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A Mathematical details about the stochastic cell size model

A.1 Distribution of the generalized added size

Let Vb and Vd denote cell sizes at birth and at division in a particular generation, respectively, and
let Vs denote cell size in the septation phase, which is assumed to be a constant. In the main text, we
have stated that (i) the generalized added size V α

s − V α
b in the elongation phase is Erlang distributed

with shape parameter N0 and mean M0 = N0g0α/a and (ii) the generalized added size V α
d −V α

s in the
reshaping phase is also Erlang distributed with shape parameter N1 and mean M1 = N1g1α/a. To see
this, note that when Vb is fixed, the cell size in the elongation phase is given by V (t) = Vbe

g0t. Since the
transition rate from one stage to the next at time t is equal to aV (t)α, the distribution of the transition
time T is given by

P(T > t) = e−
∫ t
0
aV (s)αds = e−

∫ t
0
aV αb e

g0αsds = e
− aV

α
b

g0α
(eg0αt−1)

. (1)

This shows that
P(V α

b (eg0αT − 1) > t) = e
− at

g0α .

Hence V α
b (eg0αT − 1) is exponentially distributed with mean g0α/a. Note that V α

b (eg0αT − 1) is the
generalized added size in a particular cell cycle stage. As a result, the generalized added size in the



elongation phase, V α
s − V α

b , is the independent sum of N0 exponentially distributed random variables
with mean g0α/a. This shows that V α

s − V α
b has an Erlang distribution with shape parameter N0 and

mean M0 = N0g0α/a. The fact that V α
d − V α

s has an Erlang distribution with shape parameter N1 and
mean M1 = N1g1α/a can be proved in the same way.

A.2 Connection between our model and the conventional model

In our model, we use the parameter α to characterize the strength of cell size control. However,
in the conventional model given in Eq. (1) in the main text, the size control strength is characterized
by the parameter β. This raises the following natural question: what is relationship between the two
parameters α and β?

To answer this, we first focus on the cell size dynamics in the elongation phase. Recall that the
generalized added size ∆0 = V α

s − V α
b in the elongation phase is independent of Vb and has an Erlang

distribution. When the fluctuations of Vb and Vs are small, we have the following Taylor expansion:

V α
b ≈ vαb + αvα−1

b (Vb − vb) = (1− α)vαb + αvα−1
b Vb,

V α
s ≈ vαs + αvα−1

s (Vs − vs) = (1− α)vαs + αvα−1
s Vs,

where vb and vs are the typical values of Vb and Vs, respectively. Therefore, we obtain

V α
s − V α

b ≈ (1− α)(vαs − vαb ) + αvα−1
s Vd − αvα−1

s Vb

= (1− α)(vαs − vαb ) + αvα−1
s

[
Vs −

(
vb
vs

)α−1

Vb

]
.

This shows that

V α
s − V α

b ≈ a+ b

[
Vs −

(
vb
vs

)α−1

Vb

]
,

where a = (1− α)(vαs − vαb ) and b = αvα−1
s are two constants. This shows that Vd − (vb/vs)

α−1Vb is
approximately independent of Vb, i.e.

Vs −
(
vb
vs

)α−1

Vb = ε0,

where ε0 is a noise term independent of Vb. Similarly, for the cell size dynamics in the reshaping phase,
we have

Vd −
(
vs
vd

)α−1

Vs = ε1,

where vd is the typical value of Vd and ε1 is a noise term independent of Vb. Combining the above two
equations, we obtain

Vd −
(
vb
vd

)α−1

Vb = ε1 +

(
vs
vd

)α−1

ε0.

Under symmetric division, we have vd = 2vb and thus

Vd − 21−αVb = ε1 +

(
vs
2vb

)α−1

ε0,

where the right-hand side is a noise term independent of Vb. Recall that in the conventional model, we
have

Vd = βVb + γ + ε,
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where 0 ≤ β ≤ 2 and γ ≥ 0 are two constants and ε is Gaussian white noise. This shows that Vd − βVb
is a noise term independent of Vb. Comparing the above two equations, we conclude that

β = 21−α,

which gives the relationship between α and β.

