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WEB APPENDIX 1 

Further Details on Bayesian g-Computation 
 

Recall that the distributions of the model parameters from our underlying statistical model are explored 

via Markov chain Monte Carlo (MCMC). For the mth iteration of the MCMC algorithm, the individual 

level predictions, denoted by �̂�𝑖,𝑚(𝑋𝑖𝑛𝑡,𝑖 , 𝑇𝑖𝑛𝑡,𝑘) are given by Equation 1 in the main text, but with the m 

specific values of the parameters substituted into the equation. Under standard causal identification 

conditions and correct model assumptions, these predictions form the basis of the estimated population 

average birth weight under a given intervention, denoted by  �̂�[𝑌𝑥𝑖𝑛𝑡,𝑡𝑖𝑛𝑡,𝑘], is given by. 

 

  �̂�𝑚 [𝑌𝑚

𝑥𝑖𝑛𝑡,𝑡𝑖𝑛𝑡,𝑘] = 1/𝑁 ∑ [�̂�𝑖,𝑚(𝑋𝑖𝑛𝑡,𝑖 , 𝑇𝑖𝑛𝑡,𝑘)]𝑁
𝑖=1   

 

Under causal identification conditions given in the manuscript, correct model specification, and standard 

conditions of the validity of MCMC, the simulated values of �̂�𝑚 [𝑌𝑚

𝑥𝑖𝑛𝑡,𝑡𝑖𝑛𝑡,𝑘] constitute posterior draws 

from the distribution of the post-intervention, population average birth weight.  The mean change in birth 

weight following the intervention was obtained by taking the difference �̂�𝑚 [𝑌𝑚

𝑥𝑖𝑛𝑡,𝑡𝑖𝑛𝑡,𝑘] −

�̂�𝑚 [𝑌𝑚
𝑥𝑜𝑏𝑠,𝑡𝑜𝑏𝑠,𝑘] (where “obs” denotes “observed). That is, the posterior distribution of our estimate of the 

effect of decommissioning is obtained by subtracting the population average of the predictions under the 

natural course from the population average of the predictions under the intervention.  
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WEB APPENDIX 2 

Sensitivity Analyses 
 

We assessed the sensitivity of our inference to the following characteristics of our statistical model: the 

use of quadratic terms for maternal age, the priors underlying the hierarchical structure, the strength of 

model selection priors, and forcing certain variables into the model. First, we fit a model using main terms 

only (except for including a quadratic term for maternal age), to evaluate the impact of including many 

product terms in the model. Second, we assessed the impact of strengthening or weakening model 

selection priors by increasing or decreasing the prior precision on selection probabilities. We assessed 

sensitivity to use of quadratic terms for maternal age by fitting a model that included a smoothing spline 

for maternal age. We assessed sensitivity to our choice of prior for model coefficients by fitting a model 

that used a 3 degree of freedom t-distribution as the prior. We also assessed sensitivity to forcing certain 

terms into the model by fitting two separate models that forced inclusion of all main effects of potential 

confounders or all main effects of exposures and potential confounders. We fit three Bayesian models that 

did not include model averaging and selection, to evaluate the impact of Bayesian model averaging for 

allowing potentially highly flexible models in which the first model included hierarchical priors given in 

Table 1 of the manuscript, the second relaxed priors on the hierarchy by using uniform priors on the 

shared variance terms of model coefficients, and the third model utilized independent normally distributed 

priors on all model coefficients. Lastly, we used non-Bayesian g-computation with identical model 

specification and bootstrap confidence intervals to assess any impacts of using the posterior mean to 

define point estimates, rather than the maximum likelihood value. 

 

Assessing intervention exposure levels relative to the joint exposure range 

The intervention values of exposure given in the manuscript are guaranteed to be outside of the range of 

exposures for at least some individuals, given that the intervention was operationalized by multiplying the 

observed exposures by a constant < 1.0. We assessed overlap between the observed exposures and the 

intervention levels via a bivariate scatter plot (Web Figure 1). Intervention values of Nickel were broadly 
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within range of the observed exposures, while all other exposures displayed some separation between the 

distributions of observed and intervention values.  

