusions

FASTQ files al., 2017)

Epi-Seq SNVs RNA-seq
FASTQ files

Yes Class I No No No (Duan et al.,
2014)

INTEGRATE-neo Gene
fusions

RNA-seq or
WGS FASTQ
files

Yes Class I No No No (Zhang et al.,
2017)

MuPeXI SNVs,
indels

VCF of somatic
mutations and
precomputed
expression data

No Class I No No No (Bjerregaard
et al., 2017)

Neoantimon SNVs,
indels,
structural
variants

VCF of somatic
mutations or file
of mutant RNA
sequences, and
precomputed
HLA types

No Class I and
II

No No No (Hasegawa et
al., 2019)

neoANT-HILL SNVs,
indels

VCF of somatic
mutations,
RNA-seq data
(BAM or
FASTQ files)

No Class I Yes Nob No (Coelho et al.,
2020)

NeoFlowa SNVs,
indels

VCF of somatic
mutations,
DNA- or
RNA-seq
FASTQ files,
MS data in

No Class I Yes No No (Wen et al.,
2020)
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MGF format

Neopepsee SNVs VCF of somatic
mutations,
RNA-seq
FASTQ files,
and HLA types

No Class I Yes No No (S. Kim et al.,
2018)

NeoPredPipe SNVs,
indels

VCF of somatic
mutations and
HLA types

No Class I and
II

No No No (Schenck et
al., 2019)

NeoepitopePred SNVs,
gene
fusions

WGS FASTQ
files or WGS,
WES or
RNA-Seq BAM
files

Yes Class I Yes No No (Chang et al.,
2017)

Neoepiscope SNVs,
indels

VCF of somatic
mutations,
mapped
DNA-seq reads
(BAM), and
HLA alleles

No Class I and
II

No No No (Wood et al.,
2019)

NeoFuse gene
fusions

RNA-seq
FASTQ files

Yes Class I and
II

Yes No No (Fotakis et al.,
2019)

nf-core/
epitopeprediction

SNVs,
indels

VCF of somatic
mutations

No Class I and
II

No No No (Ewels et al.,
2020)

OpenVax SNVs FASTQ from
WES and
RNA-seq

Yes Class I No No No (Kodysh and
Rubinsteyn,
2020)

ProGeo-neoa SNVs VCF of somatic
mutations,

No Class I Yes No No (Li et al.,
2020)
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RNA-seq
FASTQ files

ProTECT SNVs DNA- and
RNA-seq
FASTQ files.
Alternatively,
precomputed
BAM and/or
VCF files

Yes Class I and
II

Yes No No (Toor et al.,
2018)

pTuneos SNVs,
indels

FASTQ from
WES and
RNA-seq.
Alternatively,
VCF of somatic
mutations,
expression
data, copy
number and
and tumor
cellularity
information

Yes Class I Yes No No (Zhou et al.,
2019)

pVACtools SNVs,
indels,
gene
fusions

VCF of somatic
mutations,
expression/cov
erage
information
from DNA- and
RNA-seq
(pVACseq),
gene fusions
(pVACfuse),
and HLA types.

No Class I and
II

No No No (Hundal et al.,
2019)
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ScanNeo Indels Mapped
RNA-seq reads
(BAM)

No Class I Yes No No (Wang et al.,
2019)

TIminer SNVs VCF of somatic
mutations,
RNA-seq
FASTQ files

No Class I Yes Nob No (Tappeiner et
al., 2017)

TSNAD SNVs,
indels

WES FASTQ
files

Yes Class I Yes No No (Zhou et al.,
2017)

Vaxrank SNVs,
indels

VCF of somatic
mutations,
mapped
RNA-seq reads
(BAM), and
HLA types

No Class I No No No (Alexander
Rubinsteyn et
al., 2017)

TruNeo SNVs,
indels

WES and
RNA-seq
FASTQ files

Yes Class I Yes No No (Tang et al.,
2020)
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Supplementary Table 2. Output files and features calculated by nextNEOpi. nextNEOpi creates two main folder structures per subject: (1) neoantigens,
containing the HLA type and neoantigen predictions, as well as sample-specific information; (2) analyses, containing all results calculated by the different
analysis steps. In addition to these main results, nextNEOpi also reports runtime information and settings. List of abbreviations: BCR: B-cell receptor; CCF:
cancer cell fraction; CNV: copy number variant; HLA: human leukocyte antigen; indels: insertions and deletions; MHC: major histocompatibility complex; TCR:
T-cell receptor; TMB: tumor mutational burden; TPM: transcripts per million; VCF: variant call format; VEP: variant effect predictor; WES: whole-exome
sequencing; WGS: whole-genome sequencing.

