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Supplementary Methods 

Section S1: Dataset inclusion and exclusion criteria 
 
Development, tuning and internal validation set 
 
For the development, tuning and internal validation set to be used in the PANDA challenge, 
we collected data from two different centers, namely Radboud University Medical Center 
(The Netherlands) and Karolinska Institutet (Sweden). These datasets were originally 
collected as part of two independent studies on automated Gleason grading.1,2 For the 
purpose of this challenge, the datasets were merged and further refined. We will briefly 
reiterate the data collection here; further details can be found in the respective papers. 
 
For the Radboud data, we retrieved all pathology reports dated between Jan 1, 2012, and 
Dec 31, 2017, for patients who underwent a prostate biopsy owing to a suspicion of prostate 
cancer (Extended Data Figure 1A).1 Patients were randomly sampled based on the highest 
reported Gleason score mentioned in each report. Additionally, a set of reports was sampled 
which only mentioned benign biopsies. For each patient, a single hematoxylin and eosin-
stained glass slide was selected for scanning. The selected glass slides were scanned using 
a 3DHistech Pannoramic Flash II 250 (3DHistech, Hungary) scanner at a pixel resolution 
0.24 μm. Slides were then randomly sampled to be included in the development, tuning and 
internal validation sets. Randomization was stratified by patient and highest Gleason pattern 
present in the biopsy. 
 
The data from Karolinska comes from the Stockholm-3 diagnostic trial that was conducted 
between May 28, 2012 and Dec 30, 2014 (Extended Data Figure 1B, ISRCTN84445406).2–4 
It was a prostate cancer screening-by-invitation trial of men aged 50–69 years living in 
Stockholm, Sweden. The purpose of the trial was to compare prostate specific antigen (PSA) 
to the Stockholm-3 model (S3M) for predicting the presence of cancer, and the criterion for 
referral to biopsy was either PSA above 3 ng/ml or a S3M probability of 10% or higher. A 
single pathologist (L.E.) assessed all biopsy cores in the trial and marked out the regions of 
cancer next to the tissue on the glass slide with a marker pen. A random sample from the 
biopsies included in the trial was taken, stratified on patient and the reported Gleason score 
to avoid including too many of the prevalent benign and low grade diseases. The selected 
slides were digitized at 20X magnification using two scanners: Hamamatsu C9600-12 
(Hamamatsu Photonics, Hamamatsu, Japan) and Aperio ScanScope AT2 (Leica 
Biosystems, Wetzlar, Germany). The pixel size at full-resolution was 0.45202 μm 
(Hamamatsu) or 0.5032 μm (Aperio). Slides were then randomly sampled to be included in 
the development, tuning and internal validation sets. Randomization was stratified by patient 
and ISUP grade group. 
 
To reduce the overall size of the various sets, and to achieve comparable resolution 
between centers, the Radboud images were downsampled and exported at a pixel spacing 
of 0.48 μm; the Karolinska images were exported at the original pixel spacing of 0.45 μm or 
0.50 μm depending on the scanner. The images were exported as resolution pyramids with 
three levels representing downsampling factors of 1, 4 and 16 relative to the full resolution. 
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All images were converted to TIFF format with JPEG compression and a quality setting of 
70. 
 
US external validation set 
The US external validation set consisted of retrospective cases from three different sources, 
and is described in detail in a prior study (Extended Data Figure 1C).5 Briefly, cases were 
obtained from two medical laboratories and one tertiary teaching hospital. All tumor-
containing cases available from the tertiary teaching hospital from 2005-2007 were included, 
and a fraction of the benign biopsies available were randomly sampled for inclusion. From 
the medical laboratories, all available ISUP grade group 4-5 cases were included in the 
study, and remaining benign and ISUP grade group 1-3 cases were randomly sampled for 
inclusion. One representative biopsy per case was included. Biopsies with non-gradable 
prostate cancer variants or quality issues preventing diagnosis were excluded from the 
dataset.  Slides were digitized on an Aperio AT2 scanner (Leica Biosystems, Wetzlar, 
Germany) at a resolution of 0.25 μm/pixel (“40X magnification”). All images were converted 
to TIFF format with JPEG compression and a quality setting of 70. 
 
EU external validation set 
The EU external validation set comprised biopsy cores assessed by L.E. at the Karolinska 
University Hospital during 2018 (Extended Data Figure 1D). The set included all positive 
biopsy cores from all men diagnosed with an ISUP grade group 2, 3, 4, or 5 cancer as well 
as from a random selection of men diagnosed with ISUP grade group 1 cancer during that 
time period. In addition, the set included all cores from a random selection of men with only 
benign biopsies. This resulted in 330 slides from 73 men, scanned with a Hamamatsu 
NanoZoomer S360 C13220-01 (Hamamatsu Photonics, Hamamatsu, Japan). The pixel size 
at full resolution was 0.4604 μm. All images were converted to TIFF with JPEG compression 
and a quality setting of 70. 

Section S2: Reference standard protocol 
 
Development set - Radboud University Medical Center 
For the cases in the development set from Radboud University Medical Center, the 
reference standard was determined based on the original pathology report. After scanning of 
the slides, trained non-experts assessed all slides and coarsely outlined each biopsy, 
assigning each with a Gleason score or the label ‘negative’ on the basis of the pathology 
report. If the pathologist report was inconclusive or lacked a description of individual 
biopsies, cases were flagged for a second review. If no match could be made in the second 
read, cases were excluded. To generate detailed label masks at gland-level, the biopsies 
were processed by a trained deep learning system that segmented the glands and assigned 
individual Gleason patterns to each gland.1 
 
Development set - Karolinska Institutet 
The cases from the Karolinska Institutet that were part of the development set were 
reviewed by a single uropathologist (L.E.). The review of the cases was performed on the 
original glass slides through a microscope. The uropathologist reported both the Gleason 
score and the ISUP grade group for each biopsy. Additionally, the uropathologist placed pen 



4 

marks on the glass slide alongside tumor tissue. Approximate label masks indicating benign 
and malignant tissue pixels were automatically generated based on the pen marks.2 
 
Internal validation set and tuning set - Radboud University Medical Center 
The reference standard for the Radboud University Medical Center cases that were part of 
the tuning and validation sets was determined in three rounds. In the first round, three 
uropathologists (C.H.v.d.K., R.V., H.v.B.) individually graded the cases digitally using the 
ISUP 2014 guidelines. For a number of cases, the majority vote was taken: cases with an 
agreement on ISUP grade group but a difference in Gleason pattern order, e.g., 5 + 4 versus 
4 + 5; cases with an equal grade group but a disagreement on Gleason score; and cases for 
which two pathologists agreed while the third had a maximum deviation of one grade group. 
Cases with a disagreement on malignancy were always flagged for a second read in round 
two. In the second round, each biopsy without consensus was regraded by the 
uropathologist whose score differed from the other two. Additional to the pathologist's initial 
examination, the Gleason scores of the other pathologists were appended anonymously. 
Biopsies without consensus after round two were discussed in a consensus meeting. 
 
Internal validation set and tuning set - Karolinska Institutet 
The cases from the Karolinska Institutet that were part of the tuning set were reviewed by a 
single uropathologist (L.E.), similarly to the development set. The cases that were part of the 
internal validation set were initially reviewed by a single uropathologist (L.E.) on the original 
glass slides through a microscope. Cases initially indicated as benign were not re-reviewed. 
Cases indicated as malignant were divided between two other uropathologists (B.D. and 
H.S.), each reviewing 100 cases. In case of agreement between the first and the second 
review, the consensus ISUP grade group was assigned to the case. In case of 
disagreement, a third uropathologist (T.T.) reviewed the case. For cases that were indicated 
as malignant by all pathologists, the final ISUP grade group was assigned according to 2/3 
consensus. If all three reviews were in disagreement, the case was excluded from the 
internal validation set. Any cases indicated as benign in the second or third review were 
excluded from the internal validation set. The second and third reviews were performed 
digitally using Cytomine, with all pathologists blinded to the other reviews.6 
 
US external validation set 
The US external validation set was reviewed by six uropathologists (M.B.A., A.J.E., T.K., 
M.Z., R.A., and P.A.H.) from 6 institutions with 18 to 34 years of clinical experience after 
residency (mean, 25 years). Reviews were first performed by 2 of the 6 uropathologists. A 
third uropathologist reviewed the specimens when there were discordances between the first 
two uropathologists. For cases without a majority opinion after 3 independent reviews, the 
median classification was used. 
 
To limit the potential ambiguity of identifying Gleason patterns due to tissue processing 
procedure, such as tangential cuts of the specimen, two additional adjacent sections (levels) 
of the specimens were also available during review. Furthermore, one additional section per 
specimen was stained with the PIN-4 immunohistochemistry cocktail (P504S plus p63 plus 
high molecular weight cytokeratin) to assist the identification of cancer tissue. The three 
levels and the one PIN-4 stained slide were made available to the pathologists for 
establishing the reference standard. The biopsy at the middle level to be reviewed was 
highlighted. 
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EU external validation set 
The cases from the Karolinska University Hospital that were part of the EU external 
validation set were reviewed by a single uropathologist (L.E.). The review of the cases was 
performed on the original glass slides through a microscope. The uropathologist reported 
both the Gleason score and the ISUP grade group for each biopsy.  
 
To verify the consistency of the single-review reference standard of this set with the multi-
review reference standard of the internal validation set, we compared L.E. to two other 
uropathologists who contributed to the multi-review reference standard for the samples from 
Karolinska Institutet. On the subsets of tumor-containing cases of the internal validation set 
graded by these two pathologists (B.D. and H.S.), we observed agreements (QWK) of 0.91 
(n = 100) and 0.83 (n = 100) with L.E., respectively. 
 
Reference standard consistency between EU and US uropathologist panels 
The EU and US validation sets were independently reviewed by either US or EU-based 
panels of uropathologists. To assess consistency between the two reference standards we 
invited pathologists from the EU (C.H.v.d.K, H.v.B., R.V., L.E.) and US (M.B.A., A.J.E., T.K., 
R.A., P.A.H.) to review cases from the validation set they were not originally involved in 
assessing. The US pathologists reviewed 80 cases from the EU internal validation set, and 
the EU pathologists reviewed 83 cases from the US external validation set. Review of cases 
was performed using Cytomine6. 
 
After the independent reviews, we compared the individual uropathologists to the original 
reference standard. We additionally computed the pairwise agreement within the panels. 
Finally, we determined a majority vote based on the pathologist reviews and computed the 
agreement between this majority vote and the original reference standard. All agreements 
were quantified in QWK. If a majority vote achieves high concordance with the original 
reference standard, we can conclude that using multiple pathologists in a 
consensus/majority vote setting is a stable way of determining a reference standard. 
 
The results of these cross-continental reviews are shown in Supplementary Table S9. 

Section S3: Pathologist comparison review protocol 
International pathologists comparison 
As part of a previous study,1 100 biopsies were selected to be presented to a group of 
pathologists in an observer experiment. Benign cases were selected manually, controlling for 
a broad range of tissue patterns, including inflammation and (partial) atrophy. Cases 
containing cancer were sampled at random, stratified for ISUP grade group. Of these 100 
cases, 70 were included in the internal validation set and used for the comparison to the 
panel of international pathologists. 
 
The biopsies were made available through an online viewer, PMA.view (Pathomation, 
Berchem, Belgium), and distributed to an external cohort of pathologists. Cohort members 
were invited to participate in this study at the United States and Canadian Academy of 
Pathology 2019 annual meeting in Washington, DC, USA (March 16–21, 2019). Interested 
pathologists were subsequently asked to invite colleagues in their network who had 
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experience in Gleason grading. All pathologists who graded all biopsies were included. All 
cohort members had experience with Gleason grading, but to a varying degree. No time 
restriction was given, although we asked that they complete the grading within six weeks. In 
the original study, both pathologists and pathology residents were included. For the current 
study, only reads from pathologists were included. In total, the cohort consisted of 13 
pathologists from eight countries (seven from Europe, six from outside of Europe). 
 
US pathologists comparison 
A subset of the US external validation set was reviewed by 20 US board-certified general 
pathologists. The pathologists reviewed the biopsies based on the 2014 ISUP grading 
guidelines.7 Clinical information was not provided during grading and the pathologists were 
asked to review and grade biopsies as if they were reviewing a clinical slide in practice, 
without time constraints.  

Section S4: Available training data during the competition 
For algorithm development, teams could only use the competition dataset and publicly 
available datasets. For public datasets, usage was only allowed if teams disclosed this 
beforehand on the competition's public forum. By disclosing the use of external data, teams 
had no unfair advantage due to extra data availability. The use of private data, not available 
to other teams, was not allowed during the competition. 
 
As part of the development set, we shared additional data besides the raw digitized biopsies 
to speed up development of the algorithms. As the reference standard, a comma-separated 
file (CSV) was supplied that mapped each biopsy ID to a Gleason score and ISUP grade 
group. Additionally, each training slide had an associated label mask that contained 
additional information about the tissue. The label masks were generated differently per 
institution and contained different types of labels. 
 
