Supporting Information for

Original article

[¹⁸F]MAGL-4-11 positron emission tomography molecular imaging of monoacylglycerol lipase changes in preclinical liver fibrosis models

Tuo Shao^{a,b,†}, Zhen Chen^{a,†}, Jian Rong^{a,†}, Vasily Belov^{a,c}, Jiahui Chen^a, Andre Jeyarajan^b, Xiaoyun Deng^a, Hualong Fu^a, Qingzhen Yu^a, Steve H. Rwema^b, Wenyu Lin^b, Mikhail Papisov^{a,c}, Lee Josephson^a, Raymond T. Chung^{b,*}, Steven H. Liang^{a,*} ^aDivision of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA

^bLiver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA

^cShriners Hospitals for Children-Boston Boston, MA 02114, USA

[†]These authors contributed equally to this work.

Received 22 February 2021; received in revised form 6 June 2021; accepted 1 July

2021

[†]These authors contributed equally to this work.

*Corresponding authors. Tel.: +1 617 724 7562, fax: +1 617 643 0446 (Raymond T. Chung); Tel.: +1 617 726 6107, fax: +1 617 726 6165 (Steven H. Liang).

E-mail addresses: <u>Chung.Raymond@mgh.harvard.edu</u> (Raymond T. Chung), <u>liang.steven@mgh.harvard.edu</u> (Steven H. Liang).

Supplementary method

Radiosynthesis of [¹⁸F]MAGL-4-11 ((4-(3-(fluoro-¹⁸F)pyrrolidin-1-yl)benzoyl)azetidin-3-yl)piperazin-1-yl)(thiazol-2-yl)methanone)

The general labeling procedure for [¹⁸F]MAGL-4-11 formation was described previously¹. The cyclotron-produced [¹⁸F] F^- was separated from H₂¹⁸O using the Sep-Pak Accell Plus QMA Plus Light cartridge (Waters; Milford, MA, USA). The produced $[^{18}F]F^{-}$ was eluted from the cartridge with a mixture of aqueous K₂CO₃ (4 mg in 200 DMSO) a of 4,7,13,16,21,24-hexaoxa-1,10μL and solution diazabicyclo[8,8,8]hexacosane (Kryptofix222; 7.5 mg) in CH₃CN (200 µL), and transferred to a reaction vessel in the hot cell. After drying [¹⁸F]KF solution at 120 °C for 30 min to remove water and CH₃CN, a solution of mesylate precursor (2.0 mg) in anhydrous DMSO (300 µL) was then added. The vessel was heated at 120 °C for 10 min, then diluted with HPCL mobile phase (500 µL), followed by injection into an HPLC column. HPLC purification was performed on an X Bridge Prep C18 column $(10 \times 250 \text{ mm}, 5 \text{ }\mu\text{m})$ using a mobile phase of CH₃CN/H₂O/Et₃N (30/70/0.1) at a flowrate of 5.0 mL/min. The radioactive fraction corresponding to the desired product was collected in a sterile flask, evaporated to dryness in vacuo, and reformulated in PBS containing 5% EtOH. The synthesis time was ca. 70 min from end of bombardment. Radiochemical and chemical purity were measured by an analytical HPLC (X Bridge Prep C18 column (4.6×250 mm, 5 µm) using a mobile phase of CH₃CN / H₂O + 0.1% Et₃N (30/70) at a flow rate of 1.0 mL/min. The product identity was confirmed by the co-injection with unlabeled MAGL-4-11. Radiochemical yield was $39.3 \pm 13.7\%$ (n = 5) decay-corrected based on $[^{18}F]F^-$ with >99% radiochemical purity, and the molar activity was 111.8-328.7 GBq/µmol (3.03-8.87 Ci/µmol) (Fig. S3).

