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A Mathematical details about the stochastic cell size model

A.1 Distribution of the generalized added size

Let V4 and V; denote cell sizes at birth and at division in a particular generation, respectively, and
let Vs denote cell size in the septation phase, which is assumed to be a constant. In the main text, we
have stated that (i) the generalized added size V* — V,* in the elongation phase is Erlang distributed
with shape parameter Ny and mean My = Nygoa/a and (ii) the generalized added size Vi =V in the
reshaping phase is also Erlang distributed with shape parameter N; and mean M; = Njgia/a. To see
this, note that when V}, is fixed, the cell size in the elongation phase is given by V (¢) = V;,e%!. Since the
transition rate from one stage to the next at time ¢ is equal to aV'(¢)?®, the distribution of the transition

time 7’ is given by

o
i(ego‘)‘t_l

]P)(T > t) — e~ JyaV(s)*ds _ e~ Jy aVieesoosds Py ) (1)

This shows that

at
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Hence Vi®(e%%T" — 1) is exponentially distributed with mean goa/a. Note that Vi(e%T — 1) is the
generalized added size in a particular cell cycle stage. As a result, the generalized added size in the



elongation phase, V* — V7, is the independent sum of Ny exponentially distributed random variables
with mean goa/a. This shows that V.* — V,* has an Erlang distribution with shape parameter Ny and
mean My = Nogocr/a. The fact that V* — V* has an Erlang distribution with shape parameter Ny and

mean M = Njgia/a can be proved in the same way.

A.2 Connection between our model and the conventional model

In our model, we use the parameter « to characterize the strength of cell size control. However,
in the conventional model given in Eq. (1) in the main text, the size control strength is characterized
by the parameter 3. This raises the following natural question: what is relationship between the two
parameters « and (3?7

To answer this, we first focus on the cell size dynamics in the elongation phase. Recall that the
generalized added size Ag = V> — V,* in the elongation phase is independent of V}, and has an Erlang
distribution. When the fluctuations of V;, and V; are small, we have the following Taylor expansion:

Vit~ v+ v (Ve — vp) = (1 — a)uf + avp ™'V,

Vv + av® N (Ve — ) = (1 — a)v® + av? ™V,

where vy, and v, are the typical values of V}, and Vg, respectively. Therefore, we obtain
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where a = (1 — @) (v® — v{) and b = av?® ! are two constants. This shows that Vy; — (v/vs)* 1V is

a—1
v, — <”"> Vi = e,
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where ¢g is a noise term independent of V3. Similarly, for the cell size dynamics in the reshaping phase,

a—1
Va — (1)5) Vs = €1,
Vd

where v, is the typical value of V; and €; is a noise term independent of Vj,. Combining the above two

v a—1 v a—1
Vg — <b> Vo =€+ (S) €0-
Vq Vq

Under symmetric division, we have vy = 2v;, and thus

= (1) (v —vf) + avg ™

This shows that
V-V ~a+b
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approximately independent of V, i.e.

we have

equations, we obtain

Us
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where the right-hand side is a noise term independent of Vj,. Recall that in the conventional model, we
have
Vd = BVYb + Y +e€



where 0 < 8 < 2 and v > 0 are two constants and € is Gaussian white noise. This shows that V; — 3V},
is a noise term independent of V;,. Comparing the above two equations, we conclude that

B — 21—0(

which gives the relationship between « and .

B Cell size distribution

B.1 Model with deterministic partitioning: general case

Here we compute the cell size distribution of lineage measurements for the model with deterministic
partitioning. The microstate of the cell can be represented by an ordered pair (k, x), where & is the cell
cycle stage and x is the cell size. Let py(x) denote the probability density function of cell size when the

cell is in stage k. Then the evolution of cell size dynamics is governed by the master equation

a (z\* T
Oep1(x) = —0x[goxpr(x +<> <>—axa T),
ip1(2) [gorp1(z)] » \p PN » p1()
Oipr () = —0z[gorpr(v)] + az“pr—1(z) — axp(x), 2 <k < Ny,
Oipr(z) = azpr—1(z) — ax®pr(x), No+1<k <N — Ny,

Oipr(x) = —0z[g12pi(7)] + ax“pr—1(z) — axpp(z), N—-N1+1<k<N.