For the slides originating from Radboud, each label mask outlined the tissue within the slide. 
Each pixel was labeled as either background, stroma/other tissue, benign epithelium, or one 
of the Gleason patterns 3, 4, or 5. The label masks were generated semi-automatically using 
a trained deep neural network and contained label noise. Additional details on how these 
masks were generated can be found in the respective paper.1 
 
For the slides originating from Karolinska Institutet, the label masks were generated based 
on the annotations of the pathologist who graded the development set. Each label mask 
outlined the tissue areas within the slide. Additionally, for slides containing cancer, areas that 
contained malignant tissue were coarsely outlined in the mask. Further details on how these 
masks were generated can be found in the respective paper.2 
 

Section S5: Kaggle competition platform 
The PANDA challenge was hosted on Kaggle, one of the largest data science competition 
platforms. A competition typically runs for three months, during which participants or a team 
of participants can try to achieve the highest score in the competition's task. A Kaggle 
competition consists of two leaderboards: a public leaderboard visible during the competition 
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and a hidden private leaderboard. The public leaderboard gives teams an indication of how 
well their algorithm is performing during the competition. The blinded private leaderboard is 
used to determine the final competition ranking. Each algorithm submission is evaluated on 
both datasets, but only the score on the public leaderboard is shown to the teams. Because 
the private leaderboard is not shown, teams cannot directly tune their algorithm to score high 
on this leaderboard. For the PANDA challenge, the tuning set was used for the public 
leaderboard and the internal validation set for the private leaderboard. For the competition’s 
final ranking, the teams could select two of the submissions entered during the competition, 
of which the highest scoring one was used for the ranking. 
 
Competitions on Kaggle often have prize money for the top-performing teams to incentivize 
participants to sign up and reward them for the work done. For the PANDA challenge, the 
top three teams on the private leaderboard were awarded monetary prizes by Kaggle. 
 
Entering the competition on Kaggle was free and open to everyone, after agreeing to the 
competition rules. After signup, participants had full access to the development set, which 
could be downloaded directly from the Kaggle website. 
 
As part of the platform, every user had access to 30 free GPU hours per week for algorithm 
development. The development set was readily available when developing on the Kaggle 
platform, and no download was required. Additionally, participants were free to develop their 
algorithm offline on their hardware. 
 
Participants were asked to submit a working version of their algorithm in the form of a 
Jupyter Notebook or a Python script to enter the competition. This notebook or script could 
have associated data that contained the learned parameters of the algorithm and any other 
required data sources. The submitted algorithm was required to be fully self-contained, 
which makes it possible to reproduce the results at a later stage. The algorithm had to be 
developed to process all cases supplied in a specific directory automatically. After 
submission, the platform populated this directory with the tuning set and internal validation 
set cases. This processing was fully blinded to the submitter of the algorithm. Processing 
time was limited to 6 hours when the algorithm used a GPU. Maximum GPU memory 
available was 16GB. To prevent cheating, algorithms did not have internet access during this 
evaluation, nor could they download or upload additional data. The number of allowed 
submissions was limited per team and participant to a maximum of three per day. The only 
information disclosed to the submitter was the public leaderboard score (and not the 
performance on individual cases). 
 
Through a dedicated discussion forum, participants could discuss their algorithms and 
problems across teams. Participants often used the discussion forum to disseminate new 
ideas or share additional resources. Additionally, teams could share public versions of 
algorithms or code snippets for others to iterate on further. One of these public notebooks 
was created by the organizers to kick-start the competition and showcase the dataset. 

Section S6: Methods to select the 15 teams for external validation 
One month before the competition deadline, a post was placed on the competition's 
discussion forum to invite teams to join the PANDA consortium. Sign up was open to all 
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teams that submitted a working algorithm during the competition. The deadline for signing up 
was July 31st, 2020, eight days after the end of the competition. When signing up, teams 
were asked to report: team name, team members, the data requirements of their method, 
whether the algorithm was based on prior work or work of other teams, and a 1000 character 
abstract of their method. Additionally to the written submission, teams needed to give the 
challenge organizers access to their algorithm for review and further validation. In addition to 
the forum post, the organizers individually reached out to the top 30 teams of the 
competition's leaderboard and invited them to sign up. 
 
After the deadline, five members of the organizer team (W.B., G.L., H.P., K.K., P.R.) 
individually reviewed all submissions and scored them on a five-point scale (1: strong reject, 
to 5: strong accept). The score was based on the overall method, originality, quality of the 
submission, and their algorithm's performance on the internal validation set. After scoring, all 
teams were discussed within the organizer team and a final ranking was established. Of all 
submissions, 15 teams (competition ranking in parentheses) were invited to join the PANDA 
consortium: PND (1), Save The Prostate (2), NS Pathology (4), Kiminya (5), BarelyBears (6), 
ctrasd123 (7), ChienYiChi (8), vanda (10), iafoss (11), Manuel Campos (12), Dmitry A. 
Grechka (18), KovaLOVE v2 (19), Aksell (20), rähmä.ai (27) and UCLA Computational 
Diagnostics Lab (28). Additionally, of these 15, eight teams were invited to present their 
method at the PANDA MICCAI workshop (October 8th, 2020, MICCAI 2020 virtual 
conference). All selected teams were included in the blinded validation on the external 
validation sets. 

Section S7: Summary of participating teams’ methods 

All teams that were selected as part of the PANDA consortium were asked to report a 
summary of their method, including their training approach, dataset operations, and model 
architecture. The details on each team’s methods are included in the supplementary 
algorithm descriptions. All algorithms selected for the independent validation made use of 
deep learning-based techniques. Some key design choices and algorithmic approaches 
adopted by the leading teams are discussed below. 
 
End-to-end slide-level training 
Many existing methods1,2,5 employ so-called patch-based training, where a WSI is partitioned 
into smaller images, patches, that are used for model training. For each WSI, the predictions 
for these patches are then combined to obtain a slide-level prediction. This approach for 
training classifiers requires detailed annotations of the WSIs to obtain labels for individual 
patches or inferring patch-level labels from the slide-level label. In the PANDA dataset, 
coarse annotations were available for benign and malignant tissue, but ISUP grade groups 
were only provided per slide. As opposed to inferring patch-level labels from the slide-level 
ISUP grade group, end-to-end training emerged as the dominant strategy. This means that 
the entire WSI is treated as one data sample associated with a single target label. Due to 
their dimensions, processing full WSIs is, however, infeasible at high resolution due to 
limited GPU memory, and alternative methods were used to circumvent this. 
 
A popular technique was proposed by the competition participant iafoss, and adopted and 
modified by several participants, including the winner of the competition (PND): In brief, this 
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approach consisted in selecting a subset of patches from a WSI based on simple filtering 
criteria, and processing these patches in a convolutional neural network (CNN) such that the 
feature representations of the patches are concatenated before they are being fed to the 
CNN’s classification layers. This is a highly computationally efficient way for achieving end-
to-end training of a single model producing a slide-level prediction and, to the best of our 
knowledge, a novel solution in the field. 
 
As an alternative to selecting the representative tiles from a WSI based on relatively simple 
rules, some teams proposed the usage of additional CNN models to select the most 
informative tiles, typically operating on a low resolution version of the WSI (Aksell, 
ChienYiChi, Save The Prostate, UCLA Computational Diagnostics Lab). However, the top-
ranking teams that also demonstrated the best generalization performance in external 
validation mainly relied on simple rules based e.g. on average pixel brightness for tile 
selection (BarelyBears, Kiminya, Manuel Campos, NS Pathology, PND). 
 
Other training approaches included for example using CNNs as patch-wise feature 
extractors, followed by a recurrent neural network (Dmitry A. Grechka) or LGBM and 
XGBoost models (UCLA Computational Diagnostics Lab) for aggregating the patch-level 
feature representation to a WSI-level output. The success of the challenge participants in 
training models only based on slide-level labels is encouraging considering the sparsity of 
large datasets with patch- or pixel-level annotations. Slide-level labels are typically obtained 
as part of the clinical routine whereas collecting detailed annotations is usually a costly, 
additional process. 
 
Data cleaning 
Several teams used (semi-)automatic techniques to exclude low-quality samples from model 
training, removing for example patches or slides with penmarks (Aksell, Dmitry A. Grechka, 
iafoss, rähmä.ai, Save The Prostate, UCLA Computational Diagnostics Lab) and slides with 
inconsistencies between the slide-level labels and the provided label masks (Save The 
Prostate, UCLA Computational Diagnostics Lab, vanda). Another data cleaning operation 
adopted by several teams (Dmitry A. Grechka, Kiminya, UCLA Computational Diagnostics 
Lab, vanda) was the detection of slides representing adjacent sections from the same 
sample via searching for similar images based on image hashing, and allocation of all such 
sections into the same fold during cross-validation to avoid information leakage between 
folds. However, many teams also reached top-ranking performance without reporting any 
data cleaning approaches. 
 
Label denoising 
A common denominator among most leading competition participants was the extensive use 
of label denoising. While label noise is present even in the validation sets due to human 
errors and the inherently subjective nature of Gleason grading despite consensus-based 
reference standards, the development set in particular contained substantial levels of label 
noise. For the cases of Radboud University Medical Center, the labels were generated semi-
automatically. For the cases from Karolinska Institute, the reference standard was based on 
the assessment of a single pathologist, and the semi-automatically generated pixel-level 
labels indicated malignant regions only in an approximate manner. Many participants pointed 
out managing label noise during training as a key problem to solve during the competition. 
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For example, BarelyBears used Online Uncertainty Sample Mining and excluded 10% of 
training patches associated with the highest average loss values during training. PND and 
Dmitry A. Grechka identified samples with potentially erroneous labels after completing 
model training, based on the predicted ISUP grade group differing from the target label by 
more than a specified amount. Training was then repeated after exclusion of such samples. 
In the approaches of iafoss and Save The Prostate, the training labels were adjusted 
iteratively according to predictions by the trained model instead of excluding samples. 
 
On the other hand, some teams achieved high performance on the internal validation set 
and/or top-ranking generalization to external data without reporting the use of any label 
denoising techniques (Kiminya, Manuel Campos, NS Pathology, vanda). Despite the 
considerable improvement in performance on the internal validation set reported by some 
teams, label denoising can thus not be concluded to be useful for all types of models and 
training approaches. 
 
Image resolution 
While some teams experimented with multi-resolution approaches and used low resolution 
images for selecting regions of interest, virtually all of the proposed solutions used the 
intermediate resolution level of the input WSI for producing the final ISUP grade group 
predictions. This corresponds to approximately 2 µm pixel spacing (and a typical 
magnification of 5X), which can be considered a relatively coarse resolution. Three teams 
(KovaLOVE v2, Save The Prostate, UCLA Computational Diagnostics Lab) also utilized 
images on a resolution level obtained by downsampling the full resolution images by a factor 
of two from 0.5 µm to 1.0 µm pixel spacing, but these teams did not demonstrate any clear 
performance advantage to the teams that directly used the intermediate resolution level. 
Experimentation with full resolution images was even explicitly reported to not result in 
improved performance (NS Pathology). With a fixed memory budget, utilizing relatively low 
resolution patches allows increasing the physical area covered by each patch, the number of 
patches sampled per WSI and/or the batch size. 
 
Data augmentation and normalization 
A variety of data augmentation methods were adopted by the participants during model 
training in order to improve the robustness and generalization capability of the models. 
Simple spatial transformations such as random rotations and flips of the input patches were 
applied by all teams. Two of the top-performing teams (BarelyBears, Save The Prostate) 
applied augmentation additionally on slide-level by first applying a random affine 
transformation to the WSI before extracting patches. 
 
In view of the variation in colors introduced by different scanners, data augmentation to 
make models invariant to small changes in color can be considered of special interest in the 
case of WSI data. Some form of color augmentation was applied by several teams (Aksell, 
ctrasd123, iafoss, NS Pathology, PND, rähmä.ai, Save The Prostate, vanda), including 
PANDA winner PND, and NS Pathology, who ranked 4th in internal validation but reached 
the best generalization performance on external data. Interestingly, however, another 
participant that ranked highly on both internal and external data (Kiminya) reported that they 
did not observe improved performance when using color augmentation, and hence did not 
include it in their final solution. 
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Test-time augmentation, that is, application of data augmentation while running predictions 
and averaging the results obtained for the perturbed versions of the same input, was also 
commonly applied (Aksell, BarelyBears, Dmitry A. Grechka, iafoss, KovaLOVE v2, Manuel 
Campos, NS Pathology, vanda). In this case, the transformations consisted of standard 
operations such as rotations and flips of the images. 
 
As opposed to augmentation, normalization was less commonly used. BarelyBears applied 
color normalization on patch level, and Global Contrast Normalization was used by Dmitry A. 
Grechka to standardize the contrast of patches. 
 