Folder File(s) Type Description

neoantigens/[subject]/ *_sample_info.tsv Sample
information

Aggregated sample information

neoantigens/[subject]/Class_I/ *_MHCI_all_epitopes_ccf.tsv Neo-epitopes Unfiltered canonical class-I
neo-epitopes including CCF and
clonality information

*_MHCI_filtered_ccf.tsv Neo-epitopes Filtered canonical class-I
neo-epitopes including CCF and
clonality information

neoantigens/[subject]/Class_II/ *_MHCII_all_epitopes_ccf.tsv Neo-epitopes Unfiltered canonical class-II
neo-epitopes including CCF and
clonality information

*_MHCII_filtered_ccf.tsv Neo-epitopes Filtered canonical class-II
neo-epitopes including CCF and
clonality information

neoantigens/[subject]/Class_I/Fusions/ *_NeoFuse_MHCI_filtered.tsv Neo-epitopes Filtered fusion product class-I
neo-epitopes

*_NeoFuse_MHCI_unfiltered.tsv Neo-epitopes Unfiltered fusion product class-I
neo-epitopes

neoantigens/[subject]/Class_II/Fusions/ *_NeoFuse_MHCII_filtered.tsv Neo-epitopes Filtered fusion product class-II
neo-epitopes
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*_NeoFuse_MHCII_unfiltered.tsv Neo-epitopes Unfiltered fusion product class-II
neo-epitopes

neoantigens/[subject]/Final_HLAcalls/ *_hlas.txt HLA types Final HLA typing results (class I and
II)

analyses/[subject]/01_preprocessing/ *_trimmed_*.fastq.gz Preprocessing Adapter- and quality-trimmed reads

*_unaligned.bam Preprocessing uBAM of tumor/normal reads

analyses/[subject]/02_alignments/ *_alinged.bam Alignment Tumor/normal DNA reads aligned to
the reference genome in BAM format

*_aligned_sort_mkdp.bam Alignment Tumor/normal DNA reads aligned to
the reference genome, sorted,
marked duplicates in BAM format

*_RNA.Aligned.sortedByCoord.out.bam Alignment Tumor RNA reads aligned to the
reference genome, sorted

analyses/[subject]/03_baserecalibration/ *_recalibrated.bam Alignment Tumor/normal DNA basecall quality
score recalibration results

analyses/[subject]/03_realignment/ *_realing.bam Alignment Tumor/normal DNA realigned around
indels

analyses/[subject]/04_expression/ *.tmp.txt Gene expression Gene expression values in TPM from
tumor sample

analyses/[subject]/04_variations/haplotypecaller/ *.vcf.gz Variants Germline variations, raw and filtered

analyses/[subject]/04_variations/[manta, mutect1,
mutect2, strelka, varscan]/

*.vcf.gz Variants Somatic variations, raw and filtered

analyses/[subject]/04_variations/high_confidence/ *_Somatic.hc.vcf.gz Variants High confidence, variation calls from,
primary variation calling method
(default: mutect2) confirmed by any
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of the additional methods (mutect1,
manta/strelka, varscan2)

analyses/[subject]/04_variations/high_confidence_
readbacked_phased/

*_phased.vcf.gz Variants Readbacked phased variation calls

analyses/[subject]/05_vep/tables/[high_confidence
, mutect1, mutect2, strelka, varscan]

*.txt Annotated variants Ensembl VEP annotation of called
variants in tab-separated text format

*.html Annotated variants Ensembl VEP annotation summary

analyses/[subject]/05_vep/vcf/high_confidence/ *.vcf.gz Annotated variants Ensembl VEP annotation of called
variants in VCF format

analyses/[subject]/06_proteinseq/ *_mutated.fa Protein sequences Amino acid sequences of the
mutated proteins

*_reference.fa Protein sequences Amino acid sequences of the
reference proteins

analyses/[subject]/07_MutationalBurden/ *_burden.txt TMB Tumor mutational burden over
covered genome

