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1 Web Appendix 1: AIPW with missing Outcome

Let R; be an indicator of whether the outcome for individual 7 is observed (R; = 0 if missing), and W be
all of the covariates from Wy and W,. In the presence of missing outcome data, the AIPW estimator in
the main text (formula 3) can be written as:

n

- 1 I(Ai=a,Ri = 1) . . }
a = — = Y, - PY =1|A;,W;,R, =]+ PY =1A=a,W;,R; =1
By = 1S G P =1 N+ P =1 )

The propensity scores P(A = a, R = 1|W};) is obtained by estimating the joint probability of treatment
and (non)missingness:

P(A=a,R=1|W;) = P(R=1|W;, A =a)P(A = a|W;),

which incorporates missing data mechanism with W. In other words, analyses assume missing at random
(MAR) conditional on W, and thus such analyses require W include covariates that render MAR as close
to true as possible.

When missing outcomes are detected, the arguments in the AIPW package enabling different covariate
sets for the outcome (Wg) and exposure (W) models are disabled. This is because the propensity scores
with (non)missing data can be factorized into two ways:

P(A=a,R=1|W;) = P(R=1|Wg;, A= a)P(A = a|Wy)
P(R=1|Wg;)P(A = a|W,, R=1).

In other words, it requires conditioning on both outcome covariates W for missing data mechanism and
W, for exposure mechanism.
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2 Web Appendix 2: Derivation of the standard errors of risk ratio
and odds ratio for the AIPW estimator

Suppose we have an iid sample Z1, ..., Z, ~ P with Z = (A,Y, Wq,W,) where Y € {0,1}. We assume

the usual consistency, positivity, and no unmeasured confounding conditions.

Let
7(a | wy) =P(A=a| Wy =wy) and [(wg,a) =P(Y =1| Wg =wg, A =a)

denote estimators of the chance of receiving exposure level A = a given covariate W, = w,, and the
chance of observing outcome Y = y among those with covariates Wy = wg and exposure A = a.

Under typical n=/4
normal

-type rate conditions, the following estimator is root-n consistent and asymptotically

B =1 = 3[R {1 - v o))+ 0o )

for the marginal counterfactual probability P(Y? = 1) = E{E(Y | X, A = a)}. Note we use counterfactual
expressions like P(Y* = 1) as shorthand, but all the results here follow for the observational expressions
E{E(Y | X, A = a)} regardless of whether these equal the corresponding counterfactual expressions.

Therefore the following are estimators for the marginal risk ratio and odds ratio:

~  P(Y'=1)

Yrr = P(Y? = 1)

5o P(Y!=1)/{1 -P(Y'=1)}
TPYO=1)/{1-P(Y"=1)}

Since both the RR and OR are non-negative, normal approximations will work best if we construct con-
fidence intervals on the log scale and then exponentiate.

Let wo(Z;m, 1) = 7}&‘?;:3){1/; - ,u(WQi,a)} + u(Wq;i,a) denote the uncentered influence function for
P(Y*=1) =E{E(Y | X, A= a)} so that

~

a 1 - ~ o~
P(Y :1):52%(&';7@#)
i=1

Also let

Y = cov (‘PO(Z”T’“)) _ ( var{po(Z;m, p)} cov{po(Z;m, ), 01(Z;, u)}>
p1(Z;m, 1) cov{wo(Z;m, 1), p1(Z;m, 1)} var{e1(Z; 7, 1)}

. . . . . Yoo X
denote the covariance matrix of the influence functions, with elements ¥ = (200 201>.
01 211

An estimate of the covariance matrix is simply given by

S < var{po(Z; 7, /1)} cov{wo(Z; T, ﬁ),sol(Z;%,ﬁ)})
covipo(Z; 7, 1), p1(Z; 7, i)} var{e1(Z; 7, i)

where cov and var are just empirical covariances/variances.
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—-1/4

Then under usual n -type rate conditions on (7, 1i) we have

P(Y? =1) P(Y? =1)
\/ﬁ{ (@(Yl = 1)> B (P(Yl = 1)>} - NO.D)

Therefore by the delta method, we have

-1 T -1
\/ﬁ(log% —logww) w N (o, [ FOED ) s ((FOUED
PYI=0) PYT=0)

so that a 95% CI for 1., is given by

~ ~

exp d log 5, - 10 zl: S 2501
X =< - = =
P T vn P(ye=1)2 PYO=1PY!=1)

a=0

Similarly the delta method also gives

1 NT
V(1083 — logtr) ~» N <o, (W) . <P<YO=1)1P(YD=0>>>

FYT=DE(YT=0)

so that a 95% CI for 1), is given by

~

1

=

1 + — = =
exp og sz)or \/ﬁ Z P(Y“ _ 1)2P(Y‘1 _ 0)2

~

a=0

(YO = DP(Y? = 0)B(Y! = 1)P(Y!