  

 

 

Web Figure 1.  Distribution of observed and intervention values of exposures (gray dots = observed/natural course; 

black dots = “decommissioning” intervention; black crosses = 10th and 90th percentiles of observed exposures). Under 

the natural course, the mean (SD) of exposures in units of 10ng/m^3 were: As=1.88 (0.46), Be=0.89 (0.26), Cr=1.06 

(0.41), Hg=16.31 (1.84), Ni=20.56 (18.87), Se=5.13 (0.87); Under decommissioning, those means (SDs) would be: 

As=0.15 (0.04), Be=0.03 (0.01), Cr=0.10 (0.04), Hg=0.03 (0.00), Ni=5.44 (5.00), Se=0.06 (0.01).  
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WEB APPENDIX 3 

Joint Effects in the Joint Exposure Range 
 

To address sensitivity of our (qualitative) results, we performed an additional analysis that restricted 

hypothetical interventions to exposure points within the range of the observed data. We note that this was 

not our primary approach because, while such an effect characterizes joint effects that are, in principle, 

 

 
Web Figure 2.  Posterior distribution of the mean birth weight difference across live births in Milwaukee, WI (2011-
2013) comparing the natural course to the hypothetical intervention to decommission 3 coal-fired power plants in 

Milwaukee County. The spike at zero represents the impact of Bayesian model averaging, which admits effect sizes of 

exactly zero. 
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less prone to errors due to model misspecification, it does not map directly onto realistic interventions in a 

concrete way.  

 

We operationalized this analysis by comparisons of 9 hypothetical interventions in which we set all 

exposure values in the population to a specific quantile of observed exposures. These interventions were 

at the 10th, 20th, …, 90th percentile. Because these interventions were based on the same statistical model 

as the primary analysis, they could be evaluated by creating exposure/covariate (design) matrices for each 

intervention value and then making predictions using those design matrices and the posterior draws of 

model parameters obtained in the main analysis. For computational efficiency, we thinned the original 

36,000 post burn-in draws by taking every 36th draw and summarized over the resulting 1,000 posterior 

samples. We repeated this analysis for models A (main analysis, Bayesian model averaging) and J (no 

model averaging) from the main analysis. 

 

The posterior distributions of predicted birth weight at each of the proposed interventions demonstrated 

that higher values of the joint exposure level coincided with lower predicted population average birth 

weight (Web Figure 3). At these hypothetical intervention levels, both Bayesian models produced similar 

inference with respect to the posterior mean of the population average birth weight. Credible intervals 

were wider for the model without Bayesian model averaging, but the differences in precision between 

these two models were markedly smaller than the analysis from the manuscript assessing the potential 

impact of coal plant decommissioning. This last result demonstrates that, when model extrapolation is 

reduced, our results appear more robust to the choice of which statistical model is used. 
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WEB APPENDIX 4 

Simulation Study 
 

We performed a small simulation study to examine whether Bayesian g-computation can be used to 

estimate effects of interventions in cases in which the expected levels of exposures in at least one level of 

the intervention are outside the support of the data, possibly in strata of covariates. This condition is 

sometimes referred to as “stochastic non-positivity” in which the intervention values have positive 

probability in the study sample. Gill and Robins refer to this assumption as “identifiability” (1) and note 

that it is interpreted as the condition that “when there was an opportunity to apply the [intervention], that 

opportunity was at least sometimes taken.”  

 

We first review notation for point-exposure and time-fixed outcome data such as the example given in the 

main text. We denote multivariate exposure as X, multivariate covariate as Z, and a univariate outcome as 

Y. Under the counterfactual in which we set exposure to some “intervention” or “plan” value of g, the 

potential outcomes are denoted as Yg, which refer to the outcomes we would observe, if exposure had 

been set to X=g.  For discrete X, Z and Y, positivity or identifiability can be stated as Pr(X=g, Z=z) > 0. 

This condition ensures that the conditional potential outcome probability Pr(Yg =y | X=g, Z=z) is well 

defined in the sense that the scenario on which we condition is within the realm of possibility (which 

 

Web Figure 3.  Posterior means and 95% credible intervals for assessing interventions to jointly set all exposures to 

observed quantiles contrasting two Bayesian statistical models. Panel A represents results using our Bayesian model 

averaging approach (model A) and Panel B represents results using our hierarchical Bayesian model with no selection 

(model J). Population mean given by dashed lines. 
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ensures a unique value to the conditional probability). The extension to continuous X, Z and Y given by 

Gill and Robins is defined by Gill and Robins to mean that the joint distribution of (X, Z) are inside the 

“support” of the joint distribution of (X, Z), where “support” in the continuous case refers to all values 

comprising the “close” neighborhood of observed covariates and exposures. Informally, this means that if 

we propose an intervention that sets exposures X1 and X2 to some values x1 and x2, then there should be 

some observations in the data where X1 is “close” to x1 and X2 is “close” to x2.  