CNN architectures 
The participants mainly relied on neural network architectures representing EfficientNet 
variants (BarelyBears, ChienYiChi, ctrasd123, KovaLOVE v2, Manuel Campos, NS 
Pathology, PND, Save The Prostate) and ResNeXt variants (Aksell, BarelyBears, iafoss, 
Kiminya, NS Pathology, rähmä.ai, Save The Prostate, UCLA Computational Diagnostics 
Lab, vanda). Two participants also utilized the DenseNet121 architecture (Dmitry A. 
Grechka, Manuel Campos). 
 
Ensembling 
To improve performance and increase the algorithms' generalization ability, all of the 15 
teams utilized ensembles of multiple models. Ensemble strategies differed from team to 
team, ranging from models trained using different hyperparameters, different patch selection 
strategies or different loss functions to a set of different neural network architectures 
combined into an ensemble. Overall, in many cases the ensembles represented diverse sets 
of design choices rather than training the same model with slightly different 
hyperparameters. 
 
For example, BarelyBears used both the original data and refined data obtained after label 
denoising, and PND trained models with varying degrees of label denoising applied to the 
training data. Several teams combined classification models with regression models, as well 
as models trained with different loss functions. Overall, it was also typical to diversify the 
models in the ensemble by training them on different variations of the input data pre-
processed in different ways, including different patch sizes. 
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Supplementary Tables 
 

Table S1. Scanner details. 
 
 

 EU Development set EU Tuning Set 
EU Internal Validation 

Set 

US 
External 

Validation 
set 

EU 
External 

Validation 
set 

Source 

Radboud 
University 

Medical Center 
Netherlands 

Karolinska 
Institutet 
Sweden 

Radboud 
University 

Medical Center 
Netherlands 

Karolinska 
Institutet 
Sweden 

Radboud 
University 

Medical Center 
Netherlands 

Karolinska 
Institutet 
Sweden 

Medical 
Laboratories, 
CA/UT, USA; 

Tertiary 
Teaching 

Hospital, CA, 
USA 

Karolinska 
University 
Hospital 
Sweden 

Scanning equipments 

3DHistech 
Pannoramic 
Flash II 250 
(3DHistech, 

Hungary) 

Aperio AT2 
(Leica, 

Germany) & 
Hamamatsu 
C9600-12 

(Hamamatsu, 
Japan) 

3DHistech 
Pannoramic 
Flash II 250 
(3DHistech, 

Hungary) 

Aperio AT2 
(Leica, 

Germany) & 
Hamamatsu 
C9600-12 

(Hamamatsu, 
Japan) 

3DHistech 
Pannoramic 
Flash II 250 
(3DHistech, 

Hungary) 

Aperio AT2 
(Leica, 

Germany) & 
Hamamatsu 
C9600-12 

(Hamamatsu, 
Japan) 

Aperio AT2 
(Leica, 

Germany) 

Hamamatsu 
C13220-01 

(Hamamatsu, 
Japan) 

Pixel spacing of 
original scanned slides 0.24 μm 0.50 μm and 

0.45 μm  0.24 μm 0.50 μm and 
0.45 μm  0.24 μm 0.50 μm and 

0.45 μm  0.25 μm 0.46  μm 

Pixel spacing of 
downsampled slides, 
available to the 
algorithms 

0.48 μm  0.50 μm and 
0.45 μm  0.48 μm  0.50 μm and 

0.45 μm  0.48 μm  0.50 μm and 
0.45 μm  0.50 μm 0.46 μm 
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Table S2. Individual algorithms’ agreement with uropathologists on validation 
sets (quadratically weighted Cohen’s kappa, 95% CI). 

Team name Internal 
validation set 

US external 
validation set 

EU external 
validation set 

International 
pathologists 
comparison 

US 
pathologists 
comparison 

PND 0.941 (0.927-0.953) 0.882 (0.862-0.900) 0.890 (0.856-0.919) 0.905 (0.837-0.949) 0.856 (0.810-0.892) 

Save the prostate 0.937 (0.924-0.948) 0.844 (0.820-0.866) 0.881 (0.849-0.908) 0.897 (0.835-0.940) 0.834 (0.781-0.873) 

Kiminya 0.933 (0.911-0.950) 0.903 (0.886-0.919) 0.881 (0.844-0.913) 0.863 (0.719-0.947) 0.879 (0.836-0.911) 

BarelyBears 0.933 (0.915-0.947) 0.872 (0.849-0.892) 0.890 (0.852-0.920) 0.847 (0.728-0.926) 0.845 (0.794-0.885) 

Ctrasd123 0.932 (0.916-0.947) 0.853 (0.821-0.880) 0.879 (0.834-0.916) 0.882 (0.805-0.936) 0.805 (0.731-0.862) 

ChienYiChi 0.932 (0.917-0.946) 0.851 (0.826-0.873) 0.886 (0.854-0.914) 0.875 (0.791-0.934) 0.809 (0.750-0.856) 

NS Pathology 0.931 (0.911-0.947) 0.892 (0.869-0.911) 0.899 (0.868-0.924) 0.845 (0.727-0.927) 0.860 (0.811-0.897) 

Manuel Campos 0.931 (0.915-0.944) 0.849 (0.819-0.874) 0.892 (0.854-0.923) 0.883 (0.806-0.937) 0.810 (0.738-0.864) 

Vanda 0.930 (0.914-0.945) 0.888 (0.869-0.906) 0.880 (0.851-0.905) 0.894 (0.832-0.938) 0.860 (0.815-0.895) 

Iafoss 0.930 (0.914-0.944) 0.861 (0.839-0.880) 0.824 (0.787-0.858) 0.856 (0.767-0.921) 0.831 (0.778-0.873) 

UCLA CDx 0.929 (0.913-0.942) 0.860 (0.836-0.881) 0.848 (0.817-0.877) 0.868 (0.785-0.926) 0.814 (0.753-0.862) 

KovaLOVE v2 0.928 (0.910-0.943) 0.814 (0.785-0.839) 0.880 (0.839-0.913) 0.882 (0.777-0.946) 0.774 (0.707-0.825) 

Aksell 0.927 (0.910-0.942) 0.835 (0.800-0.863) 0.879 (0.851-0.904) 0.888 (0.827-0.931) 0.818 (0.761-0.863) 

Rähmä.ai 0.926 (0.910-0.941) 0.869 (0.844-0.890) 0.865 (0.836-0.892) 0.866 (0.781-0.925) 0.832 (0.776-0.876) 

Dmitry A. Grechka 0.926 (0.907-0.941) 0.851 (0.823-0.876) 0.740 (0.690-0.785) 0.897 (0.828-0.943) 0.794 (0.720-0.849) 
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Table S3. Tumor detection performance of individual algorithms on validation 
sets (sensitivity and specificity, 95% CI). 
 

Team 
name 

Internal validation 
set 

US external 
validation set 

EU external 
validation set 

International 
pathologists 
comparison 

US pathologists 
comparison 

 Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

PND 99.1% (97.9-
100.0) 

93.7% (90.3-
96.7) 

99.0% (98.0-
99.8) 

75.2% 
(69.8-80.4) 

96.4% (93.9-
98.7) 

90.7% (85.0-
95.6) 

98.2% (94.3-
100.0) 

100.0% 
(100.0-100.0) 

98.5% (96.5-
100.0) 

67.5% (52.6-
81.5) 

Save the 
prostate 

99.7% (99.0-
100.0) 

92.9% (89.2-
96.1) 

99.6% (99.0-
100.0) 

49.3% 
(43.3-55.3) 

98.6% (97.0-
100.0) 

68.9% (60.0-
77.7) 

100.0% 
(100.0-100.0) 

100.0% 
(100.0-100.0) 

99.5% (98.4-
100.0) 

48.5% (33.0-
63.5) 

Kiminya 98.8% (97.4-
99.7) 

96.8% (94.3-
99.0) 

98.2% (96.8-
99.2) 

87.8% 
(83.7-91.7) 

97.7% (95.6-
99.5) 

81.5% (74.0-
88.6) 

96.5% (91.1-
100.0) 

92.3% (75.0-
100.0) 

97.5% (95.0-
99.5) 

85.0% (73.0-
95.1) 

BarelyBears 99.4% (98.4-
100.0) 

96.4% (93.8-
98.7) 

99.2% (98.3-
99.8) 

70.1% 
(64.3-75.7) 

97.3% (95.0-
99.1) 

89.8% (83.8-
95.0) 

98.2% (94.3-
100.0) 

100.0% 
(100.0-100.0) 

99.0% (97.4-
100.0) 

72.5% (58.1-
85.7) 

Ctrasd123 98.5% (96.9-
99.7) 

98.2% (96.3-
99.6) 

97.5% (96.1-
98.8) 

83.5% 
(78.7-88.0) 

94.1% (90.9-
97.0) 

95.4% (91.1-
99.0) 

98.2% (94.3-
100.0) 

100.0% 
(100.0-100.0) 

97.5% (95.0-
99.5) 

85.0% (73.3-
95.1) 

ChienYiChi 99.4% (98.4-
100.0) 

92.8% (89.1-
96.1) 

98.6% (97.4-
99.6) 

70.5% 
(64.9-76.0) 

97.7% (95.7-
99.5) 

84.3% (77.0-
90.9) 

100.0% 
(100.0-100.0) 

92.3% (75.0-
100.0) 

98.5% (96.5-
100.0) 

70.0% (54.8-
83.8) 

NS Pathology 98.7% (97.4-
99.7) 

98.4% (96.6-
99.7) 

98.0% (96.7-
99.1) 

86.5% 
(82.4-90.5) 

95.9% (93.2-
98.1) 

95.9% (92.0-
99.1) 

99.3% (97.8-
100.0) 

100.0% 
(100.0-100.0) 

97.4% (94.9-
99.4) 

82.0% (70.0-
92.4) 

Manuel 
Campos 

99.0% (97.8-
99.9) 

92.9% (89.4-
96.2) 

98.8% (97.8-
99.6) 

72.0% 
(66.7-77.4) 

96.8% (94.4-
99.1) 

93.5% (88.5-
97.8) 

98.2% (94.3-
100.0) 

100.0% 
(100.0-100.0) 

98.3% (96.5-
99.6) 

72.5% (57.9-
85.7) 

Vanda 99.7% (99.0-
100.0) 

92.8% (89.1-
96.0) 

99.4% (98.6-
100.0) 

80.7% 
(75.8-85.5) 

99.5% (98.6-
100.0) 

68.5% (59.6-
77.1) 

100.0% 
(100.0-100.0) 

92.3% (75.0-
100.0) 

99.0% (97.4-
100.0) 

80.0% (66.7-
91.4) 

Iafoss 98.8% (97.4-
99.7) 

91.9% (88.1-
95.4) 

99.8% (99.4-
100.0) 

60.6% 
(54.7-66.7) 

99.1% (97.7-
100.0) 

74.1% (65.7-
82.0) 

98.2% (94.3-
100.0) 

100.0% 
(100.0-100.0) 

99.5% (98.4-
100.0) 

57.5% (41.5-
72.7) 

UCLA CDx 98.8% (97.5-
99.7) 

93.7% (90.3-
96.6) 

98.6% (97.4-
99.6) 

75.2% 
(69.9-80.4) 

100.0% 
(100.0-100.0) 

65.7% (56.8-
74.5) 

100.0% 
(100.0-100.0) 

92.3% (75.0-
100.0) 

97.0% (94.3-
99.0) 

75.0% (60.0-
88.1) 

KovaLOVE v2 99.7% (99.0-
100.0) 

93.7% (90.2-
96.8) 

98.4% (97.1-
99.4) 

52.0% 
(45.9-58.1) 

96.8% (94.4-
99.1) 

89.8% (83.8-
95.1) 

100.0% 
(100.0-100.0) 

100.0% 
(100.0-100.0) 

98.0% (95.8-
99.5) 

45.0% (29.4-
60.5) 

Aksell 98.8% (97.4-
99.7) 

95.9% (93.2-
98.3) 

96.3% (94.6-
97.9) 

77.6% 
(72.5-82.6) 

98.6% (96.9-
100.0) 

87.0% (80.2-
93.0) 

98.2% (94.5-
100.0) 

100.0% 
(100.0-100.0) 

96.4% (93.6-
99.0) 

75.0% (60.5-
87.5) 

Rähmä.ai 98.1% (96.6-
99.4) 

92.8% (89.2-
96.0) 

99.0% (98.0-
99.8) 

74.0% 
(68.3-79.5) 

99.1% (97.7-
100.0) 

60.2% (51.1-
69.3) 

100.0% 
(100.0-100.0) 

92.3% (75.0-
100.0) 

98.0% (95.7-
99.5) 

72.5% (57.9-
86.0) 

Dmitry A. 
Grechka 

98.7% (97.4-
99.7) 

92.6% (89.2-
95.6) 

96.9% (95.3-
98.2) 

82.0% 
(77.5-86.2) 

100.0% 
(100.0-100.0) 

44.1% (36.2-
52.2) 

100.0% 
(100.0-100.0) 

92.3% (75.0-
100.0) 

97.2% (95.0-
98.9) 

83.5% (72.2-
93.0) 
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Table S4. Ensemble algorithm performance. An ensemble was created by 
taking the majority vote for each case in the validation sets and computing the 
agreement of this ensemble with the reference standards. 
 