=0)
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3 Web Appendix 3: Example code that can be used to implement an
augmented inverse probability weighted estimator via the AIPW
package using the simulated RCT data available in the package.

library (AIPW)

library(SuperLearner)

set.seed(1234)

#load simulated dataset (RCT)

data(eager_sim_rct)

#Specify SuperLearner libraries

sl.lib = c("SL.gam","SL.earth","SL.ranger","SL.xgboost")

#Create a vector of covariates

Cov = c("loss_num","age", "time_try_pregnant","BMI","meanAP")

#create a new AIPW object called AIPW_SL

ATPW_SL <- AIPW$new(Y = eager_sim_rct$sim_Y,

eager_sim_rct$sim_Tx,

.g = eager_sim_rct$eligibility,

.Q = subset(eager_sim_rct,select=Cov), #covariates

.SL.library = sl.1lib, #outcome model

.SL.1library = sl.1lib, #exposure model

_split = 10, #num of folds for cross-fitting
verbose=TRUE)

#fit the data stored in the AIPW_SL object

ATPW_SL$fit OO

#summarise the results using truncated propensity scores

ATPW_SL$summary(g.bound = 0.025)

N 0RO = = =
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4 Web Figure 1: Implementation of sample splitting and cross-fitting

To implement sample splitting, one needs to subset the input data into k£ equal-size folds randomly, then
fit the exposure and the outcome models with (k—1)/k data, and finally use the fitted models to estimate
propensity scores and outcome model predictions with the 1/k held-out sample.1? (Figure Sla)

Sample splitting (First iteration of cross-fitting)

Split the sample in k-equal Train ML model with CV Obtain estimates in the
size folds using k-1/k data holdout sample

[ o |

ML, Stacking machine learning; CV, Cross-validation; k=3 in this example.
Web Figure la: Illustration of sample splitting
Cross-fitting is a more efficient version of sample splitting.X' While sample splitting only uses 1/k of
the sample for estimating propensity score and outcome model, cross-fitting iterates the process sample-

splitting k times until estimates of the exposure and outcome for all observations are obtained.(Figure
S1b).

Second iteration of cross-fitting

Split the sample in k-equal Train ML model with CV Obtain estimates in the
size folds using k-1/k data holdout sample

Ccv ‘

Kth iteration of cross-fitting

Split the sample in k-equal Train ML model with CV Obtain estimates in the
size folds using k-1/k data holdout sample

ML, Stacking machine learning; CV, Cross-validation; k=3 in this example.

Web Figure 1b: Illustration of cross-fitting
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In the ATPW package with the SuperLearner, when k_split = 2, 10-fold cross-validation (CV) will be
used for training stacking machine learning algorithms; when k_split > 3, k_split — 1 fold CV will be
used (e.g., 2-fold CV is used for k_split = 3), with the CV-fold assignment remains the same throughout
cross-fitting. With the s13 package, 10-fold CV will be used regardless of k_split.

References

1. Chernozhukov V, Chetverikov D, Demirer M, et al. Double/debiased machine learning for treatment
and structural parameters. The Econometrics Journal 2018;21(1):C1-C68. doi:10.1111/ectj.12097.
Publisher: Oxford Academic.
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5 Web Figure 2: Pairwise comparison of risk difference estimates with

the true data generating functions using different methods
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Abbreviations: IPW, Inverse Probability Weighting; AIPW, Augmented Inverse Probability Weighting; GLM, Generalized
Linear Model; GAM, Generalized Additive Model; TMLE, Targeted Maximum Likelihood Estimation.