 

We next note that the assumption of “identifiability” may be relaxed by parametric modeling. 

“Identifiability” is non-parametric in the sense that it refers to scenarios in which the estimator of the 

distribution of potential outcomes is estimable from the data without assuming a parametric model. In 

practice when any member of X, Z or Y are continuous, some sort of parametric or semi-parametric model 

is used, which imposes a constraint on the possible joint distribution of (X, Z, Y). In the point-exposure, 

discrete time-fixed outcome setting, this implies that Pr(Yg =y | X=g, Z=z) is indexed by some model with 

finite dimensional parameters, such that the conditional distribution of potential outcomes is given by 

Pr(Yg =y | X=g, Z=z, 𝜷). We note here that this quantity is generally unique and identified when the finite 

dimensional parameter 𝜷 is known (e.g. as would be the case with generalized linear models with known 

values of model parameters). In practice we almost never know 𝜷, so we can substitute Pr(Yg =y | X=g, 

Z=z, �̂�) for the potential outcome distribution using an estimate of the model parameters denoted by �̂�. 

Thus, rather than assuming positivity or non-parametric identifiability, we can assume that the parametric 

model is correctly specified in the sense that the true distribution Pr(Yg =y | X=g, Z=z) is contained in the 

model Pr(Yg =y | X=g, Z=z, 𝜷) and, as is well known, consistent estimates of the potential outcome 

distribution can be obtained if we have a consistent estimator �̂� (and all other necessary causal 

assumptions hold). While model specification can often be assessed empirically through goodness-of-fit 

measures, we note that the use here, a substitute for a positivity assumption, is less amenable to empirical 

checks. Namely, an estimate of 𝜷 may appear to yield a model that fits the data well, but this provides no 

guarantee that accurate “local fit” provides an accurate global fit to regions of the joint distribution (X, Z) 

that are not observed in one’s particular sample of data. 

 

We illustrate that the model specification assumption can be substituted for positivity/identifiability in 

parametric models, including Bayesian linear models which were used in the main text. We simulated 

data according to the following structure. Z comprised three independent standard normal variables. X 

comprised two normally distributed variables (X1, X2) each with unit variance and means given by 15 + 

Z𝜶, where 𝜶 was the row vector (1,1,1). This induced a Spearman correlation between (X1, X2) 

approximately 0.8 so as to emulate correlated variables found in our example from the main text. A 
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univariate outcome Y was generated as a normally distributed variable with unit variance and mean given 

by (X1, Z, Z*Z, X1*Z)𝜷, where 𝜷 was the row vector (1, 2, -2, 0, -0.3, 0.0, 0.5, 1.0, 1.0, 1.0) and “*” 

implies element-wise/row-wise multiplication. Thus, the assumed model implies that X1 has a causal 

effect on Y, but X2 does not, and on the additive scale the effect of X1 depends on the confounders Z, and 

the conditional regression function between Z and Y is a quadratic function. Data were simulated in 

sample sizes of 100 and 1000. 

 

We analyzed the data using a Bayesian, hierarchical linear model in which we estimated the posterior 

distributions of linear model parameters for a correctly specified regression model given as the function 

E(Y | X1, X2, Z, Z*Z, X1*Z, X2*Z, 𝜷𝒄), where the terms for X2 and X2*Z were extraneous in the sense that 

the true coefficients corresponding to these terms are all zero (but they do not induced bias by including 

in the model). Thus, this analysis represents our default approach to modeling described in the main text, 

where we model deviations from the additive scale through product terms and quadratic basis functions of 

independent variables with the expectation that some of these coefficients are close to zero. We also 

estimated the parameters of a mis-specified model given by E(Y | X1, X2, Z, 𝜷𝒎), which includes only 

main terms of exposures and confounders, and roughly represents a default linear/additive model in which 

we assume that all product terms and non-linear bases are zero.  

 

For analysis of both correctly and incorrectly specified models, we imposed a hierarchical model by 

assuming that the coefficients for the main exposure effects derived from a common normal distribution 

with priors 𝜷𝑿~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇1, 𝜏1
2) and all other coefficients arose from a separate common normal 

distribution with priors 𝜷𝒁𝑿~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇2, 𝜏2
2). We used conjugate, vague hyper priors on the prior 

distribution of (𝜇1 , 𝜇2, 𝜏1, 𝜏2) to leverage Gibbs sampling for estimation, which allowed relatively quick 

analysis of the data and facilitated full Bayesian inference. 