B Cell size distribution

B.1 Model with deterministic partitioning: general case

Here we compute the cell size distribution of lineage measurements for the model with deterministic
partitioning. The microstate of the cell can be represented by an ordered pair (k, x), where k is the cell
cycle stage and x is the cell size. Let pk(x) denote the probability density function of cell size when the
cell is in stage k. Then the evolution of cell size dynamics is governed by the master equation

∂tp1(x) = −∂x[g0xp1(x)] +
a

p

(
x

p

)α
pN

(
x

p

)
− axαp1(x),

∂tpk(x) = −∂x[g0xpk(x)] + axαpk−1(x)− axαpk(x), 2 ≤ k ≤ N0,

∂tpk(x) = axαpk−1(x)− axαpk(x), N0 + 1 ≤ k ≤ N −N1,

∂tpk(x) = −∂x[g1xpk(x)] + axαpk−1(x)− axαpk(x), N −N1 + 1 ≤ k ≤ N.

For the first, second, and fourth equations, the first term on the right-hand side describe cell growth and
the remaining two terms describe transitions between cell cycle stages. For the third equation, the two
terms on the right-hand side describe cell cycle stage transitions. For the first equation, the middle term
on the right-hand side describes partitioning of cell size at division.

For convenience, we next focus on the αth power of cell size, y = xα. Let p̃k(y) denote the
probability density function of the αth power of cell size when the cell is in stage k. It is easy to see
that pk(x) and p̃k(y) are related by

p̃k(y) =
1

α
y

1

α
−1pk(y

1

α ).

In other words, we have
αyp̃k(y) = xpk(x).

Based on this relation, the master equation can be rewritten as

∂tp̃1(y) = −∂y[αg0yp̃1(y)] +
ay

p2α
p̃N

(
y

pα

)
− ayp̃1(y),

∂tp̃k(y) = −∂y[αg0yp̃k(y)] + ayp̃k−1(y)− ayp̃k(y), 2 ≤ k ≤ N0,

∂tp̃k(y) = ayp̃k−1(y)− ayp̃k(y), N0 + 1 ≤ k ≤ N −N1,

∂tp̃k(y) = −∂y[αg1yp̃k(y)] + ayp̃k−1(y)− ayp̃k(y), N −N1 + 1 ≤ k ≤ N.

(2)

To proceed, for each cell cycle stage k, we introduce the Laplace transform

Fk(λ) =

∫ ∞
0

p̃k(y)e−λydy =

∫ ∞
0

pk(x)e−λx
α

dx,

F (λ) =

∫ ∞
0

p̃(y)e−λydy =

∫ ∞
0

p(x)e−λx
α

dx,

(3)
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where p̃(y) =
∑N

k=1 p̃k(y). Then Eq. (2) can be converted to the following differential equations:

∂tF1(λ) = (αg0λ+ a)∂λF1(λ)− a∂λFN (pαλ),

∂tFk(λ) = (αg0λ+ a)∂λFk(λ)− a∂λFk−1(λ), 2 ≤ k ≤ N0,

∂tFk(λ) = a∂λFk(λ)− a∂λFk−1(λ), N0 + 1 ≤ k ≤ N −N1,

∂tFk(λ) = (αg1λ+ a)∂λFk(λ)− a∂λFk−1(λ), N −N1 + 1 ≤ k ≤ N.

At the steady state, the above equations reduce to

F ′N (pαλ) = (1 +A0λ)F ′1(λ),

F ′k−1(λ) = (1 +A0λ)F ′k(λ), 2 ≤ k ≤ N0,

F ′k−1(λ) = F ′k(λ), N0 + 1 ≤ k ≤ N −N1,

F ′k−1(λ) = (1 +A1λ)F ′k(λ), N −N1 + 1 ≤ k ≤ N,

(4)

where A0 = αg0/a and A1 = αg1/a. Note the the above equations are recursive with respect to k,
which means that F ′k−1 can be represented by F ′k for each 2 ≤ k ≤ N . Using the recursive relations
repeatedly, we find that F ′k can be represented by F ′N as

F ′k(λ) = (1 +A1λ)N−kF ′N (λ), N −N1 ≤ k ≤ N,

F ′k(λ) = (1 +A1λ)N1F ′N (λ), N0 ≤ k ≤ N −N1 − 1,

F ′k(λ) = (1 +A0λ)N0−k(1 +A1λ)N1F ′N (λ), 1 ≤ k ≤ N0 − 1.