For the first, second, and fourth equations, the first term on the right-hand side describe cell growth and
the remaining two terms describe transitions between cell cycle stages. For the third equation, the two
terms on the right-hand side describe cell cycle stage transitions. For the first equation, the middle term
on the right-hand side describes partitioning of cell size at division.

For convenience, we next focus on the ath power of cell size, y = x®. Let pi(y) denote the
probability density function of the ath power of cell size when the cell is in stage k. It is easy to see
that py(x) and py(y) are related by

1 1 1

pr(y) = ayT Pr(y=).

In other words, we have
aypr(y) = xpr(z).

Based on this relation, the master equation can be rewritten as
~ ) ~
PN <a> —ayp1(y),
p
b (y) = —0ylagoypr(y)] + aybr—1(y) — aypr(y), 2 <k < No, 2)

O0ipr(y) = aypr—1(y) — aypr(y), No+1 <k <N — Ny,
01 (y) = —0ylagrypr(y)] + aypr—1(y) — aypr(y), N —N1+1<k<N.

- - a
01 (y) = —Oylagoyr (v)] + pi’

To proceed, for each cell cycle stage k, we introduce the Laplace transform
[e.e] [e.e] o
B = [ e My = [ puo)ede,
0 0
o0 o0 3)
FOV = [ at)e My = [ pla)e e da,
0 0
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where p(y) = Zévzl Pr(y). Then Eq. (2) can be converted to the following differential equations:

O F1(A) = (agoX + a)OrF1(N\) — aO\Fn(p*N),
O Fr(N) = (agoA + a)Or\Fi(A) — a0y Fr—1(N), 2 <k < Ny,
O Fk(N) = aOzFi(A) — aOrFi—1(A), No+1<k<N— Ny,
8tFk()\) (ozglx\ + a)a,\Fk()\) — aa/\Fk,1<)\), N-N+1<k<N.
At the steady state, the above equations reduce to

Fy(p™A) = (1+ AoA) F{(N),

Fii(N) = (1+ AN FE(A), 2 <k < No,

Fia(N) = Fi(\), No+1<k<N-N,

Fioi (V) = 1+ AINF(A), N—-Ni+1<k<N,

“)

where Ay = agp/a and A; = ag;/a. Note the the above equations are recursive with respect to k,
which means that F _; can be represented by Fj for each 2 < k < N. Using the recursive relations
repeatedly, we find that F} can be represented by F; as

Fl(\) =1+ ANV FEy(N), N—-N <k<N,
FlA) =0+ ANMFy(N), No<k<N-N; -1, ®)
Fl(\) =1+ AN 14+ ANV EGN), 1<E<Nyg—1.

In particular, F} can be represented by F'}; as
F{(A) = (14 AN M1 (1 + A NNV EG(N).
Inserting this equation into the first equality of Eq. (4), we obtain
Fry(A) = b\ Fy (p™N), (6)

where
b(A) = (1 4+ Agh) " No(1 4+ AN, (7
This is a functional equation satisfied by Fyy. Applying Eq. (6) repeatedly, we obtain

n—1
Fr) = [T o™ Ny (™), n> 1.
k=0

Taking n — oo in the above equation yields
Fry(A H b(p™*A). ®)

On the other hand, summing over all the equalities in Eq. (3]), we obtain

F'(A) = Nf(NFN(N), )

where

1+ AN -1 N-—-Ny— N N (1+ AN —1

_ Ny
F) =1+ 41) N Ao\ N NAN

(10)