 

Following the main text, we used the estimated parameters from the linear model to estimate the effects of 

a hypothetical intervention to reduce X from its observed values x = (x1,x2) to (1.0, 1.0) for all individuals, 

which estimates the potential mean difference given by E(Yx - Y(1,1)). We compared the estimated mean 

potential outcomes and the estimated mean difference to the expected mean difference for each dataset in 

terms of bias (mean difference between the point estimate of the mean potential outcome and the true 

mean potential outcome), Monte Carlo Standard deviation (standard deviation of the point estimates) and 

root-mean squared error (the average squared bias). The true values of the population average effect 

parameters are given as: E[Y(15,15)] =14.55 and E[Y(15,15)] = 0.55. Results are given and discussed in the 

main text.   
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Web Table 1.  Bayesian prior distributions for main analysis and selected sensitivity analyses for the Bayesian linear model of birth weight as a 
function of metals and confounders 

 

      Modela 

Termb A,Ec B C D F G,Hd I J K L 

𝛽0 𝑁(0,100) 𝑁(0,100) 𝑁(0,100) 𝑁(0,100) 𝑁(0,100) 𝑁(0,100) 𝑁(0,100) 𝑁(0,100) 𝑁(0,100) 𝑁(0,100) 

𝛽1 − 𝛽14 𝑁(𝜇1, 𝜏1
2) 𝑁(𝜇1, 𝜏1

2) 𝑁(𝜇1, 𝜏1
2) 𝑁(𝜇1, 𝜏1

2) 𝑇(3, 𝜇1 , 𝜏1
2) 𝑁(𝜇1, 𝜏1

2) 𝑁(0,1) 𝑁(𝜇1, 𝜏1
2) 𝑁(𝜇1, 𝜏1

2) 𝑁(0,1) 

𝛽15 − 𝛽83 𝑁(𝜇2, 𝜏2
2)  𝑁(𝜇2, 𝜏2

2) 𝑁(𝜇2, 𝜏2
2) 𝑇(3, 𝜇2, 𝜏2

2) 𝑁(𝜇2, 𝜏2
2)  𝑁(𝜇2, 𝜏2

2) 𝑁(𝜇2, 𝜏2
2) 𝑁(0,1) 

𝛿1−δ14 𝐵(1,1) 𝐵(1,1) 𝐵(1,1) 𝐵(1,1) 𝐵(1,1)      

𝛿15−δ83 𝐵(9,1)  𝐵(1,1) 𝐵(90,10) 𝐵(9,1) 𝐵(9,1)     

𝜇1, 𝜇2 𝑁(0,1) 𝑁(0,1) 𝑁(0,1) 𝑁(0,1) 𝑁(0,1) 𝑁(0,1)  𝑁(0,1) 𝑁(0,1)  

𝜏1 𝐶+(0,2) 𝐶+(0,2) 𝐶+(0,2) 𝐶+(0,2) 𝐶+(0,2) 𝐶+(0,2)  𝐼𝐺(.001, .001) 𝑈(−∞, ∞)  

𝜏2 𝐶+(0,1)  𝐶+(0,1) 𝐶+(0,1) 𝐶+(0,1) 𝐶+(0,1)  𝐼𝐺(.001, .001) 𝑈(−∞, ∞)  

𝜎 𝐶+(0,2) 𝐶+(0,2) 𝐶+(0,2) 𝐶+(0,2) 𝐶+(0,2) 𝐶+(0,2) 𝐼𝐺(.001, .001) 𝐼𝐺(.001, .001) 𝐼𝐺(.001, .001) 𝐼𝐺(.001, .001) 

Prior distributions denoted are as follows: 𝑵 = normal(mean, variance), 𝑩=beta(a,b), 𝑪+= Cauchy(location, scale) truncated below at 0, T(d.f., 

location, squared-scale) = non-central t distribution with 3 degrees of freedom, 𝑰𝑮 = inverse gamma(a,b), U=uniform(min, max) 
aCorresponding to model label in Table 3 
b𝜷: model coefficients; 𝜹: selection indicators; 𝝁: model coefficient prior mean; 𝝉𝟐: model coefficient prior variance; 𝝈𝟐: model error term prior 

variance 
cModel E includes the smoothing spline terms for maternal age in the same group as the main term coefficients 1-14. 
dModel G includes selection on main exposure variables, whereas model H has no selection on the main term coefficients 1-14. 