(5)

In particular, F ′1 can be represented by F ′N as

F ′1(λ) = (1 +A0λ)N0−1(1 +A1λ)N1F ′N (λ).

Inserting this equation into the first equality of Eq. (4), we obtain

F ′N (λ) = b(λ)F ′N (pαλ), (6)

where
b(λ) = (1 +A0λ)−N0(1 +A1λ)−N1 . (7)

This is a functional equation satisfied by FN . Applying Eq. (6) repeatedly, we obtain

F ′N (λ) =

n−1∏
k=0

b(pαkλ)F ′N (pαnλ), n ≥ 1.

Taking n→∞ in the above equation yields

F ′N (λ) = F ′N (0)

∞∏
k=0

b(pαkλ). (8)

On the other hand, summing over all the equalities in Eq. (5), we obtain

F ′(λ) = Nf(λ)F ′N (λ), (9)

where

f(λ) = (1 +A1λ)N1

[
(1 +A0λ)N0 − 1

NA0λ
+
N −N0 −N1

N

]
+

(1 +A1λ)N1 − 1

NA1λ
. (10)
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Combining Eqs. (8) and (9), we obtain

F ′(λ) = NF ′N (0)f(λ)

∞∏
k=0

b(pαkλ).

Since F (∞) = 0, integrating the above equation yields

F (λ) = −NF ′N (0)

∫ ∞
λ

f(u)

∞∏
k=0

b(pαku)du.

Finally, using the fact that F (0) = 1, we obtain the explicit expression of the Laplace transform, which
is given by

F (λ) = K

∫ ∞
λ

f(u)

∞∏
k=0

b(pαku)du. (11)

where

K = −NF ′N (0) =

[∫ ∞
0

f(u)

∞∏
k=0

b(pαku)du

]−1

.

is a normalization constant. Taking the inverse Laplace transform of F (λ) gives the probability density
function p̃(y) of the αth power of cell size. Finally, the probability density function p(x) of the original
cell size is given by

p(x) = αxα−1p̃(xα). (12)

Next we focus on how to compute the cell size distribution numerically. Taking the derivative with
respect to λ on both sides of Eq. (11) yields∫ ∞

0
yp̃(y)e−λydy = Kf(λ)

∞∏
k=0

b(pαkλ) := G(λ).

Replacing λ by iλ in the above equation yields∫ ∞
0

yp̃(y)e−iλydy = Kf(iλ)

∞∏
k=0

b(pαkiλ) := G(iλ).

This shows that the Fourier transform of yp̃(y) is exactlyG(iλ). Since the Fourier transform and inverse
fourier transform are inverses of each other, we only need to take the inverse Fourier transform of G(iλ)

to obtain yp̃(y). Finally, we use Eq. (12) to obtain the cell size distribution p(x).

B.2 Model with deterministic partitioning: limiting case

We next focus on the special case where the cell cycle variability is very small (N � 1). In this
limit, the function b(λ) reduces to

b(λ) =

(
M0λ

N0
+ 1

)−N0
(
M1λ

N1
+ 1

)−N1

= e−(M0+M1)λ,

and the function f(λ) reduces to

f(λ) = eM1λ

[
r0(eM0λ − 1)

M0λ
+ 1− r0 − r1

]
+
r1(eM1λ − 1)

M1λ
, (13)
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where r0 = N0/N is the proportion of the elongation phase and r1 = N1/N is the proportion of the
reshaping phase. This shows that

∞∏
k=0

b(pαkλ) =

∞∏
k=0

e−(M0+M1)pαkλ = e−
(M0+M1)λ

1−pα . (14)

Combining Eqs. (13) and (14), it is easy to check that

f(λ)

∞∏
k=0

b(pαkλ) =
r0(e−v

α
b u − e−vαmu)

M0u
+ (1− r0 − r1)e−v

α
mu +

r1(e−v
α
b u − e−vαmu)

M1u
.

where vb, vm, and vd are constants defined as

vb = p

(
M0 +M1

1− pα

) 1

α

, vm =

(
M0 +M1p

α

1− pα

) 1

α

, vd =

(
M0 +M1

1− pα

) 1

α

.