Dataset / 
Metric 

Internal 
validation set 

US external 
validation set 

EU external 
validation set 

International 
pathologists 
comparison 

US 
pathologists 
comparison 

Quadratically 
weighted 
Kappa (95% 
CI) 

0.940 (0.928-
0.952) 

0.892 (0.874-
0.909) 

0.899 (0.869-
0.924) 

0.887 (0.820-
0.934) 

0.870 (0.826-
0.904) 

Sensitivity 
(95% CI) 

99.7%  
(99.0- 100.0) 

99.2% (98.3-
99.8) 

98.2% (96.3-
99.6) 

100.0% 
(100.0-100.0) 

99.0% (97.4-
100.0) 

Specificity 
(95% CI) 

96.4% (93.8-
98.7) 

81.9% (77.1-
86.6) 

89.8% (83.8-
95.1) 

100.0% 
(100.0-100.0) 

82.5% (69.7-
93.5) 
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Table S5. Comparison of challenge algorithms to prior work. The performance 
of the teams’ algorithms was computed on validation (sub)sets of earlier work. 
 

 
EU Internal Validation 

Set (subset) 
US External Validation 

set 
EU External Validation 

set 

 Radboud University Medical Center 
Netherlands 

Medical Laboratories, CA/UT, USA; 
Tertiary Teaching Hospital, CA, 

USA 

Karolinska University Hospital 
Sweden 

Number of cases 333 741 330 

Average QWK among challenge 
teams (95% CI) 

0.937  
(0.919-0.952) 

0.862 
(0.840-0.884) 

0.868 
(0.835-0.900) 

Prior works 0.926 
(Bulten et al.) 

0.863 
(Nagpal et al.) 

0.822 
(Ström et al.) 
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Table S6.  Pairwise agreements between pathologists who contributed to the 
reference standard. 
 

 EU Internal Validation Set US External Validation Set 

Source 
Radboud University Medical 

Center 
Netherlands 

Karolinska Institutet 
Sweden 

Medical Laboratories, CA/UT, USA; Tertiary 
Teaching Hospital, CA, USA 

Pairwise mean 
agreement (QWK) 
all cases 

0.926 
(N=333) N/A 0.907 

(n=741) 

Pairwise mean 
agreement (QWK) 
tumor cases only 

0.853 
(N=178) 

0.876 
(N=146) 

0.809 
(n=487) 
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Table S7.  Clinical characteristics of the EU internal and external validation 
sets. 
 

 
EU Internal Validation Set - Karolinska 

institutet, Sweden (N=82) 
EU External Validation set - Karolinska 

University Hospital, Sweden (N=73) 

Age, years   

<54 3 (3.7%) 7 (9.5%) 

55-59 9 (11.0%) 10 (13.7%) 

60-64 19 (23.2%) 12 (16.4%) 

65-69 48 (58.5%) 15 (20.5%) 

>=70 3 (3.7%) 29 (39.7%) 

Prostate-specific antigen   

<3 ng/mL 19 (23.2%) - 

3 - <5 ng/mL 37 (45.1%) - 

5 - <10 ng/mL 21 (25.6%) - 

>=10 ng/mL 5 (6.1%) - 
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Table S8.  Clinical characteristics from the two medical laboratories (ML1 and 
ML2) in the US external validation set. Clinical characteristics from the tertiary 
teaching hospital were not available. 
 

 ML1 ML2 

Age at biopsy, years   

<65 168 (44.2%) 129 (41.0%) 

>=65 196 (51.6%) 181 (57.5%) 

Not available 16 (4.2%) 5 (1.6%) 

PSA level at biopsy, ng/mL   

<10 93 (24.5%) 198 (62.9%) 

>=10 19 (5.0%) 68 (21.6%) 

Not available 268 (70.,5%) 49 (15.6%) 

Reference standard grade group   

No tumor 94 (24.7%) 147 (46.7%) 

Grade group 1 147 (38.7%) 76 (24.1%) 

Grade group 2 72 (18.9%) 44 (14.0%) 

Grade group 3 46 (12.1%) 22 (7.0%) 

Grade group 4 14 (3.7%) 6 (1.9%) 

Grade group 5 7 (1.8%) 20 (6.3%) 
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Table S9. Additional crossover analyses by having experts reviewing datasets 
from another region. The algorithms were evaluated using both the original 
reference standard and the majority vote of the cross-continental experts.  
 

 
Sampled  

EU Internal validation set 
Sampled  

US external validation set 

 
Radboud University Medical Center 

Netherlands, and Karolinska Institutet 
Sweden 

Medical Laboratory, CA/UT, USA 

Number of cases 80 83 

Reference standard 

For the Dutch part, consensus of 3 
uropathologists. 

For the Swedish part, 2-3 
uropathologists per case. 

(details in Supplementary Methods) 

Majority vote of 3 US uropathologists 
(details in Supplementary Methods) 

Additional participating pathologists 
from different region (cross-
continental experts) 

5 US pathologists 4 EU pathologists (3 from The 
Netherlands, 1 from Sweden) 

Pairwise mean agreement (QWK) 
among cross-continental experts  

0.852 
(US pathologists) 

0.887 
(EU pathologists) 

Agreement between individual cross-
continental experts and reference 
standards (QWK)  

0.880 
(average of US pathologists vs EU 

reference standard) 

0.911 
(average of EU pathologists vs US 

reference standard) 

Agreement between majority vote of 
cross-continental experts versus 
reference standards (QWK)  

0.943 
(majority vote US pathologists vs EU 

reference standard) 

0.939 
(majority vote EU pathologists vs US 

reference standard) 
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Supplementary Algorithm Descriptions
Supplementary appendix for “Artificial Intelligence for Diagnosis and Gleason Grading of

Prostate Cancer: the PANDA challenge.” This document contains algorithm descriptions of the

selected teams that participated in the PANDA challenge. Each section describes a team’s

method, including their training approach, dataset operations, and model architecture. The

descriptions were created by the respective teams.
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Team: Aksell
Shujun He1, Sejun Song2, and Qing Sun1

1Texas A&M University
2Individual participant

Contact: shujun@tamu.edu, rvslight@gmail.com, sunqing@tamu.edu

Code and model availability: https://github.com/Shujun-He/PANDA

Abstract:
Here we describe a deep learning approach for automatic prostate cancer (PCa) diagnosis that
incorporates tile segmentation on low-resolution images, self-attention, and multi-task learning.
Our methods are conceptually simple but effective, leading to accurate diagnosis of PCa despite
noisy and imbalanced training data. In addition, our model is interpretable due to usage of
self-attention and will only improve as more multi-labeled data accumulates.

Data preparation:
Whole slide images (WSI) were padded and divided into square tiles of identical dimensions,
with three color channels (see Fig. A1). Tiles with pen marks and low prostate cell count were
removed in the process. We sorted the tiles based on two criteria to get two sets of tiles for each
WSI. First, since white tiles and tiles with large white spaces tend to have high pixel intensity, we
sorted by the average pixel intensity and retained (usually 36) tiles with the lowest values. This
method should be credited to the competition participant Iafoss and we refer to these tiles as
intensity tiles. Second, we used the provided masks indicating cancer cells to train a tile-level
segmentation model on the lowest resolution level images to make binary predictions
(containing cancer or not) for each tile. Using the tile segmentation model, we selected tiles that
were most likely to contain cancer, referred to as segmentation tiles.

Training setup:
Following tile selection, we proceeded to train our models using the tiles obtained from medium
resolution WSIs. Our final submission included two classification models and three regression
models, each of which included a convolutional neural network (CNN) backbone (ResNeXt-50
[1] pre-trained on ImageNet), pooling, and a classification/regression output layer, and some of
which had a self-attention function before the final pooling and output layer. For models with
self-attention, generalized mean pooling was used to pool each tile into a feature vector, and
following self-attention, max mean concat pooling was used to pool all feature vectors into one
before the linear layer that produced a regression/classification output. Dropout of 0.5 was used
before the last layer in all models.

We used the Adam [2] optimizer with an initial learning rate of 1.0×10-4 with 0.1 decay at 36 and
42 epochs for a total of 45 epochs or a one cycle schedule for 30 epochs. For the 45-epoch
training schedules, we used downsampled half resolution tiles (usually 36x128x128 or

2



20x112x112 for segmentation tiles) for the first 10 epochs for faster training and then full
resolution tiles (usually 36x256x256 or 20x224x224 for segmentation tiles) for the final 35
epochs. Two of the models were trained on intensity tiles and three on segmentation tiles.
Gradient accumulation was used to accommodate small batch sizes due to GPU memory
constraint and the effective batch size was always kept between 32 and 64. We started with a
cross validation (CV) strategy with iterative stratification to ensure class balance between folds.
However, later we discovered that there was little to no difference on the public test set between
single fold models and averaging five fold models, so for faster experiments, we used only one
fold models for validation.

For data augmentation, we used a combination of cutout [3], random rotation, random color
change, random transposition, and random flipping. We found this combination to be an
effective way to prevent overfitting. More aggressive augmentation such as cutmix [4] did not
result in any improvement.

Model parameters:
Total parameters ResNeXt50 with self-attention: 28.2 million (all trainable).
Total parameters ResNeXt50 without self-attention: 25.5 million (all trainable).

Inference setup:
During inference, first we processed WSIs into tiles and selected tiles based on pixel intensity or
probability of containing cancer. Then we applied 8x test time augmentation (vertical/horizontal
flip, and transpose). The classification models' outputs were taken as scalar predictions and
averaged together with predictions from regression models. Although some of our models were
trained with multiple tasks (ISUP grade group, majority Gleason pattern, minority Gleason
pattern), only the outputs for the ISUP grade group were used in making predictions.

Acknowledgements:
We would like to thank Iafoss for graciously sharing his method of tile generation and selections,
which proved to be simple and effective.
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Optimization,  ICLR 2015
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Networks with Cutout, arXiv:1708.04552, 2017

4. Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe,
Youngjoon Yoo, CutMix: Regularization Strategy to Train Strong Classifiers with
Localizable Features, arXiv:1905.04899, 2019
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Figure A1: Overview of the solution of Aksell. WSIs were first processed into tiles based on
two different criteria. Then a multitasking CNN model was trained and used to make predictions
on ISUP grade group, majority Gleason pattern, and minority Gleason pattern. The model also
provides interpretability through the use of self-attention, which can highlight regions of interest
relevant for the model’s prediction.
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Team: BarelyBears
Hiroshi Yoshihara1, 2, Taiki Yamaguchi3, Kosaku Ono4, Tao Shen5

1Department of Health Informatics, Kyoto University, Kyoto, 6068303, Japan
2Aillis Inc., Tokyo, 1000005, Japan
3Preferred Networks Inc., Tokyo, 1000004, Japan
4Nowcast Inc., Tokyo, 1020073, Japan
5School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210000,
People’s Republic of China

Contact: hiroshi.yoshihara@aillis.jp

Code and model availability: https://github.com/analokmaus/kaggle-panda-challenge-public

Abstract:
We developed an automated Gleason grading system, which is an ensemble model of four
multi-instance learning (MIL) networks. A MIL network consists of a feature extractor which
extracts features from patches obtained from a WSI, and a head which concatenates and pools
all the features and predicts the ISUP grade group. Various backbones were used in the feature
extractors. Networks were trained with Online Uncertainty Sample Mining (OUSM) [1], or with
Mixup [2] in order to improve robustness to label noise. The ensemble model trained
noise-robustly showed better performance compared to the model trained in an ordinary
manner.

Data preparation:
We extracted input patches to the networks from the intermediate level WSIs without any
preprocessing. Patches were selected based on low pixel intensity. Due to the presence of noisy
labels in the training dataset, ensemble denoising was performed for the original training
dataset. We trained networks with different random seeds, and identified samples which are
likely to have noisy labels, in other words, samples associated with a high average loss. We
excluded the top ten percent of samples with highest average loss from each class. Some of the
networks were trained with the denoised dataset. No external data were used.

Training setup:
Our grading system consists of four MIL networks. All MIL networks have a common structure: a
patch feature extractor which extracts patch-wise features, and a head which concatenates and
pools all the features extracted from all patches and predicts the ISUP grade group.
SE-ResNeXt50, SE-ResNeXt101 [3], and EfficientNet-b0 [4] pretrained on the ImageNet dataset
were used in the feature extractors. Consistent rank logits framework [5] was used in the heads
because of the rank-consistent nature of the ISUP grade group.

All patches were extracted from intermediate resolution level WSIs. Data augmentation was
applied to both WSIs and patches. First, affine transforms were applied to the WSIs before

5



patches were extracted. Then, affine transforms, horizontal and vertical flip, random dropout,
and colour normalization were applied to the patches. Input shape, in other words the number
and size of patches, is shown in Table A1.