 



11 

 

Web Table 2.  Model coefficient (mean difference in birth weight (g) per unit change in independent 
variable) for all terms in the Bayesian model-averaging g-computation approach 

 

Term Meana (95% CrIb) PIPc GPIPd 

Intercept 3179.4 (3161.9, 3196.7)   

cen_magebirth (maternal age at birth, standardized) 42.3 (32.9, 51.5) 1.00 1.00 

cfemale (child female sex) -116.5 (-130.9, -102.0) 1.00 1.00 

mwhite (maternal white race, non-Hispanicity) 266.0 (244.2, 287.4) 1.00 1.00 

mhisp (maternal Hispanicity) 25.3 (0.0, 77.6) 0.59 0.60 

mother (maternal non-black, non-white race) 206.6 (182.3, 229.1) 1.00 1.00 

msmk (maternal smoking during pregnancy) -191.8 (-211.8, -171.9) 1.00 1.00 

married (maternal marital status) 12.8 (0.0, 36.2) 0.60 0.60 

cen_hg (mercury compounds, standardized) -0.7 (-10.2, 0.0) 0.11 0.11 

cen_se (selenium compounds, standardized) -1.4 (-17.1, 0.0) 0.16 0.17 

cen_be (beryllium compounds, standardized) -6.2 (-23.2, 0.0) 0.48 0.48 

cen_as (arsenic compounds, standardized) -4.0 (-21.3, 11.5) 0.39 0.40 

cen_cr (hexavalent chromium compounds, standardized) -7.9 (-20.2, 0.0) 0.64 0.68 

cen_ni (nickel compounds, standardized) 1.2 (0.0, 13.4) 0.15 0.22 

cen_magebirth*cen_magebirth -25.1 (-31.3, -18.8) 1.00  

cen_magebirth*cfemale 0.0 (0.0, 0.0) 0.00  

cen_magebirth*mwhite 0.0 (0.0, 0.0) 0.00  

cen_magebirth*mhisp 0.0 (0.0, 0.0) 0.00  

cen_magebirth*mother 0.2 (0.0, 0.0) 0.01  

cen_magebirth*msmk -54.1 (-75.6, -31.9) 0.99  

cen_magebirth*mmarried 0.0 (0.0, 0.0) 0.00  

cen_hg*cen_magebirth 0.0 (0.0, 0.0) 0.00  

cen_magebirth*cen_se 0.0 (0.0, 0.0) 0.00  

cen_be*cen_magebirth 0.0 (0.0, 0.0) 0.00  

cen_as*cen_magebirth 0.0 (0.0, 0.0) 0.00  

cen_cr*cen_magebirth 0.0 (0.0, 0.0) 0.00  

cen_magebirth*cen_ni 0.0 (0.0, 0.0) 0.00  

cen_hg*cfemale 0.0 (0.0, 0.0) 0.00  

cen_hg*mwhite 0.0 (0.0, 0.0) 0.00  

cen_hg*mhisp 0.0 (0.0, 0.0) 0.00  

cen_hg*mother 0.0 (0.0, 0.0) 0.00  

cen_hg*msmk 0.0 (0.0, 0.0) 0.00  

cen_hg*mmarried 0.0 (0.0, 0.0) 0.00  

cen_hg*cen_hg 0.0 (0.0, 0.0) 0.00  

cen_hg*cen_se 0.0 (0.0, 0.0) 0.00  

cen_be*cen_hg 0.0 (0.0, 0.0) 0.00  
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cen_as*cen_hg 0.0 (0.0, 0.0) 0.00  