*_burden_coding.txt TMB Tumor mutational burden over
covered coding exons

analyses/[subject]/08_CNVs/ASCAT/ *.{txt,png} CNVs Copy-number variant calls, purity,
ploidy results from ASCAT

analyses/[subject]/08_CNVs/CNVkit/ * CNVs Copy number variation calls from
CNVkit

analyses/[subject]/08_CNVs/Sequenza/ *.{png,pdf,txt} CNVs Copy number variation calls, purity,
ploidy results from Sequenza

analyses/[subject]/09_CCF/ *_CCFset.tsv CCF Cancer cell fraction and clonality
estimates of called variants
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analyses/[subject]/10_HLA_typing/HLA_HD/ *_final.result.txt HLA types HLA typing results from HLA-HD
based on WES/WGS data

*_final.result.RNA.txt HLA types HLA typing results from HLA-HD
based on RNA-seq data

analyses/[subject]/10_HLA_typing/Optitype/ *_optitype_RNA_result.tsv HLA types HLA typing results from Optitype
based on WES/WGS data

*_optitype_RNA_result.tsv HLA types HLA typing results from Optitype
based on RNA-seq data

analyses/[subject]/11_Fusions/Arriba/ *.fusions.discarded.tsv Gene fusions Discarded low-confidence fusions

*.fusions.tsv Gene fusions Final gene fusions

analyses/[subject]/11_Fusions/NeoFuse/ *_MHCI_unfiltered.tsv Gene fusion
neo-epitopes

Unfiltered gene fusion class-I
neo-epitopes

*_MHCI_filtered.tsv Gene fusion
neo-epitopes

Filtered gene fusion class-I
neo-epitopes

*_MHCI_unsuported.txt Gene fusion
neo-epitopes

Unsupported class-I HLAs

*_MHCII_unfiltered.tsv Gene fusion
neo-epitopes

Unfiltered gene fusion class-II
neo-epitopes

*_MHCII_filtered.tsv Gene fusion
neo-epitopes

Filtered gene fusion class-II
neo-epitopes

*_MHCII_unsuported.txt Gene fusion
neo-epitopes

Unsupported class-II HLAs

analyses/[subject]/12_pVACseq/MHC_Class_I/ *_MHCI_all_aggregated.tsv Neo-epitopes HLA aggregated class-I neo-epitopes

*_MHCI_all_epitopes.tsv Neo-epitopes Unfiltered class-I neo-epitopes
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*_MHCI_filtered.tsv Neo-epitopes Filtered class-I neo-epitopes

analyses/[subject]/12_pVACseq/MHC_Class_II/ *_MHCII_all_aggregated.tsv Neo-epitopes HLA aggregated class-II
neo-epitopes

*_MHCII_all_epitopes.tsv Neo-epitopes Unfiltered class-II neo-epitopes

*_MHCII_filtered.tsv Neo-epitopes Filtered class-II neo-epitopes

analyses/[subject]/13_mixMHC2pred/ *_mixMHC2pred_all.tsv Neo-epitopes unfiltered class-II neo-epitopes,
predicted by mixMHC2pred

*_mixMHC2pred_filtered.tsv Neo-epitopes Filtered class-II neo-epitopes,
predicted by mixMHC2pred

analyses/[subject]/14_CSiN/ *_CSiN.tsv Score CSiN score (Lu et al., 2020)

analyses/[subject]/14_IGS/ *_Class_I_immunogenicity.tsv Score Immunogenicity score (Smith et al.,
2019)

analyses/[subject]/15_BCR_TCR/ *_mixcr_DNA.clonotypes.ALL.txt BCR/TCR BCR/TCR clonotypes based on
WES/WGS data

*_mixcr_RNA.clonotypes.ALL.txt BCR/TCR BCR/TCR clonotypes based on
RNA-seq data

analyses/[subject]/QC/ multiqc_report.html Quality control Multiqc report

* Quality control Quality control metrics

Documentation pipeline_report.{html,txt} Documentation Pipeline run settings

pipeline_info/icbi nextNEOpi_* Documentation Pipeline runtime information

supplemental/ * Supplemental files Supplemental files generated by
nextNEOpi
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Supplementary Table 3. Format of nextNEOpi main output tables for canonical class-I and -II neoantigens. The tables can be found in the result folder
under neoantigens/[subject]/ClassI neoantigens/[subject]/ClassII and are named *_MHCI_all_epitopes_ccf.tsv, *_MHCI_filtered_ccf.tsv,
*_MHCII_all_epitopes_ccf.tsv and *_MHCII_filtered_ccf.tsv (see also Supplementary Table 2).