In order to train networks robustly to label noise, OUSM [1] was used. OUSM assumes that
noisy samples have higher loss, and thus removing k samples with high loss from each
mini-batch should improve the network's robustness. With a batch size of 12, k was set to 1 or
2. Mixup [2], which is a well known data augmentation algorithm, also improved robustness to
noisy labels.

All networks were trained with the Adam [6] optimizer, a learning rate of 0.0002, and a batch
size of 12. A 5-fold CV was conducted. The learning rate was halved after every 3 consecutive
epochs without improvement on the validation set, and we stopped training after 15 epochs
without improvement. Network configurations are shown in Table A1.

Table A1: Network configurations used by BarelyBears.

Network # Input shape Feature extractor Dataset Denoising

1 64*224*224 SE-ResNeXt50 denoised OUSM k=1

2 64*224*224 SE-ResNeXt50 original OUSM k=2

3 64*224*224 SE-ResNeXt101 denoised OUSM k=1

4 36*256*256 EfficientNet-b0 original Mixup alpha=0.4

Model parameters:
Parameters (trainable parameters)
Network #1: 27611125 (27611125)
Network #2: 27611125 (27611125)
Network #3: 49006645 (49006645)
Network #4: 6602345 (6602345)
Total: 110831240 (110831240)

Inference setup:
All networks in Table A1 were applied to the preprocessed patches extracted from a WSI. The
result from each network is a five dimensional vector whose i-th element refers to the probability
of the prediction being higher than ISUP grade group i, and in total four such vectors are
obtained. A temporary prediction was calculated by averaging the sum of each vector. Note that
this temporary prediction is not discrete but a continuous value. In order to improve the
robustness of the predictions, four inputs with random data augmentations applied as described
in the training setup were passed to the model, and the temporary predictions for them were
averaged. The predicted ISUP grade group was obtained by discretizing the temporary
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prediction, based on the best set of thresholds maximizing quadratic weighted kappa,
precalculated during training.
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Abstract:
WSIs of biopsies have billions of pixels. The common way to deal with this is to divide the image
into a grid of tiles and select relevant ones for the task. To efficiently select tiles from the WSI,
we trained a model with an attention layer [1] over these tile candidates. The top-ranked k of the
tiles were processed by another CNN model. Finally, all features were aggregated with a
NetVLAD [2] layer before the final output.

Data preparation:
We used the intermediate resolution level images from the TIFF files. We first divided the image
into a grid, and saved tiles that are not empty (based on the sum of non-white pixels) in PNG
format, to be used for training and inference.

Training setup:
The models were trained in two steps. First, a model with an attention layer was built [1]. The
attention layer was added after a CNN backbone which extracts features from each tile. This
attention layer learns attention weights to compute a weighted average feature vector for the
bag of tiles. Then, classification is performed based on that vector. We used 128 tiles (with the
least amount of white pixels) for model input and a tile size of 256x256x3 pixels. Once trained,
we reused that model up to the attention layer to compute the weights of all the tiles we have.
We selected the top 16 tiles according to the attention weight. Then, we trained new models to
make the final prediction which uses these 16 tiles as input.

The backbones used were all EfficientNet b0 and b4 [3]. For the second step models, some
used bags of tiles as input, while others used tiles stacked into squares. To aggregate the
independent tile features generated by the backbone model into a single vector, we applied
Average/Maximum Pooling layer or NetVLAD [2] layer before the final output layer.

The Adam optimizer [4] with a cosine annealing learning rate scheduler was used for model
fitting. The following image augmentations were used: flipping, shifting. The network was
developed using PyTorch.
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Model parameters:
1. first model: 4,834,434 ( trainable 4,834,434 )
2. second model: 56,343 ( trainable 56,343)

Inference setup:
Each model used in the ensemble had a similar setup as for training. The input images were
extracted from the TIFF file, then cropped into non-overlapping tiles with dimensions of
256x256x3 pixels. We then sorted them by the sum of the pixel value of these tiles in
descending order and selected the top 128. We passed these tiles through the first model
(EfficientNet with attention layer) and got their attention weights. We selected the 16 highest
weighted tiles and fed them to the second models.

The second model generates tile features, aggregates them and outputs the final result. There
are two types of predictions in our solution depending on the model: regression and ordinal
regression. For regression output, we used a list of intervals [0.5, 1.5, 2.5, 3.5, 4.5] to split the
output into different groups. For ordinal regression, the output was passed through a sigmoid
layer and we simply summed up outputs (5 output nodes) to get the final group value. We then
aggregated all the different predictions from our ensemble and averaged the predictions
followed by rounding to the nearest integer.
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Abstract:
We developed an automated Gleason grading algorithm based on an ensemble of efficient-net
[1] models. To make most of the data, we split the data into 5 folds, preprocessed the data with
different methods and trained efficient-nets separately on each set. In order to adapt the input to
the networks, we proposed two approaches of tiling to deal with the large size of the images.
Finally, when running predictions, we averaged the results of eight networks to get the final
prediction score.

Data preparation:
We used the middle resolution level of the TIFF images and applied two approaches of tiling to
prepare our data: 1) We tiled our images into 256 x 256 pixel slices and sorted them according
to the sum of pixel values. Finally, we selected 36 slices containing the largest area of prostate
tissue to form the final image of size 1536 x 1536; 2) We processed the images with a hierarchy
of dimensions of 256 x 256, 192 x 192 and 128 x 128. First, we cut 24 slices with a size of 256 x
256 and then cut 16 slices of 192 x 192 size in the remaining area. Finally, we cut 12 slices of
128 x 128 size and combined the three sizes of slices to form the final 1536*1536 image.

Training setup:
Our deep learning system consists of 8 efficient-nets trained on the 1536 x 1536 images which
are generated as described above. We split the training data into 5 folds and trained different
nets with different folds. Experimentation showed that there is no difference in the performance
of efficientnet-b0, b1, b2 and b7. Thus, we simply used efficientnet b0 as our backbone and
GeM pooling [2] as the final pooling layer. Six of the eight nets were trained on the images
generated by the first tiling approach and the other two nets were trained on the images
generated by the second tiling approach. The Adam optimizer [3] was used with a learning rate
of 0.0003, and a batch size of 8 on four 2080Ti GPUs (2 per GPU). We adopted the
CosineAnnealingLR method to adjust the learning rate for one round. We transformed the six
category task into six binary category tasks and used binary cross entropy as the loss.
Our neural networks were developed using PyTorch. Before inputting the images into the
networks, we made some random adjustments in brightness, brightness, saturation, and hue on
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the training dataset. We also used a random horizontal flip and random vertical flip to augment
our data.

Model parameters: 32,121,880 (trainable 32,121,880).

Inference setup:
For each image, our single neural network outputs 6 predicted probabilities to indicate whether
the image reaches the corresponding ISUP grade group. When a probability is higher than 0,
the image is considered to have reached the corresponding grade group. We average the
predicted probabilities of our eight nets to get the final predicted probability, and get the final
predicted label. Only the highest ISUP grade group is taken as the final class. For example,
[1,1,0,0,0,0] means reaching ISUP grade group 1 and [1,1,1,0,1,0] means reaching ISUP grade
group 4.
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Abstract:
The automated prostate biopsy grading system consists of a CNN and a recurrent neural
network (RNN) chained together to predict the ISUP grade group of a tissue sample. The WSIs
are split into a grid of smaller square tiles. Each tile containing tissue is first mapped into a
feature vector by applying the CNN (DenseNet121 [1]). Then, the feature vectors (presented as
a sequence) are passed to the RNN (GRU [2] units) to evaluate the presence of cancerous
tissue and to assign a corresponding ISUP grade group.

Data preparation:
The intermediate resolution level WSIs’ (pixel size approx. 2 μm) pixel values were inverted, that
is, each value was replaced by 255 (white) minus the original pixel value, and the images were
split into a grid of 256 x 256 pixel tiles. Tiles at the image boundaries were zero padded to the
size of 256 x 256. Tiles without tissue or with a lot of pen marks (identified by maximum pixel
brightness less than 10, or mean green to red channel ratio less than 1.2) were discarded.

Next, Global Contrast Normalization (GCN) [3] was applied. Contrast was evaluated as the
standard deviation of pixel intensity across tiles originating from a single image. The normalized
tiles were saved in RGB24 pixel format representing a brightness range of two standard
deviations from the mean brightness. Finally, the tiles were downsampled to 224 x 224 size with
Gaussian resampling.

The dataset was cleaned from images that were considered as wrongly labeled or too hard to
learn. There were three iterations of dataset cleaning. Each iteration included network training,
evaluation of prediction error, removal of samples with high prediction error (absolute difference
between predicted and ground truth ISUP grade group greater than or equal to 2.5). On each
iteration, every sample of the original dataset was (re)evaluated for candidacy for removal.

To prevent occasional removal of valid samples, there was an independent model training and
evaluation for two CV folds. Only the samples exhibiting high prediction error across both CV
folds were removed. Dataset cleaning resulted in 271 removed samples.
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The training dataset was augmented by rotating the initial images (before tile splitting) by angles
multiple of 72°. Resulting tiles were saved in the TFRecords file format to provide fast training
data ingestion by the TensorFlow framework.

Training setup:
The model input was a sequence of tiles originating from a single WSI. The tiles were sorted by
descending mean pixel intensity (tiles with extensive blank area go last). The same number of
tiles were extracted from all WSIs (by cycling or truncating the tile sequence). Each tile was
randomly augmented by vertical/horizontal flip, 90-degree rotation, then transformed by
DenseNet121 to obtain a feature tensor with shape 7x7x1024. This was followed by Max2D
pooling to get the feature vector of 1024 elements. Two densely connected layers with 256 and
128 units were applied sequentially to reduce the number of feature vector dimensions. After
that, the sequence of feature vectors was passed to two GRU layers with 96 and 64 units
respectively. The 64 elements output of the later GRU layer was passed to the dense layer with
scalar output. This layer with sigmoid activation scaled by 5.0 acted as a ISUP grade group
regression head.

The backbone (DenseNet121) was initialized with weights pretrained on ImageNet, later layers
were randomly initialized. The RMSprop optimizer was used to minimize LogCosh loss for
regression.

Training images that were serial sections of the same tissue block were clustered together with
the help of the imagehash library. Image clusters underwent 5-fold CV splits, also keeping the
Gleason score frequencies in the training sets the same as in the validation sets.

For each CV fold the training consisted of three stages. Each subsequent stage started with the
previous stage’s results. The common settings of all the stages were: batch size 2, starting
learning rate 1.0×10-4, gradient clipping by norm 1.0, dropout rate 0.4, L2 regularization
coefficient 1.0×10-4, learning rate reduce factor 0.1. The stages differed in the following:
backbone weights frozen/unfrozen, tile sequence length, early stopping patience, learning rate
reduction patience and the monitored metrics. For the specific values, see the
train_phase_config.json files of the computational experiments “37c” and “40c” in the published
source code.

Model parameters:
7,429,057 parameters (7,345,409 trainable).

Inference setup:
The system determines the ISUP grade group for a biopsy as the mean of six predictions
generated by an ensemble: three models with identical network architecture and different
learned parameters applied for an image with and without initial image rotation (see Table A2).
As the network outputs the ISUP grade group as a continuous value in the range between 0.0
and 5.0, the average value of the predictions is finally rounded to the nearest integer. The input
tiles are extracted, filtered and processed the same way as described in the “Data Preparation”
section.
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Table A2: Prediction ensemble configurations used by Dmitry A. Grechka.

Model parameters set initial image
rotation angle

Training experiment name CV fold number

37c 2 0.0°

37c 2 22.5°

37c 3 0.0°

37c 3 45.0°

40c 5 0.0°

40c 5 67.5°

The experiments 37c and 40c of model training differed in the number of initial dataset cleaning
iterations (see “Data Preparation” section): 37c had two iterations resulting in the removal of 245
images, while 40c had one more iteration (three iterations in total), resulting in the removal of
271 images. To map the CV fold number to image clusters used as a validation set, see the
data/trValSplits/5foldClusteredGleasonScore/ directory of the published source code.
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Abstract: We developed an end-to-end system relying on a novel Concatenate Tile pooling
method, which allowed training based on labels assigned to entire WSIs while using a tile-based
approach. The computational cost of training was reduced by more than 10 times in comparison
to training on full images. The training efficiency was further improved by the use of a newly
proposed tile cutout method. Progressive label self-distillation and removal of noisy labels was
applied to handle the substantial level of label noise in the training data.

Data preparation: The intermediate resolution level of the WSIs was padded and divided into
128 x 128 pixel tiles. The tiles produced from each WSI were sorted based on the sum of all
pixels, and 128 tiles with the lowest sum were selected and saved as PNG images (128 x 128 x
128 tile setup). Since white color corresponds to background, this procedure selects 128 tiles
with the largest tissue area. In addition, 12 x 128 x 128 tiles cut from the lowest resolution level
were used for pretraining the models.