Thus the Laplace transform F (λ) can be simplified as

F (λ) = K

∫ ∞
λ

[
r0(e−v

α
b u − e−vαmu)

M0u
+ (1− r0 − r1)e−v

α
mu +

r1(e−v
α
b u − e−vαmu)

M1u

]
du

=
Kr0

M0
[E1(vαb λ)− E1(vαmλ)] +

K(1− r0 − r1)

vαm
e−v

α
mλ +

Kr1

M1
[E1(vαmλ)− E1(vαd λ)],

where

E1(x) =

∫ ∞
x

e−u

u
du

is the exponential integral and

K =

{∫ ∞
0

[
r0(e−v

α
b u − e−vαmu)

M0u
+ (1− r0 − r1)e−v

α
mu +

r1(e−v
α
b u − e−vαmu)

M1u

]
du

}−1

is a normalization constant. The normalization constant can be calculated explicitly as

K = (T1 + T2 + T3)−1,

where T1, T2, and T3 are constants defined as

T1 =
αr0

M0
log

vm
vb
, T2 =

1− r0 − r1

vαm
, T3 =

αr1

M1
log

vd
vm

.

Taking the inverse Laplace transform finally gives the distribution of the αth power of cell size

p̃(y) =
w1

α(log vm − log vb)y
I[vαb ,v

α
m](y) + w2δ(y − vαm) +

w3

α(log vd − log vm)y
I[vαm,v

α
d ](y),

where IA(x) is the indicator function which takes the value of 1 when x ∈ A and takes the value of 0

otherwise, δ(x) is Dirac’s delta function, and w1, w2, and w3 are constants defined as

w1 =
T1

T1 + T2 + T3
, w2 =

T2

T1 + T2 + T3
, w3 =

T3

T1 + T2 + T3
.

Finally, the distribution of cell size is given by

p(x) =
w1

(log vm − log vb)x
I[vb,vm](x) + w2δ(x− vm) +

w3

(log vd − log vm)x
I[vm,vd](x), (15)

where w1, w2, and w3 represent the proportions of subpopulations in the elongation, septation, and
reshaping phases, respectively and vb, vm, and vd represent the typical birth, septation, and division
sizes, respectively. The analytical distribution can be used to compute some other quantities of interest.
For example, when N � 1, the mean cell size is given by

〈V 〉 =
w1(vm − vb)

log vm − log vb
+ w2vm +

w3(vd − vm)

log vd − log vm
.
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B.3 Model with stochastic partitioning

Next we compute the cell size distribution of lineage measurements for the model with stochastic
partitioning. In this case, the evolution of cell size dynamics is governed by the master equation

∂tp1(x) = −∂x[g0xp1(x)] +

∫ 1

0

a

z

(x
z

)α
pN

(x
z

)
f(z)dz − axαp1(x),

∂tpk(x) = −∂x[g0xpk(x)] + axαpk−1(x)− axαpk(x), 2 ≤ k ≤ N0,

∂tpk(x) = axαpk−1(x)− axαpk(x), N0 + 1 ≤ k ≤ N −N1,

∂tpk(x) = −∂x[g1xpk(x)] + axαpk−1(x)− axαpk(x), N −N1 + 1 ≤ k ≤ N.

For convenience, we next focus on the αth power of cell size, y = xα. Let p̃k(y) denote the probability
density function of the αth power of cell size when the cell is in stage k. Then the master equation can
be rewritten as

∂tp̃1(y) = −∂y[αg0yp̃1(y)] +

∫ 1

0

ay

z2α
z̃N

( y
zα

)
f(z)dz − ayp̃1(y),

∂tp̃k(y) = −∂y[αg0yp̃k(y)] + ayp̃k−1(y)− ayp̃k(y), 2 ≤ k ≤ N0,

∂tp̃k(y) = ayp̃k−1(y)− ayp̃k(y), N0 + 1 ≤ k ≤ N −N1,

∂tp̃k(y) = −∂y[αg1yp̃k(y)] + ayp̃k−1(y)− ayp̃k(y), N −N1 + 1 ≤ k ≤ N.