Column Name Description

Chromosome The chromosome of this variant.

Start The start position of this variant in the zero-based, half-open coordinate system.

Stop The stop position of this variant in the zero-based, half-open coordinate system.

Reference The reference allele.

Variant The alternative allele.

Transcript The Ensembl ID of the affected transcript.

Transcript Support Level The transcript support level (TSL) of the affected transcript. NA if the VCF entry doesn’t contain TSL information.

Ensembl Gene ID The Ensembl ID of the affected gene.

Mutation The amino acid change of this mutation.

Protein Position The protein position of the mutation.

Gene Name The Ensembl gene name of the affected gene.

HGVSc The HGVS coding sequence variant name.

HGVSp The HGVS protein sequence variant name.

HLA Allele The HLA allele for this prediction.

Peptide Length The peptide length of the epitope.

Sub-peptide Position The one-based position of the epitope within the protein sequence used to make the prediction.
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Mutation Position The one-based position of the start of the mutation within the epitope sequence. 0 if the start of the mutation is
before the epitope.

MT Epitope Seq The mutant epitope sequence.

WT Epitope Seq The wildtype (reference) epitope sequence at the same position in the full protein sequence. NA if there is no
wildtype sequence at this position or if more than half of the amino acids of the mutant epitope are mutated.

Best MT Score Method Prediction algorithm with the lowest mutant IC50 binding affinity for this epitope.

Best MT Score Lowest IC50 binding affinity of all prediction algorithms used.

Corresponding WT Score IC50 binding affinity of the wildtype epitope. NA if there is no WT Epitope Seq.

Corresponding Fold Change Corresponding WT Score / Best MT Score. NA if there is no WT Epitope Seq.

Best MT Percentile Method Prediction algorithm with the lowest binding affinity percentile rank for this epitope.

Best MT Percentile Lowest percentile rank of this epitope’s IC50 binding affinity of all prediction algorithms used (those that provide
percentile output).

Corresponding WT Percentile Binding affinity percentile rank of the wildtype epitope. NA if there is no WT Epitope Seq.

Tumor DNA Depth Tumor DNA depth at this position. NA if VCF entry does not contain tumor DNA readcount annotation.

Tumor DNA VAF Tumor DNA variant allele frequency (VAF) at this position. NA if VCF entry does not contain tumor DNA readcount
annotation.

Tumor RNA Depth Tumor RNA depth at this position. NA if VCF entry does not contain tumor RNA readcount annotation.

Tumor RNA VAF Tumor RNA variant allele frequency (VAF) at this position. NA if VCF entry does not contain tumor RNA readcount
annotation.

Normal Depth Normal DNA depth at this position. NA if VCF entry does not contain normal DNA readcount annotation.

Normal VAF Normal DNA variant allele frequency (VAF) at this position. NA if VCF entry does not contain normal DNA
readcount annotation.
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Gene Expression Gene expression value for the annotated gene containing the variant. NA if VCF entry does not contain gene
expression annotation.

Transcript Expression Transcript expression value for the annotated transcript containing the variant. NA if VCF entry does not contain
transcript expression annotation.

Median MT Score Median IC50 binding affinity of the mutant epitope across all prediction algorithms used.

Median WT Score Median IC50 binding affinity of the wildtype epitope across all prediction algorithms used. NA if there is no WT Epitope Seq.

Median Fold Change Median WT Score / Median MT Score. NA if there is no WT Epitope Seq.

Median MT Percentile Median binding affinity percentile rank of the mutant epitope across all prediction algorithms (those that provide
percentile output).

Median WT Percentile Median binding affinity percentile rank of the wildtype epitope across all prediction algorithms used (those that
provide percentile output) NA if there is no WT Epitope Seq.

MHCflurry WT Score IC50 binding affinity of the mutant epitope as predicted by MHCflurry (MHC I output only).

MHCflurry MT Score IC50 binding affinity of the wildtype epitope as predicted by MHCflurry (MHC I output only).