Combining Egs. (8) and (), we obtain
oo
F'(A) = NFy(0)F(V) T o°" ).
Since F'(c0) = 0, integrating the above equation yields

FO) = -NF(©) [ s [T oo
k=0

Finally, using the fact that F'(0) = 1, we obtain the explicit expression of the Laplace transform, which

is given by

— K/:o f(u)]}_[()b(paku)du. (11)

~ —1
K =—-NFy(0) = [/0 f(u) H b(po‘ku)du] :
k=0

is a normalization constant. Taking the inverse Laplace transform of F'(\) gives the probability density

where

function p(y) of the ath power of cell size. Finally, the probability density function p(x) of the original
cell size is given by

p(z) = az® 'p(z). (12)

Next we focus on how to compute the cell size distribution numerically. Taking the derivative with
respect to A on both sides of Eq. (T1)) yields

| ity = x5 Hb (p™2) 1= GON).

Replacing A by ¢ in the above equation yields
o
[ vty = 50 [T 0000 = G0N
0 k=0

This shows that the Fourier transform of yp(y) is exactly G(iA). Since the Fourier transform and inverse
fourier transform are inverses of each other, we only need to take the inverse Fourier transform of G (i)\)

to obtain yp(y). Finally, we use Eq. (12)) to obtain the cell size distribution p(z).

B.2 Model with deterministic partitioning: limiting case

We next focus on the special case where the cell cycle variability is very small (N > 1). In this

limit, the function b(\) reduces to

—No —-N;

and the function f(\) reduces to

ro(eM”’\ -1)
Mo

ri(eMA —1
TR 3

f(A):eMM[ +1—r0—7’1}+



where 79 = Ny/N is the proportion of the elongation phase and 1 = Nj /N is the proportion of the
reshaping phase. This shows that

o) o0 (Mg+Mq)X
[T (740 = [T e-eemms — -2 0
k=0 k=0

Combining Egs. and (T4), it is easy to check that
—vgu e—v,‘;u)

Myu

r1 (e—vfu _ 6—11%’&)

Miju

fn) H b(p*FN) = ro(e 4 (1= rg—r1)e"Ru
k=0

where vy, v, and vy are constants defined as
o — Mo+ M\ = - My + Myip®\ « o, Mo+ M\ «
v=r\ e ) = e ) e )
Thus the Laplace transform F'(\) can be simplified as

() —veu _ ,—vdu N —VU _ o=V U
F(\) = K/ [”’(e - ) 41— — e 4 1L ‘ )] du
A ou

KT‘Q o @ K(l—ro—rl) .y K’I“l a a
where -
e U
Ei(z) = —d
o= [

is the exponential integral and

00 —VpU __ U U o —VgU _ VU -1
K = {/ [To(e ‘ ) + (1 =rog—ry)e "+ rile ‘ )] du}
0 MOU 1U

is a normalization constant. The normalization constant can be calculated explicitly as

K= (T +Ty+ T3},

where 17, T5, and T3 are constants defined as

arg Um, 1—r9g—n ary Vg
TN =—log—, Th= T3 = —log —
1 MO og v ) 2 Ugn ) 3 Ml o O
Taking the inverse Laplace transform finally gives the distribution of the ath power of cell size
~ w1 w3
py) = Tjye we 1 (Y) + w20 (y — o) + Tiye we1 (),

~ a(log v, —loguy)y a(logvg —logvm)y
where I4(z) is the indicator function which takes the value of 1 when 2 € A and takes the value of 0
otherwise, d(z) is Dirac’s delta function, and w1, ws, and ws are constants defined as
Ty Ty T
= y W2 = y W3 = :
T+ 1o+ T3 T +To+ 13 T +Ta+ 13

Finally, the distribution of cell size is given by

w1

w1 w3
(log vg — log vy, )x

where w1, we, and w3 represent the proportions of subpopulations in the elongation, septation, and