One of the main components of the challenge was dealing with noisy labels. Specifically, the
labels of the Radboud training dataset were generated semi-automatically, and the concordance
of the semi-automated method with experts was estimated by the authors to be 0.853 in terms
of quadratically weighted kappa [1]. Therefore, the training procedure included two stages. At
the first stage a progressive label self-distillation was run. First, a set of models was trained on
the original data, and out of fold predictions and were used to produce adjusted labels as𝑑𝑟

1
𝑑𝑘

1

and for the Radboud and Karolinska data,𝑙𝑟
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1
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respectively, where and are the original labels. Next, the procedure was repeated𝑙𝑟 𝑙𝑘
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weights were selected to have approximately 1200 and 200 adjusted labels differing from the
original ones for Radboud and Karolinska data, respectively. At the second stage, images with

, , and and images having pen marks were|𝑙𝑘
2

− 𝑙𝑘| > 0. 5 |𝑙𝑟
2

− 𝑙𝑟| > 0. 5 |𝑑𝑟
2

− 𝑙𝑟| > 0. 75

dropped, and training was performed on a smaller dataset containing 8700 images with reliable
labels.

15



Training setup: The deep learning system is illustrated in Fig. A2. Specifically, instead of
passing an entire image as an input, N tiles are selected from each image based on the number
of tissue pixels and passed independently through the convolutional part. The outputs of the
convolutional part for each tile are concatenated into a single large feature map followed by
pooling and a fully connected head. Since any spatial information is eliminated by the pooling
layer, the Concatenate Tile pooling approach is nearly identical to passing an entire image
through the convolutional part, excluding predictions for nearly empty regions, which do not
contribute to the final prediction, and shuffling the remaining outputs into a square map of
smaller size.

Elimination of empty regions reduces the computational cost of training and inference as well as
GPU memory requirements. In addition, use of tiles having the same size provides an effective
way to build batches out of images having different sizes and aspect ratios. Finally, since the
prediction is generated based on a set of tiles corresponding to an image, rather than
independent individual tiles, labels assigned to the images can be used directly during training
(end-to-end manner). There is thus no need to perform an intermediate step with prediction of
Gleason pattern masks for individual tiles followed by evaluation of the WSI’s ISUP grade group
as a postprocessing step.

Figure A2: Overview of the solution of iafoss.

The final model was based on a ResNeXt50 backbone pretrained on 1 billion images in a
semisupervised manner [2]. Concatenation of Average and MaxPooling from the final feature
map produces features based both on the relative areas of the Gleason patterns present and
the most aggressive Gleason pattern, which are required to assign the ISUP grade group. The
fully connected head, meanwhile, learns the procedure of assigning ISUP grade groups based
on the features built by the convolutional part. In addition to ISUP grade group, the network
produces an auxiliary output for Gleason score used to provide additional guidance to the
network during training.
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Kappa loss based on an expression proposed in [3] was minimized during training. In addition,
CrossEntropy loss was applied to the Gleason score auxiliary output with the weight of 0.08.
The Kappa loss requires a sufficiently large batch size for convergence. Therefore, progressive
resizing was utilized: each model was first trained on 12 x 128 x 128 tiles produced from the
lowest resolution level with a batch size of 64, and then training was continued on 128 x 128 x
128 tiles produced from the intermediate resolution level with a batch size of 8.

The augmentation used during training included transformations based on dihedral symmetry
group, shift, rotation, and rescaling as well as random changes of brightness, contrast, hue,
saturation, and value. In addition, a novel method, tile cutout, was utilized. The idea of this
augmentation is similar to a regular cutout, i.e. replacement of a part of the input image with a
black square, but it allows substantially reducing the computational cost and GPU memory
requirements during training if utilized with Tile Concatenate pooling. Specifically, for training on
a 128 x 128 x 128 tile setup only 96 tiles are randomly selected at each time, which effectively
corresponds to a random removal of 25% of the input image. This removal also reduces the
training time and GPU memory usage by 25%, in contrast to a regular cutout not affecting the
computational cost of training. Finally, an augmentation based on tile selection was utilized. By
adding an extra padding of 64 to the original images on horizontal, vertical, and both directions,
each original image produced 4 sets of different tiles, which were saved and randomly selected
during training.

Model parameters: 25,082,183 for each model.

Inference setup: During inference, 128 x 128 x 128 tiles were extracted from the intermediate
resolution level for each WSI and passed as an input to the models. Due to the time limit
imposed on inference, only 6 out of 8 dihedral symmetry group operations were utilized for test
time augmentation: original image, horizontal flip, vertical flip, diagonal flip, rotation by 90
degrees, and rotation by 90 degrees + horizontal flip. The final prediction was produced by the
majority voting ensemble of 8 models trained with 4 fold train/validation split.
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Abstract:
The developed CNN-based system relies on a core network based on the ResNeXt50 [1]
backbone, with pre-trained weights from semi-supervised and semi-weakly supervised
ImageNet models [2]. The network was trained with a tile-based approach, where the most
informative regions of each slide were extracted and individually passed through the CNN. The
outputs of the individual tiles were then concatenated and used to predict the ISUP grade group
of the whole image.

Data preparation:
There were a number of possible duplicates and serial sections from the same tissue block. To
avoid information leakage during training, it was important to identify and handle these
duplicates. From the lowest resolution level of the WSIs, JPEG images were extracted, and
Imagehash was used to calculate the hash representing each image. Image pairs with a
similarity score greater than 0.9 were considered duplicates. A mapping between each image
and its duplicates was used to split the data during training such that all duplicates were in the
same fold. This minimized leakage during training by ensuring that duplicates of each sample
were either in the training or validation set.

Due to the large size and sparsity of tissue pixels on the WSIs, training on the whole images
was not ideal. The optimized tiling approach, where the most informative tissue patches were
extracted from each image based on the color density of the pixels, was thus adopted. Two
datasets were generated, with tile sizes of 256 and 384 from the resolution level 1 of each WSI.

Training setup:
The solution was based on the concatenate tile pooling idea, where N tiles were selected from
each image and passed independently through a CNN’s convolutional layers. The outputs were
then concatenated and the classification layer applied on the whole image.

There was a performance trade-off between selecting more tiles or a larger batch size -
selecting more tiles would have speeded up the learning but meant selecting a lower batch size,
which made the training unstable. A random sample of n tiles from the top N tiles was used for
each epoch.
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Each model was trained with the backbone frozen for one epoch, then unfrozen and fine tuned
on all layers for 15 epochs with learning rate of 3e-04 and weight decay of 1e-04. Label binning
with BCE loss function was used. The kappa score was tracked after each epoch and the best
performing model saved. The training parameters used for the different models are summarized
in Table A3.

Color and lighting based data augmentation did not improve the model performance, and
augmentation was thus limited to affine and distortion transforms - rotations, flips, zoom, warp -
all based on the default fastai transforms.

Table A3: Summary of the various combinations of tile options and training parameters
used by Kiminya.

Model Tile size Model input size N K Batch size CV folds

resnext50_32x4d_ssl 256 192 x 192 28 40 10 6

resnext50_32x4d_ssl 256 256 x 256 32 40 6 10

resnext50_32x4d_swsl 384 384 x 384 14 24 6 5

Model parameters:
Total parameters: 25,081,157 x 21 models.

Inference setup:
Similar to training, inference was performed on the medium resolution level of the WSIs. Tiles
were extracted for each image and N=28 tiles selected from the top K=40 most informative tiles.
The ISUP grade group was then predicted for each image and the predictions averaged over
the models.
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Code and model availability:
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Abstract:
We developed a neural network-based ISUP grade group predictor. We trained the network
using groups of tiles extracted from the WSIs as input. Finally, we made use of several inference
techniques including shifted tile slicing, building an ensemble of models, and test-time
augmentation. As a result, every input WSI acquired 32 possibly different scores and the final
prediction was made taking all of them into account.

Data preparation:
Every WSI in the dataset was saved at a pixel spacing of 0.96 μm. Images in this resolution
were cut into non-overlapping tiles of 256 x 256 pixels. From these tiles, we selected the ones
that contained the largest areas of prostate tissue. Then we composed a so-called canvas of
tiles by placing 16, 25, or 36 selected tiles into a square collage and stored it as a single image.
As a result, for each original image, we retrieved three canvases with dimensions of
1024/1280/1536 pixels, respectively. This procedure made it possible to replace the large WSIs
with canvases that were small enough to be used as input to the neural network.

Training setup:
We used the pre-trained EfficientNet-B0 [1] as a backbone for our neural network models. The
Gleason grading problem was posed as an ordinal regression problem. Thus, we configured the
networks to predict 5 output values ranging from 0 to 1 and trained them using binary
cross-entropy loss. Since the input canvases were relatively large, we trained the networks with
relatively small batch sizes in the range from 2 to 4 depending on canvas dimensions. We used
the Adam optimizer [2] with a starting learning rate of 0.0003, a warm-up factor of 10 with a
single warm-up epoch, and a cosine annealing scheduler. Experiments showed that 30 epochs
were sufficient for stable and effective neural network training. We validated the training process
on a single fold due to its high computational complexity. To increase the quality and robustness
of the network both tile-level and canvas-level image augmentation techniques were used. They
included transposition as well as vertical and horizontal flipping.
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Model parameters: 4,013,953 (trainable 4,013,953).

Inference setup:
At first, the scanned tissue of the biopsy was cut into tiles, as described above. Second, the tiles
were placed into a single canvas, which represents the diversity of tissue types. Then, we fed
the canvas to the trained neural network. Finally, the output vector was summed and rounded to
retrieve the prediction for the ISUP grade group of the WSI.

We applied the following additional techniques during inference:
1. Shifted tile slicing. In parallel with the original slicing procedure, we carried out slicing by
shifting the starting point by 64/128/192 pixels diagonally towards the bottom-right corner. This
process resulted in four different groups of tiles, forming four different canvases. The predictions
performed for the four canvases were averaged to obtain the ISUP grade group.
2. Models ensembling. We chose four trained neural networks to build an efficient ensemble.
The mean value of the predictions of the models was taken as the ISUP grade group.
3. Test-time augmentation. In addition to the original image we also predicted the ISUP grade
group for its augmented version. To this end, we used a 90 degree rotation to produce the
augmented image and averaged the two predictions.

Applying these techniques, we obtained a total of 32 ISUP grade group predictions for each
input WSI, and averaged them to obtain the final prediction.
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Code and model availability:
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Abstract:
The algorithm is based on the EfficientNet [1] and DenseNet [2] network families. Each WSI was
decomposed into small tiles and then recomposed into a new input that includes all the tiles in a
more reliable representation. To handle label noise: 1) we trained our models on the full dataset
without validation but with a completion based on a timid exhaustion of the loss function, and 2)
we performed model ensembling.

Data preparation:
We applied the Concatenate Tile Pooling method [3], where instead of passing an entire WSI as
an input, N tiles are selected from each image based on the number of tissue pixels and passed
independently through the convolutional part of the models. Basically, for each WSI and its
corresponding mask, we extracted smaller resolution tiles and composed a mosaic of N such
tiles as the input. We chose a tile size of 256 x 256 pixels with 3 channels and N of 36, 42 or 48
tiles, producing inputs of 36 x 256 x 256 x 3, 42 x 256 x 256 x 3 and 48 x 256 x 256 x 3 [4].

Training setup:
(I) We experimented with CV (see code-base-training-one), training on one fold for 60 epochs to
monitor the loss value evolution, and using 40 epochs for the other folds. The evolution and final
values of the loss function (MSE) were rather similar across different folds. Ensembling the
models did not lead to improvement on the public leaderboard score, and the models’
performance was uneven when introduced into an external ensemble. This is caused by label
noise and the sensitivity of the QWK metric to even small variations in MSE when evaluated on
the test data.

We applied the following training parameters: Size Image 256, Size Tiles 256, Tiles 42,
Augmentation horizontal and vertical flips with p=0.5, Validation StratifiedKFold 5 on ISUP grade
groups, Arch EfficientNetB0, Convolutional Base's Weight Imagenet trainable, On Top
GlobalAveragePooling2D, Dropout(0.5), Dense(1024), Output Dense(1) regression objective
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Loss mean_squared_error, Optimizer Adam, Leaning Rate 5e-04 init, Reduce LR decreasing
0.5 with patience 3 epochs, Save weights only with best validation loss epochs, Batch Size 64.

(II) We did not attempt removing noisy labels from training data. In general, we are not in favor
of losing any existing information, although in principle it could be harmful by elevating the
non-regular part of a data generating process. While preferable to removing data, we also did
not attempt to transform the data. Instead, we opted for training the models with the full dataset
in order to prevent the possible existence of more noise in some folds than in others, which
probably would have increased the variability in the inference results.

We trained 3 members of the EfficientNet family (see code-base-training-two-enets) and applied
the following changes to the parameters of the approach (I) presented above: Tiles 48,
Validation Art Validation on instinct, Arch EfficientNetB0, EfficientNetB1 and EfficientNetB2,
Convolutional Base's Weight Noisy Student trainable, Output Dense(5,activation='sigmoid)
ordinal regression objective, Loss sigmoid_cross_entropy_with_logits, Leaning Rate custom
with 5up, 3sustain, 0.8decay, Limits LR 1e-05min, 4e-04max, Save weights only with best loss
epochs, Batch Size 32, Epochs 60. Finally, we trained 1 member of the DenseNet family (see
code-base-training-two-densenet). Additional changes to the training parameters described
above were: Arch Densenet121, Convolutional Base's Weight Imagenet trainable, Epochs 40.