cen_cr*cen_hg 0.0 (0.0, 0.0) 0.00  

cen_hg*cen_ni 0.0 (0.0, 0.0) 0.00  

cen_se*cfemale 0.0 (0.0, 0.0) 0.00  

cen_se*mwhite 0.0 (0.0, 0.0) 0.00  

cen_se*mhisp 0.2 (0.0, 0.0) 0.01  

cen_se*mother 0.1 (0.0, 0.0) 0.00  

cen_se*msmk 0.0 (0.0, 0.0) 0.00  

cen_se*mmarried 0.0 (0.0, 0.0) 0.00  

cen_se*cen_se 0.0 (0.0, 0.0) 0.00  

cen_be*cen_se 0.0 (0.0, 0.0) 0.00  

cen_as*cen_se 0.0 (0.0, 0.0) 0.00  

cen_cr*cen_se 0.0 (0.0, 0.0) 0.00  

cen_ni*cen_se 0.0 (0.0, 0.0) 0.00  

cen_be*cfemale 0.0 (0.0, 0.0) 0.00  

cen_be*mwhite 0.0 (0.0, 0.0) 0.00  

cen_be*mhisp 0.1 (0.0, 0.0) 0.00  

cen_be*mother 0.0 (0.0, 0.0) 0.00  

cen_be*msmk 0.0 (0.0, 0.0) 0.00  

cen_be*mmarried 0.0 (0.0, 0.0) 0.00  

cen_be*cen_be 0.0 (0.0, 0.0) 0.00  

cen_as*cen_be 0.0 (0.0, 0.0) 0.00  

cen_be*cen_cr 0.0 (0.0, 0.0) 0.00  

cen_be*cen_ni 0.0 (0.0, 0.0) 0.00  

cen_as*cfemale 0.0 (0.0, 0.0) 0.00  

cen_as*mwhite 0.0 (0.0, 0.0) 0.00  

cen_as*mhisp 0.3 (0.0, 0.0) 0.01  

cen_as*mother 0.0 (0.0, 0.0) 0.00  

cen_as*msmk 0.0 (0.0, 0.0) 0.00  

cen_as*mmarried 0.0 (0.0, 0.0) 0.00  

cen_as*cen_as 0.0 (0.0, 0.0) 0.00  

cen_as*cen_cr 0.0 (0.0, 0.0) 0.00  

cen_as*cen_ni 0.0 (0.0, 0.0) 0.00  

cen_cr*cfemale 0.0 (0.0, 0.0) 0.00  

cen_cr*mwhite -1.4 (-30.0, 0.0) 0.04  

cen_cr*mhisp 0.0 (0.0, 0.0) 0.00  

cen_cr*mother 0.0 (0.0, 0.0) 0.00  

cen_cr*msmk 0.0 (0.0, 0.0) 0.00  

cen_cr*mmarried 0.0 (0.0, 0.0) 0.00  

cen_cr*cen_cr 0.0 (0.0, 0.0) 0.00  
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cen_cr*cen_ni 0.0 (0.0, 0.0) 0.00  

cen_ni*cfemale 0.0 (0.0, 0.0) 0.00  

cen_ni*mwhite -0.3 (0.0, 0.0) 0.01  

cen_ni*mhisp 0.0 (0.0, 0.0) 0.00  

cen_ni*mother 1.6 (0.0, 24.7) 0.07  

cen_ni*msmk 0.0 (0.0, 0.0) 0.00  

cen_ni*mmarried 0.0 (0.0, 0.0) 0.00  

cen_ni*cen_ni 0.0 (0.0, 0.0) 0.00  
aMean = posterior mean of 𝛿 ∗ 𝛽 terms from model (1) in the manuscript 
bCrI = credible intervals based on quantiles of posterior (Note: these may not contain the posterior mean 

for terms where the PIP is very low) 
cPIP = posterior inclusion probability; posterior mean of 𝛿 from model (1) in the manuscript 
dGPIP = groupwise posterior inclusion probability for any main or product term including the referenced 

variable 
Bayesian Model-Averaging estimates given as the posterior mean and 95% CrI over 36000 MCMC 

iterations across 8 independent chains. Variables included in the model included standardized (to have 

mean=0, SD=1) variables of each metal (continuous: cen_as, cen_be, cen_cr, cen_hg, cen_sb, cen_ni), 

standardized maternal age at birth (continuous: cen_magebirth), maternal race (4 categories: mwhite= 
white, non-Hispanic, mother = any other race, non-Hispanic, mhisp = white, Hispanic and black, non-

Hispanic as referent), maternal smoking during pregnancy (yes/no: msmk), maternal marital status 

(yes/no: mmarried), and child’s female sex (yes/no: cfemale) 
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Web Table 3.  Adjusted Change in Birth Weight (g) with Airborne Metals from Single-Pollutant (non-
Bayesian) Models, Only Metal Terms Shown 

 

Term MDa (95% CIb) 

Mercury Compounds (Hg) -13.0 (-20.4, -5.6) 

Selenium Compounds (Se) -16.7 (-24.7, -8.7) 

Beryllium Compounds (Be) -16.2 (-23.7, -8.7) 

Arsenic Compounds (As) -16.8 (-24.4, -9.2) 

Hexavalent Chromium (Cr) -16.2 (-23.9, -8.5) 

Nickel Compounds (Ni) -0.54 (-9.0, 7.9) 