I[vb,vm} (SC) + wz(;(:z/‘ — vm) +

p(x) = ( Iy, wq (@), (15)

log vy, — logvp)x

reshaping phases, respectively and vy, vy, and vg represent the typical birth, septation, and division
sizes, respectively. The analytical distribution can be used to compute some other quantities of interest.
For example, when N > 1, the mean cell size is given by

w1 (U — v ws(vg — v
log v.;, — log vy, log vg — log vy,



B.3 Model with stochastic partitioning

Next we compute the cell size distribution of lineage measurements for the model with stochastic

partitioning. In this case, the evolution of cell size dynamics is governed by the master equation

Oup1(x) = —Dalgowps (2)] + /0 () o (5 £ — aap),

Opr(x) = —0lgoxpr(®)] + az®pr—1(x) — ax®pr(x), 2 <k < No,
() = ax®pp—1(z) — azpy(x), No+1<k <N — Ny,
Opr () = —0z[qrepr(x)] + ax®pr—1(z) — axpr(x), N —-N;1+1<k<N.
For convenience, we next focus on the ath power of cell size, y = . Let py(y) denote the probability

density function of the ath power of cell size when the cell is in stage k. Then the master equation can

be rewritten as

1
01 (y) = ~Oyfagouin(v)] + | rin () J(2)dz = ayin(y),
0o < z

0pr(y) = —0ylagoypr (v)] + aypr—1(y) — aypr(y), 2 <k < Ny,
Ok (y) = aypr—1(y) — aypr(y), No+1<k <N — Ny,
Oipr(y) = —9ylagrypr(y)] + aypr—1(y) — aypr(y), N —N1+1<k<N.

Using the Laplace transform defined in Eq. (3)), the above equations can be converted to the following

differential equations:

1
O F1(N) = (agoX + a)OrF1(N\) — a/o ONFn (29N f(2)dz,

8tFk()\) = (ozg()/\ + a)a,\Fk()\) — CLa,\kal()\), 2 <k < Ng,
8,5Fk()\) = aa,\Fk()\) — aa,\Fk_l()\), No+1<k<N-— Ny,
atFk()\) = (ozglA + a)a,\Fk()\) - CLaAFk_l()\), N-N+1<Ek<N.

At the steady state, the above equations reduce to
1
j/ Flo(z2N)dz = (1 + AN FI (),
0

F_1(N) = (1+ AN Fi(A), 2<k< N,
Fi_1(\) = Fi(\), No+1<k<N-—N,
Fi(N) =1+ ANF(\), N-Ni+1<k<N,

where Ap = ago/a and A1 = ag1/a. In analogy to the derivation for model I, we have
1
FAO) =b0Y) [ Fr(=N)dz, (16)
0

where b()) is the function given in Eq. (7). This is a functional integral equation satisfied by Fi. To

solve this, we expand both F'y;(\) and b(\) in power series as

Fry() =D aaA", b(A) =) baA™ (17)
n=0 n=0



Using the functional form of b(\) in Eq. (7), it is not hard to check that

h — 1"

n!

Z Cn,m(NO)m(Nl)n—mAgnA?_m’ (18)
m=0

where C), ,,, = n!/m!(n — m)! is the combinatorial number and (z),, = z(z +1)---(x +m — 1) is
the Pochhammer symbol. Inserting Eq. into Eq. (16)), we obtain

i T A" = i b A" i TpCn A" = io: 2”: TnCmbn—mA", (19)
n=0 n=0 n=0

n=0m=0
where .
B
o — / o f()ds = Blentprav) 20)
0 B(pv, qv)
Comparing the coefficients on both sides of Eq. (19), we obtain
n
Ty = Z T Cmbn—m.-
m=0
This can be rewritten as
rn = FN(0)ay,
where a,, can be determined using the following recursive relations:
1 n—1

where b, is the sequence defined in Eq. and ¢,, is the sequence defined in Eq. (20). To summarize,

we obtain

Fry(A) = Fp(0) )~ an™, (22)
n=0

where a,, is the sequence defined in Eq. (21).
On the other hand, in analogy to the derivation for model I, we have