Using the Laplace transform defined in Eq. (3), the above equations can be converted to the following
differential equations:

∂tF1(λ) = (αg0λ+ a)∂λF1(λ)− a
∫ 1

0
∂λFN (zαλ)f(z)dz,

∂tFk(λ) = (αg0λ+ a)∂λFk(λ)− a∂λFk−1(λ), 2 ≤ k ≤ N0,

∂tFk(λ) = a∂λFk(λ)− a∂λFk−1(λ), N0 + 1 ≤ k ≤ N −N1,

∂tFk(λ) = (αg1λ+ a)∂λFk(λ)− a∂λFk−1(λ), N −N1 + 1 ≤ k ≤ N.

At the steady state, the above equations reduce to∫ 1

0
F ′N (zαλ)dz = (1 +A0λ)F ′1(λ),

F ′k−1(λ) = (1 +A0λ)F ′k(λ), 2 ≤ k ≤ N0,

F ′k−1(λ) = F ′k(λ), N0 + 1 ≤ k ≤ N −N1,

F ′k−1(λ) = (1 +A1λ)F ′k(λ), N −N1 + 1 ≤ k ≤ N,

where A0 = αg0/a and A1 = αg1/a. In analogy to the derivation for model I, we have

F ′N (λ) = b(λ)

∫ 1

0
F ′N (zαλ)dz, (16)

where b(λ) is the function given in Eq. (7). This is a functional integral equation satisfied by FN . To
solve this, we expand both F ′N (λ) and b(λ) in power series as

F ′N (λ) =

∞∑
n=0

xnλ
n, b(λ) =

∞∑
n=0

bnλ
n. (17)
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Using the functional form of b(λ) in Eq. (7), it is not hard to check that

bn =
(−1)n

n!

n∑
m=0

Cn,m(N0)m(N1)n−mA
m
0 A

n−m
1 , (18)

where Cn,m = n!/m!(n −m)! is the combinatorial number and (x)m = x(x + 1) · · · (x + m − 1) is
the Pochhammer symbol. Inserting Eq. (17) into Eq. (16), we obtain

∞∑
n=0

xnλ
n =

∞∑
n=0

bnλ
n
∞∑
n=0

xncnλ
n =

∞∑
n=0

n∑
m=0

xmcmbn−mλ
n, (19)

where

cn =

∫ 1

0
zαnf(z)dz =

B(αn+ pν, qν)

B(pν, qν)
. (20)

Comparing the coefficients on both sides of Eq. (19), we obtain

xn =

n∑
m=0

xmcmbn−m.

This can be rewritten as
xn = F ′N (0)an,

where an can be determined using the following recursive relations:

an =
1

1− cn

n−1∑
m=0

amcmbn−m, a0 = 1, (21)

where bn is the sequence defined in Eq. (18) and cn is the sequence defined in Eq. (20). To summarize,
we obtain

F ′N (λ) = F ′N (0)

∞∑
n=0

anλ
n, (22)

where an is the sequence defined in Eq. (21).
On the other hand, in analogy to the derivation for model I, we have

F ′(λ) = Nf(λ)F ′N (λ), (23)

where f(λ) is the function given in Eq. (10). Combining Eqs. (22) and (23), we obtain

F ′(λ) = NF ′N (0)f(λ)

∞∑
n=0

anλ
n.

Since F (∞) = 0, integrating the above equation yields

F (λ) = −NF ′N (0)

∫ ∞
λ

f(u)

∞∑
n=0

anu
ndu.