Variables included in each model included standardized (to have mean=0, SD=1) variables of each metal, 
standardized maternal age at birth (continuous), maternal race (4 categories: white, non-Hispanic, white 

and Hispanic, black and non-Hispanic, any other race and non-Hispanic), maternal smoking during 

pregnancy (yes/no), maternal marital status (yes/no), and child’s female sex (yes/no) 
aMD = mean difference (in birth weight) 
bCI = confidence intervals 
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Web Table 4.  Adjusted Change in Birth Weight (g) with Airborne Metals from Multi-Pollutant (non-
Bayesian) Model, Only Metal Terms Shown 

 

Term MDa (95% CIb) 

Mercury Compounds (Hg) -5.4 (-16, 4.7) 

Selenium Compounds (Se)  -13 (-33, 7) 

Beryllium Compounds (Be)  -19 (-50, 12) 

Arsenic Compounds (As)   18 (-26, 62) 

Hexavalent Chromium (Cr)  -13 (-22,-3.8) 

Nickel Compounds (Ni)  7.8 (-2.3, 18) 

Variables included in each model included standardized (to have mean=0, SD=1) variables of each metal, 
standardized maternal age at birth (continuous), maternal race (4 categories: white, non-Hispanic, white 

and Hispanic, black and non-Hispanic, any other race and non-Hispanic), maternal smoking during 

pregnancy (yes/no), maternal marital status (yes/no), and child’s female sex (yes/no) 
aMD = mean difference (in birth weight) 
bCI = confidence intervals 
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Web Table 5.  Model coefficient (mean difference in birth weight (g) per unit change in independent 
variable) for all terms using standard Bayesian hierarchical modeling without Bayesian model averaging  

 

Term Meana (95% CrIb) 

Intercept 3175.1 (3155.5, 3194.7) 

cen_magebirth (maternal age at birth, standardized) 33.6 (23.1, 44.3) 

cfemale (child female sex) -116.1 (-130.5, -101.5) 

mwhite (maternal white, non-Hispanic race/ethnicity) 263.3 (241.1, 285.6) 

mhisp (maternal Hispanic ethnicity) 42.6 (2.9, 82.3) 

mother (maternal non-black, non-white race) 194.7 (170.0, 219.3) 

msmk (maternal smoking during pregnancy) -187.1 (-207.1, -167.2) 

married (maternal marital status) 22.4 (5.7, 39.2) 

cen_hg (mercury compounds, standardized) -6.7 (-21.1, 7.8) 

cen_se (selenium compounds, standardized) -13.0 (-37.5, 11.3) 

cen_be (beryllium compounds, standardized) -10.5 (-51.0, 29.8) 

cen_as (arsenic compounds, standardized) 3.2 (-49.3, 55.5) 

cen_cr (hexavalent chromium compounds, standardized) -14.2 (-32.3, 4.3) 

cen_ni (nickel compounds, standardized) 12.0 (-8.0, 32.1) 

cen_magebirth*cen_magebirth -24.8 (-31.2, -18.4) 

cen_magebirth*cfemale -0.4 (-9.4, 8.4) 

cen_magebirth*mwhite -2.9 (-13.8, 6.6) 

cen_magebirth*mhisp 0.9 (-10.3, 12.5) 

cen_magebirth*mother 6.3 (-3.2, 18.1) 

cen_magebirth*msmk -11.0 (-26.8, 0.2) 

cen_magebirth*mmarried 0.0 (-9.6, 9.4) 

cen_hg*cen_magebirth -0.1 (-7.3, 7.0) 

cen_magebirth*cen_se 2.1 (-6.3, 10.8) 

cen_be*cen_magebirth -2.7 (-11.8, 5.6) 

cen_as*cen_magebirth -1.4 (-11.5, 8.0) 

cen_cr*cen_magebirth 3.1 (-3.6, 10.1) 

cen_magebirth*cen_ni 1.7 (-5.1, 8.4) 

cen_hg*cfemale -0.1 (-9.6, 9.1) 

cen_hg*mwhite 2.3 (-7.4, 13.3) 

cen_hg*mhisp 1.8 (-9.2, 13.8) 

cen_hg*mother -0.2 (-10.7, 9.8) 

cen_hg*msmk 1.3 (-8.7, 12.1) 

cen_hg*mmarried -0.1 (-10.0, 9.5) 

cen_hg*cen_hg 2.5 (-2.4, 7.5) 