F'(0) = NF(N)Fy (), (23)
where f(\) is the function given in Eq. (I0). Combining Egs. and (23), we obtain
[e.e]
F'(A) = NFN(0)£(A) ) anA™.
n=0
Since F'(o0) = 0, integrating the above equation yields

F()\) = —NF4(0) A h F@)> apu'du.
n=0

Finally, using the fact that F'(0) = 1, we obtain the explicit expression of the Laplace transform, which

is given by

F(\) = K/:O f(u) Zanundu. (24)
n=0



where =
K =—NFp(0) = [ / b f)d anu"du] :
0 n=0

is a normalization constant. Taking the inverse Laplace transform of F'(\) gives the probability density
function p(y) of the ath power of cell size. Finally, the probability density function p(z) of the original
cell size is given by

For the special case of exponential growth of cell size, there is only the elongation phase and the
septation and reshaping phases vanish. In this case, we have N; = 0 and N = Njy; the cell size
distribution is still determined by Eq. with the sequence b,, and the function f(\) being simplified

by = N ) =

n!

(1+ ANV -1
N A\

C Birth size distribution

Here we compute the distribution of V4. To this end, let Vj, (k) and V;(k) denote the cell sizes at birth
and at division in the kth generation, respectively. Under the assumption of deterministic partitioning,

we have Vj,(k 4+ 1) = pVy(k) and thus we obtain the recursive equation
Vir(k+1) = p* [V (k) + Ag], k>0,

where Ay, = V¥(k) — V,*(k) is the generalized added size in the kth generation. Using the recursive

equation repeatedly, we obtain
Vi (k) = p"V3(0)* + p* g + p" DAL 4o 4 p Ay (25)

Recall that Ay, A1, Ao, - - are i.i.d. hypoexponentially distributed random variables with the Laplace

transform of each term being given by
Ee 27 = b()\).

It thus follows from (23] and the independence of V;,(0), Ag, A1, Ay, - - - that

k
Ee V0 = e VO TT b(p™A). (26)
n=1
Since the distribution of V} (k) converges to the steady-state distribution of the birth size as & — oo,
taking k — oo in Eq. (26) shows that the Laplace transform of V,* is given by

. 0 00 Map®™ )\ —No M po™\ -N;
Ee—)\vb — H b(panu) - H (1 + Oj\fpo> <1 + %) . (27)
n=1

n=1

Taking the inverse Laplace transform gives the probability density function of V;*, from which is the

probability density function of V} can be obtained.



D Correlation between birth and division sizes

D.1 Model with deterministic partitioning

Let V}, and V;; denote the cell sizes at birth and at division in a particular generation, respectively, and
let V;/ and V; denote the the birth and division sizes in the next generation, respectively. We first focus
on the correlation between the birth size V; and the division size V; for the model with deterministic
partitioning (model I). Since the generalized added size A = Vi* — V,* is independent of V;,, we have

Cov(V, Vi) = Cov(Vy', V¥ + A) = Var(V),

as well as
Var(Vy') = Var(Vy* + A) = Var(V})¥) + Var(A),

where Cov(X,Y") denotes the covariance between random variables X and Y and Var(X') denotes the

variance of X. This shows that

0 var Cov(Vevey Var (V%) >
PV V) = e v (v \/Varafba) +Var(A) )

where p(X,Y’) denotes the covariance between X and Y. Since the generalized added size A is the
independent sum of an Erlang distributed random variable with shape parameter Ny and mean M and

another Erlang distributed random variable with shape parameter N7 and mean M7, we have