Pts ID	Fibrosis Grades	Age (yr)	Sex	Race	Ethnicity
Pts 1	F0	65	М	White	Non-Hispanic
Pts 2	F0	72	М	White	Non-Hispanic
Pts 3	F0	65	М	White	Non-Hispanic
Pts 4	F1	84	М	White	Non-Hispanic
Pts 5	F1	60	М	White	Non-Hispanic
Pts 6	F1	64	М	White	Non-Hispanic
Pts 7	F2	54	М	White	Non-Hispanic
Pts 8	F2	56	М	White	Non-Hispanic
Pts 9	F2	58	F	White	Non-Hispanic

Table S1. Characteristics of the liver fibrosis patients

Table S2 Primers used for qPCR.

Gene name	Forward sequence 5'-> 3'	Reverse sequence 5'-> 3'		
CB1	CACCTTCCGCACCATCACCAC	GTCTCCCGCAGTCATCTTCTCTTG		
DAGLα	AGAATGTCACCCTCGGAATGG	GTGGCTCTCAGCTTGACAAAGG		
MAGL	CAAGGCCCTCATCTTTGTGT	ACGTGGAAGTCAGACACTAC		
FAAH	CCCAGATGGAACATTACAGG	CAGGATGACTGGTTTTCAGG		
NAPE-PLD	CACGGTAATGGTGGAAATGG	GTCCAGATGGTCATAGTGGTTG		
18s rRNA	GGGAGCCTGAGAAACGG	GGGTCGGGAGTGGGTAATTT		

Figure S1 Hepatic panleukocyte (CD45) and macrophage (CD68) expression after CCl₄ (A) and BDL (B) treatment.

Figure S2 Coronal and sagittal images of [¹⁸F]MAGL-4-11/PET-CT imaging hepatic MAGL expression with mild and severe CCl₄ (A) and BDL (B) mice.

Scheme S1 Synthesis of irreversible MAGL inhibitor (cold compound) MAGL-4-11. Conditions: (i) DIPEA, MeCN, 80 °C for 12 h; 85% yield; (ii) TFA, CH₂Cl₂, rt, 12 h; 99% yield; (iii) HOBT, EDC·HCl, Et₃N, DMF, rt, 12 h; 78% yield; (iv) 1-chloroethyl chloroformate, CH₂Cl₂, rt, 2 h; then MeOH, 35 °C 2 h; 86% yield; (v) pyrrolidin-3-ol hydrochloride, K₂CO₃, DMSO, 120 °C for 24 h; 79% yield; (vi) MsCl, Et₃N, CH₂Cl₂, rt, overnight; 84% yield; (vii) TBAF, THF, 70 °C, 2 h; 38% yield; (viii) LiOH, THF/MeOH/H₂O, 40 °C, 16 h; 92% yield; (ix) HOBT, EDC·HCl, Et₃N, DMF, rt, 12 h; 30% yield; DIPEA = N,N-diisopropylethylamine; TFA = trifluoroacetic acid; HOBT = 1-hydroxybenzotriazole hydrate; $EDC \cdot HCl = N \cdot (3 - dimethylaminopropyl) \cdot N'$ ethylcarbodiimide hydrochloride; $Et_3N = triethylamine;$ DMF = N, Ndimethylformamide; DMSO = methyl sulfoxide; MsCl = methanesulfonyl chloride; TBAF = tetrabutylammonium fluoride.

Scheme S2 Synthesis of MAGL PET tracer [¹⁸F]MAGL-4-11. Conditions: (i) LiOH, THF/MeOH/H₂O, 40 °C, overnight; 97% yield; (iI) HOBT, EDC•HCl, Et₃N, DMF, rt, 12 h; 22% yield; (iii) MsCl, Et₃N, CH₂Cl₂, rt, overnight; 70% yield; (vi) [¹⁸F]KF, DMSO, 120 °C, 10 min, 39% decay-corrected RCY. HOBT = 1-hydroxybenzotriazole hydrate; EDC·HCl = N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride; DMF = N,N-dimethylformamide; DMSO = methyl sulfoxide; MsCl = methanesulfonyl chloride.

Reference

1. Chen Z, Mori W, Deng X, Cheng R, Ogasawara D, Zhang G, et al. Design, synthesis, and evaluation of reversible and irreversible monoacylglycerol lipase positron emission tomography (PET) tracers using a "tail switching" strategy on a piperazinyl azetidine skeleton. *J Med Chem* 2019;**62**:3336-53.