cen_hg*cen_se 0.1 (-8.8, 9.2) 
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cen_be*cen_hg -0.6 (-10.1, 8.0) 

cen_as*cen_hg 0.5 (-9.3, 10.5) 

cen_cr*cen_hg 2.0 (-6.7, 11.5) 

cen_hg*cen_ni 1.0 (-7.3, 9.7) 

cen_se*cfemale 2.2 (-7.5, 12.6) 

cen_se*mwhite 0.6 (-9.8, 11.6) 

cen_se*mhisp 2.6 (-8.4, 15.2) 

cen_se*mother 5.5 (-4.4, 17.8) 

cen_se*msmk 0.3 (-10.1, 11.3) 

cen_se*mmarried 2.9 (-6.8, 13.9) 

cen_se*cen_se -1.2 (-10.0, 7.5) 

cen_be*cen_se -4.7 (-17.0, 5.3) 

cen_as*cen_se -3.4 (-15.2, 6.6) 

cen_cr*cen_se 1.0 (-7.6, 10.0) 

cen_ni*cen_se 2.1 (-7.7, 12.4) 

cen_be*cfemale 0.4 (-9.5, 10.4) 

cen_be*mwhite 3.1 (-6.7, 14.6) 

cen_be*mhisp 2.1 (-9.1, 14.4) 

cen_be*mother -1.1 (-12.4, 9.1) 

cen_be*msmk -1.2 (-12.2, 8.9) 

cen_be*mmarried 0.1 (-10.2, 10.1) 

cen_be*cen_be 2.9 (-5.8, 13.6) 

cen_as*cen_be 0.7 (-9.2, 11.4) 

cen_be*cen_cr -2.4 (-13.2, 7.0) 

cen_be*cen_ni 1.2 (-8.9, 11.5) 

cen_as*cfemale 0.5 (-9.9, 10.8) 

cen_as*mwhite 0.5 (-10.0, 11.4) 

cen_as*mhisp 2.6 (-8.5, 15.1) 

cen_as*mother 1.1 (-9.8, 11.8) 

cen_as*msmk -1.8 (-13.3, 8.5) 

cen_as*mmarried 0.0 (-10.8, 10.3) 

cen_as*cen_as -0.7 (-10.9, 9.2) 

cen_as*cen_cr 0.3 (-9.8, 10.5) 

cen_as*cen_ni 1.5 (-7.9, 10.9) 

cen_cr*cfemale 1.2 (-7.9, 10.5) 

cen_cr*mwhite -4.9 (-17.4, 5.0) 

cen_cr*mhisp 1.5 (-9.9, 13.5) 

cen_cr*mother 3.7 (-6.1, 14.7) 
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cen_cr*msmk -1.3 (-11.8, 8.5) 

cen_cr*mmarried 0.6 (-9.1, 10.3) 

cen_cr*cen_cr 0.9 (-3.8, 5.4) 

cen_cr*cen_ni 3.1 (-6.7, 14.2) 

cen_ni*cfemale 1.7 (-7.3, 11.1) 

cen_ni*mwhite -5.4 (-17.4, 4.4) 

cen_ni*mhisp 1.4 (-9.7, 13.1) 

cen_ni*mother 6.8 (-2.8, 18.6) 

cen_ni*msmk -1.8 (-12.6, 8.2) 

cen_ni*mmarried 0.8 (-8.6, 10.3) 

cen_ni*cen_ni -1.9 (-5.8, 1.9) 
aMean = posterior mean of 𝛽 ∗ 𝛿 terms from model (1) in the manuscript (with 𝛿 = 1 for all terms in this 
model) 
bCrI = credible intervals based on quantiles of posterior (Note: these may not contain the posterior mean 

for terms where the PIP is very low) 
cPIP = posterior inclusion probability posterior mean of 𝛿 from model (1) in the manuscript 

Estimates given as the posterior mean and 95% CrI over 36000 MCMC iterations across 8 independent 

chains. Variables included in the model included standardized (to have mean=0, SD=1) variables of each 
metal (continuous: cen_as, cen_be, cen_cr, cen_hg, cen_sb, cen_ni), standardized maternal age at birth 

(continuous: cen_magebirth), maternal race (4 categories: mwhite= white, non-Hispanic, mother = any 

other race, non-Hispanic, mhisp = white, Hispanic and black, non-Hispanic as referent), maternal 

smoking during pregnancy (yes/no: msmk), maternal marital status (yes/no: mmarried), and child’s 
female sex (yes/no: cfemale) 

 