Model parameters:
Not registered, see technical information of [1] and [2]. The models were always trained without
freezing the convolutional base weights pre-trained on Imagenet, with more layers added on
top.

Inference setup:
Our inference procedure was based on the diversity of Architectures, Tiles and Test Time
Augmentations. From the training processes above, the following pairs of models and inputs
were available: EfficientNetB0-42x256x256x3, EfficientNetB0-48x256x256x3,
EfficientNetB1-48x256x256x3, EfficientNetB2-48x256x256x3 and DenseNet121-48x256x256x3.
Further, from the public notebooks in the competition we picked EfficientNetB0-36x256x256x3
[5] and EfficientNetB1-36x256x256x3 [6].

Moreover, we applied the following Test Time Augmentations: --Type A: 5xTTA
deterministic,1xoriginal, 1xTranspose, 1xVerticalFlip, 1xHorizontalFlip,
1xTranspose->VerticalFlip->HorizontalFlip, --Type B: 4xTTA pseudo deterministic 1xoriginal,
1xVerticalFlip, 2xHorizontalFlip(p=0.5)->VerticalFlip(p=0.5) and --Type C: 2xTTA random
2xHorizontalFlip(p=0.5)->VerticalFlip(p=0). (II) White Padding Tile Extraction, -- x add zero pad
and 1x add 256 pad, that is, 2 different extractions for ALL the images. (III) Model Selection and
Final Ensemble, --see quick-save-inference-solution for details.

Acknowledgements:
We reserve this special section to highlight the work of those competitors who have made our
final solution better, 1) because their ability was not present in my initial knowledge or 2)

23



because their performance improves together with the experience of mine. I mean, in no order
of priority, [Salman], [Qishen Ha], [RAHUL SINGH INDA], [Iafoss]. Please, check the links in
References.
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Code and model availability:
Training code:
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Trained model:
https://www.kaggle.com/sinpcw/panda-model-4
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Abstract:
We used tiling as preprocessing. The size of the tiles was determined such that the tissue area
in the image would fit evenly into 16 tiles. We also applied random coefficients to the size of the
tiles during training, which acts as data augmentation and prevents the model from overfitting to
the training data. We also used SyncBN to stabilize the behavior of batch normalization during
training. We used hard voting instead of averaging as an ensemble method.

Data preparation:
We extracted the inputs for the model from the middle resolution level of the WSIs.
Experimenting on the highest resolution level did not lead to any improvement. We divided the
image into a grid of 16 tiles and combined them to form a single image, which was then resized
to 2048 x 2048 (16 x 512 pixels x 512 pixels). Tile size was determined according to the
percentage of tissue area in the image, as shown in the equation below, so that the tissue fitted
evenly into the 16 tiles. We used 2.0 for the scaling factor, except during training.

(1)ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑤𝑖𝑑𝑡ℎ ×  (1. 0 −  𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑤ℎ𝑖𝑡𝑒 𝑎𝑟𝑒𝑎) × 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 ÷ 16

Training setup:
We used the following models: EfficientNet b5 [1] x 4, Se-ResNeXt 101-64x4d [2] x 2,
Se-ResNeXt 101-32x4d x 2, ResNeSt 101e [3] x 2, GeM[4] + EfficientNet b3 x 1. Data
augmentation was used to increase the robustness of the network. We randomly changed the
scaling factor in equation (1) from 0.5 to 3.5 as data augmentation. In addition, the following
augmentation procedures were used: RandomGridShuffle, GridDropout, Cutout, GridDistortion,
Flip, RandomHueSaturationValue, and RandomBrightnessContrast. Batch size of 8 was used
and Synchronized Multi-GPU Batch Normalization was used to stabilize the behavior of Batch
Normalization. MSE Loss was used as the loss function and Adam [5] was used as the
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optimizer. CyclicLR was used to schedule the Learning Rate, and the Learning Rate was varied
from 5e-6 to 1e-4 during one epoch. We stopped training when there was no longer any
improvement in the public leaderboard score.

Model parameters:
EfficientNet b5: 28,342,833 (trainable 28,342,833).
Se-ResNeXt 101-64x4d: 86,186,033 (trainable 86,186,033).
Se-ResNeXt 101-32x4d: 46,908,465 (trainable 46,908,465).
ResNeSt 101e: 46,228,065 (trainable 46,228,065).
GeM + EfficientNet b3: 10,697,770 (trainable 10,697,770).

Inference setup:
Our method determines the ISUP grade group by aggregating the inference results of the above
models. We also use RandomGridShuffle and Flip (horizontal and vertical) for test time
augmentation to obtain three predictions per model. For each inference result, we assign a
ISUP grade group by applying threshold values of 0.5, 1.5, 2.5, 3.5 and 4.5. The class getting
the highest number of votes in each of those majority votes is the final inference result. If the
maximum number of votes does not exceed 1/3 of the total number of votes, we calculate the
average of all the model inferences and assign the ISUP grade group based on the thresholds
above. The rationale for combining the two methods is that a majority vote alone reduces
performance when the inference results are disparate, while using only the average has a
negative effect when some inference results are far off.
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Abstract:
We developed an automated Gleason grading algorithm with simple label noise reduction. All
neural networks were based on EfficientNet-b0 and b1 [1], trained with 5 CV folds. Our solution
was based on three steps: first, we train a network with the original training labels. The main
challenge of this competition was the presence of considerable label noise. To deal with that
problem, we chose to detect and remove the noisy training data, where the “noisiness” is
inferred from the amount of gap between the out-of-fold prediction results and the training label.
By excluding the training data with a large gap, we were able to construct a “cleaned” training
set to train our final models. This label cleaning method considerably improved performance
(private leaderboard score from 0.92 to 0.94), making it a main contribution towards winning the
challenge.

Data preparation:
We generated tiles for each training dataset using the iafoss-tiling method [2]. We generated
two different types of tiles, with the number of tiles being 64 or 36 and the tile height/width being
192 or 256 pixels, respectively, allowing the models to capture a more diverse set of features.
Finally, the original ISUP grade group labels were converted by the public binning method [3] to
vector format (e.g. ISUP grade group 3 converted to [1, 1, 1, 0, 0]).

Training setup:
For our pipeline, we trained three networks. Network 1 was trained with the original labels and
used for cleaning the label noise. Networks 2 and 3 were trained with the cleaned data and
used for the final predictions. Networks 1 and 3 were based on EfficientNet-B1 [1] with
generalized-mean pooling (GeM pooling) [4] and used the 64 x 192 x 192 tiles as input.
Network 2 was based on EfficientNet-B0 with average pooling and used the 36 x 256 x 256 tiles
as input. We used the Adam optimizer [5] with a learning rate 0.0003 and Cosine Annealing
scheduling with 20-30 epochs.

After training Network 1 with 5 CV folds, we predicted on the out-of-fold (OOF) data. Then, the
absolute differences (gaps) between the prediction and the original training label were
calculated. If the gap for a sample was higher than a given threshold, the sample was excluded.
We used a different threshold for Network 2 and Network 3, resulting in the removal of 5.6% and
14.0% of the training dataset, respectively.
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All networks were developed using PyTorch. The following data augmentation procedures were
used: flipping, rotating, scaling, color alterations (brightness, and contrast), distortion (grid,
optical), Cutout.

Model parameters: 6,937,034 (trainable 6,937,034).

Inference setup:
We used the predictions of Networks 2 and 3. Since the networks were trained on 5 folds, we
simply averaged the outputs of the five models to obtain the final prediction. Next, we converted
all binnings to ISUP grade groups (e.g. [0.8, 0.7, 0.4, 0.5, 0.2] → 2.6). Finally, we converted the
outputs to integers using the following thresholds: [0.5, 1.5, 2.5, 3.5, 4.5] (e.g. 3.4 → 3). We did
not optimize these thresholds to avoid overfitting.
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Abstract:
Our approach was based on the MIL idea by iafoss. We augmented the method with our own
tile sampling algorithm. We first find the one dimensional skeleton representation of the WSI and
then sample data along the skeleton. The method does not require a priori gridding of the WSI,
is especially suitable for core needle biopsies because of their elongated shape and produces
samples along the medial axis of the biopsy. We then built a classifier and various ordinal
regression models based on the iafoss model backbone.

Data preparation:
Skeleton sampling was used in all cases of training data generation. In short, we first find the
tissue mask with Otsu’s thresholding [1]. The tissue mask is then smoothed with standard
methods in OpenCV. The smoothed mask is then skeletonized with skimage and the tiles are
sampled along the skeleton. Smoothing the mask is crucial to produce a good quality skeleton.

We extracted the tiles at the middle resolution level of the WSI for all of the models. For model 1
we used a maximum of 24 tiles per biopsy, extracted them at 384 x 384 pixels, and resized to
256 x 256. For models 2 and 3 we used a maximum of 36 tiles extracted at 256 x 256 pixels
with no resizing. For model 4 we used a maximum of 25 tiles extracted at 299 x 299 pixels with
no resizing.

If the biopsies produced more than the maximum number of tiles, we randomly sampled the
maximum number of tiles. If the biopsy consisted of many separate parts, each part was
sampled with a relative weight based on the length of its corresponding skeleton. We used
OpenCV and thresholding based methods to try to avoid sampling the pen annotation marks
from the biopsies.

Training setup:
All of the models were based on the ISUP grade group labels and did not use the provided
masks in any way. Models 1-3 were all ordinal regression models (predicting ISUP grade groups
0-5) built on top of the approach by iafoss. Model 4 was a classification model built on top of the
iafoss approach (predicting classes 0-5 where 0 means benign). The loss functions used were
BCE loss for ordinal regression and CE loss for classification.

29



The backbone CNN used for feature extraction in all of the models was a pre-trained
resnext50_32x4d_ssl model from semi-supervised-ImageNet1K-models [2].

We used 4-fold CV in training all of the models. The number of epochs the models 1, 2, 3 and 4
were trained for were 15, 20, 20 and 20, respectively. All of the models used a flat and anneal
learning rate schedule with maximum learning rates of 2e-4, 1e-4, 8e-5 and 7e-4, respectively.
We used the “Over9000” optimizer and a batch size of 11. No early stopping was used and only
the model with the best validation loss was saved from each training run.

We used data augmentation when training the models. The augmentations were applied
uniformly meaning that all of the tiles from the same biopsy were transformed with the same
augmentations. The used augmentations were random vertical flips, random zooms, random
rotations and random lighting transformations.

Model parameters:
The ordinal regression models had 25,081,157 parameters, all of which were trainable. The
classification model had 25,081,670 parameters, all of which were trainable.

Inference setup:
For the inference phase we used an ensemble of models. For models 1 and 2 we chose two
versions trained on different CV folds. The models were chosen based on their public
leaderboard performance. For models 3 and 4 we chose one fold with the best public
leaderboard performance. In total we had 6 models in our ensemble.

To infer the ISUP grade group of a biopsy we used the models in the following way. The results
from each ordinal regression model were summed to produce an integer grade. For example
(1,0,1,0,0) would be summed to 2. The results from the ordinal regression models and the
classification model were averaged with a weighted average. The weights were manually tuned
according to how the public leaderboard score was affected by different combinations. The
result was rounded to the nearest integer to produce the ISUP grade group for a WSI.
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Abstract:
Deep learning methods have shown promising results in diagnosing prostate cancer. However,
due to the various input shapes and giga-pixel resolution of WSIs, traditional training methods
require extensive and costly computational resources and specific CNN architectures. Our team
has utilized a novel tile-based method to address these issues, which requires less
computational resources while maintaining state-of-the-art performance. Our approach includes
a combination of three different methods: (1) MIL-based CNN with attention-selected
high-resolution input, (2) MIL-based CNN with Squeeze-and-Excite Module across all tiles, (3)
Deep CNN with rectangular input images recomposed from tiles. Additionally, we successfully
tackled label noise in training data by utilizing robust loss functions and pseudo labels.

Data preparation:
To reduce image dimensions and fix the input size, we first cropped WSIs into tiles. Then we
summed the pixel values in these tiles and selected those with lower summed values (i.e.
darker content). Two of our models used separate tiles as input and the third one concatenated
these tiles into a large image. Additionally, we removed slides with pen marks and with
inconsistencies between the slide-level labels and masks.