Diagonal panels are the density plots of estimates from each package, lower diagonal panels are scatter plots of estimates

between two packages, and upper diagonal panels are Pearson correlations of estimates between two packages. In the

scatter plots, horizontal and vertical lines refer to RD¢rye = 0.128, and diagonal lines are references with a slope = 1 and
an intercept of 0. Please refer to the main text for the details.
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6 Web Figure 3: Pairwise comparison of risk difference estimates us-

. . . o .
ing doubly robust packages with different estimation methods
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Abbreviations: IPW, Inverse Probability Weighting; AIPW, Augmented Inverse Probability Weighting; GLM, Generalized

Linear Model; GAM, Generalized Additive Model; TMLE, Targeted Maximum Likelihood Estimation.

Diagonal panels are the density plots of estimates from each package, lower diagonal panels are scatter plots of estimates

between two packages, and upper diagonal panels are Pearson correlations of estimates between two packages. In the

scatter plots, horizontal and vertical lines refer to RD¢rye = 0.128, and diagonal lines are references with a slope = 1 and
an intercept of 0. Please refer to the main text for the details.
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7 Web Figure 4: Pairwise comparison of log(risk ratio) estimates with
the true data generating functions using different methods
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Abbreviations: IPW, Inverse Probability Weighting; AIPW, Augmented Inverse Probability Weighting; TMLE, Targeted
Maximum Likelihood Estimation; RR, Risk Ratio.
Diagonal panels are the density plots of estimates from each package, lower diagonal panels are scatter plots of estimates
between two packages, and upper diagonal panels are Pearson correlations of estimates between two packages. In the
scatter plots, horizontal and vertical lines refer to log(RR¢rve) = 0.31, and diagonal lines are references with a slope = 1

and an intercept of 0
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8 Web Figure 5: Pairwise comparison of log(odds ratio) estimates
with the true data generating functions using different methods
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Abbreviations: IPW, Inverse Probability Weighting; AIPW, Augmented Inverse Probability Weighting; TMLE, Targeted
Maximum Likelihood Estimation; OR, Odds Ratio.

Diagonal panels are the density plots of estimates from each package, lower diagonal panels are scatter plots of estimates

between two packages, and upper diagonal panels are Pearson correlations of estimates between two packages. In the

scatter plots, horizontal and vertical lines refer to log(OR¢rue) = 0.53, and diagonal lines are references with a slope = 1

and an intercept of 0
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9 Web Table 1: Performance of the AIPW package in estimating the
average treatment effect [log(RR) and log(OR)] using true general-
ized linear model without cross-fitting in a simulated observational

study based on EAGeR"

Package/Method Bias (SE) MSE MeanCIwidth Coverage (SE)”¢

log(RR)
G-Computation  0.001 (0.004)  0.032 0.707 96.2 (0.4)
IPW 0.001 (0.004)  0.033 0.719 96.4 (0.4)
ATPW 0.001 (0.004) 0.033 0.675 94.8 (0.5)
tmle 0.001 (0.004) 0.032 0.671 94.8 (0.5)
tmle3 0.001 (0.004) 0.033 0.687 95.0 (0.5)
log(RR)
G-Computation -0.002 (0.007) 0.087 1.171 95.7 (0.5)
IPW -0.002 (0.007) 0.090 1.195 96.1 (0.4)
AIPW -0.002 (0.007) 0.090 1.119 94.8 (0.5)
tmle -0.002 (0.007) 0.087 1.114 94.8 (0.5)
tmle3 -0.002 (0.007) 0.090 1.141 95.1 (0.5)

Abbreviations: EAGeR, the Effects of Aspirin in Gestation and Reproduction trial; SE, Stan-
dard Error; MSE, Mean Squared Error; CI, Confidence Intervals; MeanClwidth, Mean width of
95% Confidence Interval; MeanRuntimeSec, Mean Runtime in Seconds; IPW, Inverse Probabil-
ity Weighting; AIPW, Augmented Inverse Probability Weighting; RR, Risk Ratio; OR, Odds
Ratio.

& Sample size (n) = 200; Number of simulation (nSim) = 2000; log(RR¢rue) = 0.31; 1og(ORirue)
= 0.53; Numbers within parentheses are Monte Carlo SEs of the performance indicator esti-
mates.

P Values of confidence interval coverage and its standard errors are expressed as percentages.

¢ Asymptotic SEs were used for CI calculation in AIPW, tmle and tmle3. ClIs for G-
Computation and IPW were obtained by 200 bootstraps and sandwich estimators, respectively.
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