Mg M:
Var(A) = =2 + L. 29
ar(A) No N, (29)
Moreover, since Vb’ = pV,, we have
‘/b/oc — pa(v})a + A).
This shows that p®(V,* + A) and V* have the same distribution. Thus we obtain
EVy* = p"E(Vy" + A), (30)
EV2* = p™E(V,® + A)>. (31)
It then follows from Eq. (33) that
pOé
EVS = 17pa(MO+M1)‘ (32)
Similarly, it follows from Eq. (36)) that
2a 20 2 2
p 2 p My | Mj
EVy/* = ———(Mo+ M Ly 33
’ (1—p°‘)2( o+ M) +1—1720‘{1\70 NJ &y
Combining Egs. and (38)) shows that
2 2 2
_ 2 2_ D My | Mj
Var(Vba) = E‘/b - (E%a) = 1 —p2a |:]VO + ]\[1:| .
Inserting this equation into Eq. (28) finally shows that
p(Vy", Vi') = Vp** = p™. (34)
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We next focus on the correlation between two successive birth sizes and the correlation between two
successive division sizes. Since V})’ = pVjy, the correlation coefficient between V}* and Vb’o‘ is exactly
the same as that between V;* and V', i.e.

p(Vi Vi) = p(Vi", Vi) = p™.

Finally, since V] = pVj, the correlation coefficient between V* and V% is exactly the same as that
between V/* and V%, i.e.

p(Vi' Va®) = p(™, Vg®) = p(Vi", Vi) = p™.
D.2 Model with stochastic partitioning

We next focus on the correlation between birth and division sizes for the model with stochastic
partitioning (model II). In this case, Eqs. (28) and (29) still hold and thus the key is to compute the
variance of V;*. Let R = Vb’ / Vg denote the partition ratio. Since V;)’ = RV,, we have

%loc — Ra(‘/;)a + A)
This shows that R*(V,* + A) and V™ have the same distribution. Thus we obtain
EVy* = ERY(Vy* + A) = ERYE(Vy + A), (35)
EV/® = ER*(V* + A)? = ER*E(V)* + A)?, (36)

where we have used the fact that the partition ratio R is independent of the birth size V};, and generalized
added size A. Since R has a beta distribution with mean p and sample size parameter v, we have

1 & B
ER® = / Za+pu—1(1 7Z)q1/—1dz _ (Oz—l—pl/, qz/).
B(pv,qv) Jo B(pv,qv)
It then follows from Eq. (33) that
(MO + Ml)ERa
EVy = = Ki(My+ M

Vy | _ERe 1(Mo + M), (37)

where
ER“ B(a + pv,qu)

K = = .
' 1-ERe B(pv, qv) — B(a + pv, qv)

Similarly, it follows from Eq. (36)) that

% 2 Mg M}
EVy*® = (2K + 1)Ko My + M7)* + Ko + , (38)
Ny M
where
ER?® B(2a + pv, qu)

Ky

T 1-ER2 B(pv,qv) — B(2a + pv,qu)’
Combining Egs. and (38)) shows that

Var(V) = EVZ® — (BV?)?

M2 M}
= (2K + 1) Ko(My + M;)? + K {NS + Ni] — K3(Mo + M;)?

2 2
= [(2K1 + 1)K2 - K12] (Mo +M1)2 + K % + % )
Ny N1

11



Inserting this equation into Eq. (28) finally shows that

[(2K1 + 1)Ky — K7 (Mo + M1)? + K> [%f + %12}
p(‘/bavvda) =

2 27 ° (39)
[(2K1 + 1)Ky — K7 (Mo + M1)? + (K2 + 1) [% + %}

As v — oo, model II reduces to model 1. In this case, we have

« 2c

p Ky —

Ki=-2 .
1 1_paa 1_p2a

Using these two equations, it is easy to check that (2K + 1)Ky — K? = 0 and thus

K2 — 200 — &
K2—|—1_ p=p .

p(%aﬂ Vda) =

Therefore, the correlation coefficient given in Eq. for model II reduces to the one given in Eq.
for model I.
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