Training setup:
In total, we trained four models, which we can divide into three categories: (1) MIL-based CNN
with attention-selected high-resolution input, (2) MIL-based CNN with SE Module across all tiles,
(3) Deep CNN with recomposed rectangular images from tiles. Figure A3 shows the structures
of these networks. We used weights pretrained on ImageNet (standard or noisy student [1]) and
applied augmentations at both the WSI and tile levels for all models. The WSI was randomly
cropped to 95% of the original size and rotated in the range from -5 degrees to 5 degrees.
Tile-level augmentation included random brightness and contrast, horizontal and vertical flips,
random rotation of -10 to +10 degrees, and cutout.
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MIL-based CNN with attention-selected high-resolution input
The model is trained in two stages. This model takes separate tiles as input and uses attention
pooling [2] to gather information from tiles in the same WSI. In the first stage, models were
trained on the middle resolution level WSIs, with 48 tiles having dimensions of 192 x 192 pixels
selected based on color information. The model used a Se_ResNeXt50_32x4d [3] backbone
and was trained with three losses: MSE loss for regression, CrossEntropy for classification, and
tile-level classification. The Adam optimizer [4], with a learning rate of 5e-4 and a batch size of
6, was used for model fitting. The learning rate was scaled by 0.2 at the 20th, 35th and 45th
epoch. The model with the best QWK on the validation set was chosen.

The models were finetuned on 2x the intermediate resolution in the second stage, with 36 tiles
selected by precalculated attention values from stage one. To reduce label noise, the label for
MSE regression was a weighted sum of ground truth and pseudo labels from the first stage. The
models used EfficientNet-b0 [5] as the backbone and weights obtained from stage one as
initialization. The Adam optimizer with a learning rate of 2e-4 and 20 epochs of cosine decay
was used to fit the models.

MIL-based CNN with Squeeze-and-Excite Module across all tiles
Two models were trained using this approach: ResNeXt50 and Resnet34. For ResNeXt50 we
split WSIs into 49 tiles of size 224 x 224 pixels. These tiles were passed through the backbone
to produce feature vectors. The global SE module was then applied across tiles from the same
WSI. After the SE module, feature vectors from the same WSI were pooled into one feature
vector. Because Batch Normalization works poorly with very small batch sizes, we replaced all
Batch Normalization layers with Group Normalization layers, which allowed this particular model
to successfully converge with batch sizes as low as 1. Additionally, Weight Standardization [6]
was added to each Convolutional layer to accelerate micro-batch training. The last layer
contained a single output neuron with a sigmoid range function. We used the L1 Smooth loss
function. ResNeXt50 was trained using a reduction on plateau scheduler with an Initial learning
rate of 4e-4, which was scaled by a factor of 0.5 every seven epochs without improvement in
the validation metric.

Training of Resnet34 was done in two stages: first trained with 49 tiles per WSI and then
finetuned with 81 tiles. The model had a similar structure as ResNext50 with Se Block followed
by two pooling layers. The last layer contained two output layers, one for classification and one
for regression with a sigmoid range. The training was done using the two-loss function,
Cross-Entropy, and Mean Square Error. Both models were trained end-to-end with a Radam
optimizer. We used a one cycle schedule with a learning rate of 1e-3 for 80 (stage 1) and 40
(stage 2) epochs.

Recomposed image based approach
This model used large rectangular images composed from 144 tiles at 128 x 128 pixels. The
background in each tile was cropped out and the foreground was resized to 128 x 128. The
EfficientNetB3 [5] network with noisy-student pre-trained weights [1] was used as a model
backbone, followed by the GeM pooling layer and a final single regression head. The model was
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trained using two different loss functions: Huber loss for Radboud data and mean square error
for Karolinska data. The model was trained on a single TPU with a 5e-4 initial learning rate
using the Adam optimizer and one cycle policy. The training was stopped when Karolinska's
loss stopped declining.

Model parameters:
Model(1), Backbone: EfficientNet-b0 4.6M
Model(1), Backbone: SeResNeXt50_32x4d 28.6M
Model(2), Backbone: ResNet 34 21.8 M
Model(2), Backbone: ResNeXt50  25M
Model(3), Backbone: EfficientNet-b3 12M

Inference setup:
MIL-based CNN with attention selected tiles. The model was first run at the intermediate
resolution level, taking every tile as input and calculating attention values for each tile. Then the
top 36 tiles were selected, and we cropped tiles at the same location in the highest resolution
image and downsampled them by a factor of two. Finally, the model was run on these higher
resolution tiles, and we took the outputs from the regression head.
MIL-based CNN with Squeeze-and-Excite Module across all tiles. We extracted images at
the intermediate resolution level and split the tissue into tiles. We divided the biopsy into 81
(Resnet) and 49 (ResNeXt50) tiles, and computed raw predictions from the regression head.
Re-composed image based approach. We extracted 144 tiles with 128 x 128 pixels from the
intermediate resolution level and concatenated them into a large image. Similar to training, the
backgrounds in these tiles were cropped out and the foregrounds were resized. Finally, we took
the raw prediction from regression.
Ensemble and Rounding. At the end all the predictions were averaged and rounded to
produce the final ISUP grade group.

Acknowledgements:
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Figure A3: Overview of the solution of Save The Prostate. (a) MIL-based CNN with
attention-selected high-resolution input. The model takes N separate tiles as input and uses a
MIL pooling to fuse feature vectors from N tiles in the same WSI into one feature vector.
Attention values calculated in attention pooling are used to select tiles in higher resolution. (b)
MIL based CNN with Squeeze-and-Excite Module across all tiles. This model takes N separate
tiles as input. The global Squeeze-and-Excite module will operate on all tiles from the same
WSI. All tiles from the same WSI will share the channel attention in SE operation. (c) Deep CNN
with re-composed rectangular images from tiles. This model used re-composed rectangular
images as input. The large images are generated by concatenating small tiles selected from
WSIs. Difference losses are applied to data from different centers.
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Abstract:
We developed an algorithm based on an attention-based multi-resolution model ensembled with
LGBM [5] and XGBoost [6]. The algorithm contains a two-stage attention-based MIL model that
uses weakly supervised region of interest (ROI) detection. Our model was trained on tiles
extracted from WSIs on multiple resolutions, with the lower resolution used to identify suspicious
regions, which were further examined at higher resolution. To make the model more robust, we
ensembled the MIL model with LGBM and XGBoost models, whose feature extractors were
trained to predict the primary and secondary Gleason grades.

Data preparation:
We first performed data cleaning including removal of pen marks and suspicious slides (blank
slides and slides with no cancerous tissue indicated by the mask but with ISUP grade group
greater than 0), as well as detection of duplicates. We ensured that each set of duplicates was
split into the same fold during CV. After data cleaning, we performed data pre-processing using
our previously developed tiling algorithm [1]. Specifically, we created a mask of the tissue on the
slide by setting a threshold for the average intensity since the majority of the background is
white. Once a tissue mask was found, it was smoothed using morphological closing. The
skeleton of the smoothed mask was then found, and branches were removed by finding the
endpoints with the maximum geodesic distance. The midline was then partitioned based on the
tile size and overlap. A perpendicular line was drawn at each of the locations until it intersected
with the mask boundary. A tile size of 256 x 256 pixels was used with an overlap of 𝑠 = 25% in
this challenge. Finally, we calculated the blue ratio for each tile, and the top 36 ranked tiles were
selected. The selected tiles were concatenated to feed the MIL, LGBM, and XGBoost models. In
our attention-based MIL model, each extracted tile was considered as an instance and each
slide was modeled as a bag of instances.

Training setup:
Our final model was an ensemble of three components: attention-based MIL, LGBM and
XGBoost. Our attention-based MIL model [2] consisted of two stages, which operated on two
resolutions. ResNeXt50[3] was used as the backbone for both stages. Adaptive 2D average
pooling and 2D convolution were applied after the last convolutional layer of the ResNeXt50 to
produce a feature map for each slide, which was then flattened and𝑘 × 512 × 4 × 4
projected to instance-level feature vectors. denotes the number of extracted tiles,𝑘 × 512 𝑘 
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and was set to 36 for both stage models. Feature vectors were aggregated by soft attention
weights generated from the attention module (i.e., multi-layer perceptron) to form a bag-level
representation for grade classification.

The input tile size for the first stage was 256 x 256 pixels. To select informative regions for the
second stage, from each tile with top 50% highest attention weights obtained from the first stage
model, we extracted two tiles of size 512 x 512 at the highest resolution around the center of 64
x 64 sub-regions at intermediate resolution with highest blue ratio values. The 512 x 512 tiles
were then down-sampled to 256 x 256 and forwarded to the second stage model. The other two
components, i.e. LGBM and XGBoost were fairly simple compared to MIL. We employed
ResNeXt50 as an image feature extractor on the intermediate resolution. To diversify the model,
the end task we used here was to predict the Gleason score. We formulated the primary and
secondary Gleason grade prediction as a multi-task learning task. We extracted the image
features for each WSI using ResNeXt50 and used these fixed feature vectors to train LGBM and
XGBoost separately for the final ISUP grade group prediction. To combine the predictions from
these three models, we trained linear regression to output a continuous number from 0 to 5.

For training, we used the Adam optimizer [4] with an initial learning rate of 0.0003 and the
cosine annealing learning rate scheduler. The number of training epochs was 30 and the batch
size was 6. Models were trained and evaluated using 4-fold CV.

Model parameters:
MIL: 27,268,914 (trainable 27,268,914).
LGBM: 25,081,166 (trainable 25,081,157).
XGBoost: 25,081,180 (trainable 25,081,157).
Total: 77,431,260, (trainable 77,431,228).

Inference setup:
We used the ensemble model for ISUP grade group prediction. Specifically, we applied the first
stage attention MIL model on the intermediate resolution tiles for grade prediction and
suspicious region localization. Then selected tiles were examined at a higher resolution by our
second stage model. Final predictions were obtained by averaging the predictions from both
stages. Similarly, LGBM and XGBoost were used to predict an ISUP grade group
simultaneously. A pre-trained linear regression model was used to aggregate the predictions
from these three models. It mapped the final prediction to a continuous scale from 0 to 5. To
determine the proper thresholds for the final ISUP grade group outcome, we tried to optimize a
differential equation where we used the thresholds as variables and QWK as the objective
score. The threshold finetuning step could increase the final leaderboard score by up to 1%.
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data cleaning by akensert, Zac Dannelly, and Appian, and preprocessing by rftexas, network
architectures by lafoss, and training details by haiqishen and abhishek.
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Abstract:
We developed an algorithm based on the ResNext50 [1] model. Our model was trained on 64
tiles of 256 x 256 x 3 pixels extracted from the intermediate resolution level of the WSIs. Since
the ISUP grade group is defined on an ordinal scale, we adopted the mean-variance loss
(Mvloss) [2]. We split the dataset into four folds such that consecutive tissue sections of the
same sample were not divided into different folds. Various image augmentations were applied to
the tiles. We also adopted unsupervised data augmentation (UDA) for consistency training [3],
and it improved the final performance especially on the Radboud data. We used eight different
test-time-augmentations.

Data preparation:
All WSIs of the training dataset were used at the intermediate resolution, and tiles were
generated using the public notebook by akensert. We used a tile size of 256 x 256 x 3 pixels,
and applied zero padding to tiles located at the borders of WSIs. Meanwhile, suspicious WSIs
with inconsistent labels or no mask were removed from the training dataset. Serial WSIs
representing consecutive tissue sections were grouped using image hash, and WSIs from the
same group were not divided into different folds. Most of the serial WSIs were derived from the
Radboud data.

Training setup:
Our model was based on the ResNext50 model pre-trained on ImageNet proposed by iafoss.
We followed the base model, and extended the model by adding separated additional
classification heads for Gleason scores or merged one with the ISUP grade group. However, the
base model itself showed the best performance based on exhaustive experiments.

We used Mvloss to take into account the ordinal relationships between ISUP grade groups.
Mvloss is the weighted sum of the cross-entropy loss, and the L2 loss of the expected value of
the probability and the variance value of the probability. We set 0.2 and 0.05 as the weight of the
L2 loss and the variance value, respectively. Meanwhile, UDA was adopted to improve the
generalization of the models [3]. During the training, each batch was duplicated and processed
with different augmentations. As an additional loss, KL divergence was computed between logits
from the two batches. The optimizer minimized both Mvloss and the KL divergence
simultaneously.
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Due to limited GPU memory, the batch size was set to 6 with UDA or 12 without UDA on four
GPUs. In order to increase the batch size, we trained the model on four GPUs with half floating
point precision. We used the Over9000 optimizer with cosine annealing. For data augmentation,
we used image flipping, random rotation by 90 degrees, random gamma adjustment,
ShiftScaleRotate, and RandomBrightnessContrast in Albumentations. The final models used in
the ensemble have slightly different hyperparameters, but most of them were trained with a
learning rate of 0.0001 and 60 epochs.

Model parameters:
We used an ensemble of 12 models, with each having 25,081,670 trainable parameters.

Inference setup:
The final models for the inference were the top three with highest QWK from each fold. Since
we split the dataset into four folds, this resulted into an ensemble of 12 models. For the test
data, we extracted 64 tiles per WSI, adding white tiles when the number of tiles was insufficient.
Since test-time-augmentation was applied to the tiles, the inference GPU used in Kaggle
managed to run the inference for each WSI. All predictions were averaged and then rounded to
determine the final ISUP grade group.
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