MHCflurry WT Percentile Binding affinity percentile rank of the mutant epitope as predicted by MHCflurry (MHC I output only).

MHCflurry MT Percentile Binding affinity percentile rank of the wildtype epitope as predicted by MHCflurry (MHC I output only).

NetMHCpan/NetMHCIIpan WT Score IC50 binding affinity of the mutant epitope as predicted by NetMHCpan/NetMHCIIpan.

NetMHCpan/NetMHCIIpan MT Score IC50 binding affinity of the wildtype epitope as predicted by NetMHCpan/NetMHCIIpan.

NetMHCpan/NetMHCIIpan WT
Percentile

Binding affinity percentile rank of the mutant epitope as predicted by NetMHCpan/NetMHCIIpan.

NetMHCpan/NetMHCIIpan MT
Percentile

Binding affinity percentile rank of the wildtype epitope as predicted by NetMHCpan/NetMHCIIpan.

Index A unique identifier for this variant-transcript combination.
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cterm_7mer_gravy_score Mean hydropathy of the last 7 residues on the C-terminus of the peptide.

max_7mer_gravy_score Max GRAVY score of any kmer in the amino acid sequence. Used to determine if there are any extremely
hydrophobic regions within a longer amino acid sequence.

difficult_n_terminal_residue Is N-terminal amino acid a Glutamine, Glutamic acid, or Cysteine?

c_terminal_cysteine Is the C-terminal amino acid a Cysteine?

c_terminal_proline Is the C-terminal amino acid a Proline?

cysteine_count Number of Cysteines in the amino acid sequence. Problematic because they can form disulfide bonds across
distant parts of the peptide.

n_terminal_asparagine Is the N-terminal amino acid an Asparagine?

asparagine_proline_bond_count Number of Asparagine-Proline bonds. Problematic because they can spontaneously cleave the peptide.

CCF The fraction of cancer cells within which the variant is present.

CCF.05 The 5% confidence interval for CCF.

CCF.95 The 95% confidence interval for CCF.

pSubclonal Probability of the variant belonging to a subclonal tumor cell.

pClonal Probability of the variant belonging to a clonal tumor cell.
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Supplementary Table 4. Description of nextNEOpi main output tables for class-I and -II fusion neoantigens. The tables can be found in the result
folder under neoantigens/[subject]/ClassI/Fusions neoantigens/[subject]/ClassII/Fusions and are named *_NeoFuse_MHCI_filtered.tsv,
*_NeoFuse_MHCI_unfiltered.tsv, *_NeoFuse_MHCII_filtered.tsv and *_NeoFuse_MHCII_unfiltered.tsv (see also Supplementary Table 2).

Column Name Description

Fusion The gene fusion, following the format: “Gene1_Gene2”.

Gene1 The gene which makes up the 5' end of the transcript.

Gene2 The gene which makes up the 3' end of the transcript.

Breakpoint1 Coordinates of the breakpoints in Gene1.

Breakpoint2 Coordinates of the breakpoints in Gene2.

Split_Reads1 The number of supporting split fragments with an anchor in Gene1.

Split_Reads2 The number of supporting split fragments with an anchor in Gene2.

Discordant_Reads The number of pairs (fragments) of discordant mates (= spanning reads or bridge reads) supporting the fusion.

Closest_Breakpoint1 The coordinates of the genomic breakpoints which are closest to the transcriptomic breakpoints given in the column
Breakpoint1.

Closest_Breakpoint2 The coordinates of the genomic breakpoints which are closest to the transcriptomic breakpoints given in the column
Breakpoint2.

HLA_Type The HLA allele for this prediction.

Fusion_Peptide The fusion peptide sequence.

IC50 IC50 binding affinity of the fusion epitope.

Rank Binding affinity percentile rank of the fusion epitope.
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Event_Type Whether the fusion results in an in- or out-of-frame mutation.

Stop_Codon Whether there is an early stop codon present in the fusion transcript or not.

Confidence Confidence level assigned by Arriba.

Gene1_TPM Expression level of Gene1 in TPM.

Gene2_TPM Expression level of Gene2 in TPM.

Avg_TPM Mean expression of Gene1 and Gene2.