Finally, using the fact that F (0) = 1, we obtain the explicit expression of the Laplace transform, which
is given by

F (λ) = K

∫ ∞
λ

f(u)

∞∑
n=0

anu
ndu. (24)
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where

K = −NF ′N (0) =

[∫ ∞
0

f(u)

∞∑
n=0

anu
ndu

]−1

.

is a normalization constant. Taking the inverse Laplace transform of F (λ) gives the probability density
function p̃(y) of the αth power of cell size. Finally, the probability density function p(x) of the original
cell size is given by

p(x) = αxα−1p̃(xα).

For the special case of exponential growth of cell size, there is only the elongation phase and the
septation and reshaping phases vanish. In this case, we have N1 = 0 and N = N0; the cell size
distribution is still determined by Eq. (24) with the sequence bn and the function f(λ) being simplified
as

bn =
(N)n(−A0)n

n!
, f(λ) =

(1 +A0λ)N − 1

NA0λ
.

C Birth size distribution

Here we compute the distribution of Vb. To this end, let Vb(k) and Vd(k) denote the cell sizes at birth
and at division in the kth generation, respectively. Under the assumption of deterministic partitioning,
we have Vb(k + 1) = pVd(k) and thus we obtain the recursive equation

V α
b (k + 1) = pα[V α

b (k) + ∆k], k ≥ 0,

where ∆k = V α
d (k) − V α

b (k) is the generalized added size in the kth generation. Using the recursive
equation repeatedly, we obtain

V α
b (k) = pkαVb(0)α + pkα∆0 + p(k−1)α∆1 + · · ·+ pα∆k−1. (25)

Recall that ∆0,∆1,∆2, · · · are i.i.d. hypoexponentially distributed random variables with the Laplace
transform of each term being given by

Ee−λ∆n = b(λ).

It thus follows from (25) and the independence of Vb(0),∆0,∆1,∆2, · · · that

Ee−λV αb (k) = Ee−λpkαVb(0)α
k∏

n=1

b(pnαλ). (26)

Since the distribution of Vb(k) converges to the steady-state distribution of the birth size as k → ∞,
taking k →∞ in Eq. (26) shows that the Laplace transform of V α

b is given by

Ee−λV αb =

∞∏
n=1

b(pαnu) =

∞∏
n=1

(
1 +

M0p
αnλ

N0

)−N0
(

1 +
M1p

αnλ

N1

)−N1

. (27)

Taking the inverse Laplace transform gives the probability density function of V α
b , from which is the

probability density function of Vb can be obtained.
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D Correlation between birth and division sizes

D.1 Model with deterministic partitioning

Let Vb and Vd denote the cell sizes at birth and at division in a particular generation, respectively, and
let V ′b and V ′d denote the the birth and division sizes in the next generation, respectively. We first focus
on the correlation between the birth size Vd and the division size Vd for the model with deterministic
partitioning (model I). Since the generalized added size ∆ = V α

d − V α
b is independent of Vb, we have

Cov(V α
b , V

α
d ) = Cov(V α

b , V
α
b + ∆) = Var(V α

b ),

as well as
Var(V α

d ) = Var(V α
b + ∆) = Var(V α

b ) + Var(∆),

where Cov(X,Y ) denotes the covariance between random variables X and Y and Var(X) denotes the
variance of X . This shows that

ρ(V α
b , V

α
d ) =

Cov(V α
b , V

α
d )√

Var(V α
b )Var(V α

d )
=

√
Var(V α

b )

Var(V α
b ) + Var(∆)

, (28)

where ρ(X,Y ) denotes the covariance between X and Y . Since the generalized added size ∆ is the
independent sum of an Erlang distributed random variable with shape parameter N0 and mean M0 and
another Erlang distributed random variable with shape parameter N1 and mean M1, we have

Var(∆) =
M2

0

N0
+
M2

1

N1
. (29)

Moreover, since V ′b = pVd, we have
V ′αb = pα(V α

b + ∆).

This shows that pα(V α
b + ∆) and V α

b have the same distribution. Thus we obtain

EV α
b = pαE(V α

b + ∆), (30)

EV 2α
b = p2αE(V α

b + ∆)2. (31)

It then follows from Eq. (35) that

EV α
b =

pα

1− pα
(M0 +M1). (32)

Similarly, it follows from Eq. (36) that

EV 2α
b =

p2α

(1− pα)2
(M0 +M1)2 +

p2α

1− p2α

[
M2

0

N0
+
M2

1

N1

]
. (33)

Combining Eqs. (37) and (38) shows that

Var(V α
b ) = EV 2α

b − (EV α
b )2 =

p2α

1− p2α

[
M2

0

N0
+
M2

1

N1

]
.

Inserting this equation into Eq. (28) finally shows that

ρ(V α
b , V

α
d ) =

√
p2α = pα. (34)
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We next focus on the correlation between two successive birth sizes and the correlation between two
successive division sizes. Since V ′b = pVd, the correlation coefficient between V α

b and V ′αb is exactly
the same as that between V α

b and V α
d , i.e.

ρ(V α
b , V

′α
b ) = ρ(V α

b , V
α
d ) = pα.

Finally, since V ′b = pVd, the correlation coefficient between V α
d and V ′αd is exactly the same as that

between V ′αb and V ′αd , i.e.

ρ(V α
d , V

′α
d ) = ρ(V ′αb , V ′αd ) = ρ(V α

b , V
α
d ) = pα.

D.2 Model with stochastic partitioning

We next focus on the correlation between birth and division sizes for the model with stochastic
partitioning (model II). In this case, Eqs. (28) and (29) still hold and thus the key is to compute the
variance of V α

b . Let R = V ′b/Vd denote the partition ratio. Since V ′b = RVd, we have

V ′αb = Rα(V α
b + ∆).

This shows that Rα(V α
b + ∆) and V α

b have the same distribution. Thus we obtain

EV α
b = ERα(V α

b + ∆) = ERαE(V α
b + ∆), (35)

EV 2α
b = ER2α(V α

b + ∆)2 = ER2αE(V α
b + ∆)2, (36)

where we have used the fact that the partition ratio R is independent of the birth size Vb and generalized
added size ∆. Since R has a beta distribution with mean p and sample size parameter ν, we have

ERα =
1

B(pν, qν)

∫ ∞
0

zα+pν−1(1− z)qν−1dz =
B(α+ pν, qν)

B(pν, qν)
.

It then follows from Eq. (35) that

EV α
b =

(M0 +M1)ERα

1− ERα
= K1(M0 +M1), (37)

where
K1 =

ERα

1− ERα
=

B(α+ pν, qν)

B(pν, qν)−B(α+ pν, qν)
.

Similarly, it follows from Eq. (36) that

EV 2α
b = (2K1 + 1)K2(M0 +M1)2 +K2

[
M2

0

N0
+
M2

1

N1

]
, (38)

where

K2 =
ER2α

1− ER2α
=

B(2α+ pν, qν)

B(pν, qν)−B(2α+ pν, qν)
.

Combining Eqs. (37) and (38) shows that

Var(V α
b ) = EV 2α

b − (EV α
b )2

= (2K1 + 1)K2(M0 +M1)2 +K2

[
M2

0

N0
+
M2

1

N1

]
−K2

1 (M0 +M1)2

=
[
(2K1 + 1)K2 −K2

1

]
(M0 +M1)2 +K2

[
M2

0

N0
+
M2

1

N1

]
.
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Inserting this equation into Eq. (28) finally shows that

ρ(V α
b , V

α
d ) =

√√√√√ [
(2K1 + 1)K2 −K2

1

]
(M0 +M1)2 +K2

[
M2

0

N0
+ M2

1

N1

]
[
(2K1 + 1)K2 −K2

1

]
(M0 +M1)2 + (K2 + 1)

[
M2

0

N0
+ M2

1

N1

] . (39)

As ν →∞, model II reduces to model I. In this case, we have

K1 =
pα

1− pα
, K2 =

p2α

1− p2α
.

Using these two equations, it is easy to check that (2K1 + 1)K2 −K2
1 = 0 and thus

ρ(V α
b , V

α
d ) =

√
K2

K2 + 1
=
√
p2α = pα.

Therefore, the correlation coefficient given in Eq. (39) for model II reduces to the one given in Eq. (34)
for model I.
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