HLA_TPM Expression level of the HLA gene in TPM.
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Supplementary Table 5. Statistics for all the TESLA candidate neoepitopes computed by nextNEOpi. For each patient, is reported: the total number of
neoepitopes predicted to bind to the relevant MHC class-I molecules (pMHC), the number of unique peptides, and the number of pMHC that were
experimentally validated in the TESLA study (“TESLA pMHC”), also split as immunogenic (“TESLA imm. pMHC”) and non-immunogenic (“TESLA non-imm.
pMHC”) pMHC. Percentages referred to total, immunogenic, or non-immunogenic TESLA pMHC, respectively, are reported in brackets.

Patient Total pMHC Unique peptides TESLA pMHC TESLA imm. pMHC TESLA non-imm. pMHC

Pat_1_tumor 71754 11959 78 (80.41%) 9 (100%) 69 (78.41%)

Pat_2_tumor 264090 43988 96 (88.89%) 4 (100%) 92 (88.46%)

Pat_3_tumor 364380 90819 85 (87.63%) 12 (92.31%) 73 (86.90%)

Pat_4_tumor 49680 9935 65 (85.53%) 1 (100%) 64 (85.33%)

Pat_8_tumor 181650 30261 100 (92.59%) 1 (100%) 99 (92.52%)

Pat_9_tumor 172104 28657 116 (92.06%) 2 (100%) 114 (91.94%)

Pat_12_tumor 52218 8703 68 (76.40%) 4 (100%) 64 (75.29%)

Pat_16_tumor 30912 5152 115 (79.86%) 3 (75.00%) 112 (80.00%)
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Supplementary Table 6. Statistics for all the TESLA candidate neoepitopes computed by nextNEOpi using the “relaxed” filtering approach. For
each patient, is reported: the total number of neoepitopes predicted to bind to the relevant MHC class-I molecules (pMHC), the number of unique peptides,
and the number of pMHC that were experimentally validated in the TESLA study (“TESLA pMHC”), also split as immunogenic (“TESLA imm. pMHC”) and
non-immunogenic (“TESLA non-imm. pMHC”) pMHC. Percentages referred to total, immunogenic, or non-immunogenic TESLA pMHC, respectively, are
reported in brackets.

Patient Total pMHC Unique peptides TESLApMHC TESLA imm. pMHC TESLA non-imm. pMHC

Pat_1_tumor 794 625 63 (64.95%) 8 (88.89%) 55 (62.50%)

Pat_2_tumor 2226 1613 73 (67.59%) 4 (100%) 69 (66.35%)

Pat_3_tumor 2331 2197 69 (71.13%) 12 (92.31%) 57 (67.86%)

Pat_4_tumor 410 293 41 (53.95%) 1 (100%) 40 (53.33%)

Pat_8_tumor 155 141 5 (4.63%) 0 (0.00%) 5 (4.67%)

Pat_9_tumor 246 201 13 (10.32%) 0 (0.00%) 13 (10.48%)

Pat_12_tumor 683 560 58 (65.17%) 4 (100%) 54 (63.53%)

Pat_16_tumor 445 363 91 (63.19%) 3 (75.00%) 88 (62.86%)
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Supplementary Table 7. Examples of nextNEOpi computation time. nextNEOpi was run with paired-end whole-exome (WES) and paired-end RNA
(RNA-seq) sequencing data either on a single HPE DL385 Gen10 computer node with 2 x AMD EPYC 7402 CPUS (48 cores, 1TB RAM), or on a HPC cluster
with 10 HPE XL230a nodes equipped with 2 Intel E5-2699A v4 (44 cores 1TB RAM / node). Please note that the computation time is not scaling linearly with
the computational resources due to differing parallelization efficiency of the single tasks in nextNEOpi. Tweaking the “cpus” parameters in the nextNEOpi
“process.config” file towards to resources available may significantly shorten runtimes.

Hardware WES tumor read pairs WES normal read pairs RNA-seq tumor read pairs # of samples runtime CPU hours

10 node
HPC
cluster
(440 cores)

43,727,109 43,696,145 66,142,877 1 2h 1m 36s 163.6

Single
node (48
cores)

43,727,109 43,696,145 66,142,877 1 4h 36m 12s 186.1

10 node
HPC
cluster
(440 cores)

41,098,073 - 99,185,556 36,768,947 - 95,530,637 34,509,686 - 73,125,045 10 10h 12m 25s 1,700.3
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