STRENGTHENING HEALTH SERVICES RESEARCH USING TARGET TRIAL EMULATION: AN APPLICATION TO VOLUME-OUTCOMES STUDIES

Arın L. Madenci, Kerollos Nashat Wanis, Zara Cooper, Sebastien Haneuse, SV Subramanian,

Albert Hofman, and Miguel A. Hernán

Web Appendix

Web Appendix 1: Assignment mechanism for Target Trials #3 and #4	2
Web Appendix 2: Inverse probability weights	2
Web Appendix 3: Sensitivity analysis	3
Treatment weights	3
Censoring weights	3
Standardization	3
Web Appendix 4: Consideration of positivity violations	4
Web Tables	4

Web Appendix 1: Assignment mechanism for Target Trials #3 and #4

Surgeons who performed fewer operations than the median volume of all surgeons during the pre-baseline interval (denoted by $\tilde{\mu}$) are assigned to add to their volume by x cases (as in prior trials). For many surgeons with pre-baseline volume $w < \tilde{\mu}$, they will not be able to fully add to their volume when x < -1 and |x| > w; as such, each surgeon j is assigned to perform $A_j = \max(0, w_j + x)$ as in trials #1 and #2. For surgeons with $w \ge \tilde{\mu}$ and $x \ge -1$, they are assigned to perform w - x operations. However, for surgeons with $w \ge \tilde{\mu}$ and x < -1, fewer than x cases will be available for each surgeon; specifically, only $\sum_{j:w_j < \tilde{\mu}} w_j - a_j < x \sum_{j=0}^{J} \mathbb{1}(w_j < \tilde{\mu})$ cases will be available. As such, when x < -1, surgeons with $w \ge \tilde{\mu}$ are randomly assigned to a volume $w_j - a_j$ for a randomly selected surgeon j with $w < \tilde{\mu}$ such that the net number of operations will remain fixed at the pre-baseline level.

In summary, for intervention arm x and pre-baseline volume $w_{(1)}, \ldots, w_{(J)}$ in ascending order with surgeons $j \in \{1, \ldots, J\}$, each surgeon's operative volume assignment will be

$$A_j = \begin{cases} \max(w_j + x, 0) & \text{if } w_j < \tilde{\mu} \\ \max(w_j - x, 0) & \text{if } w_j \ge \tilde{\mu} \text{ and } x \ge -1 \\ n_m & \text{if } w_j \ge \tilde{\mu} \text{ and } x < -1 \end{cases}$$
(1)

where n_m for $m \in \{ \lfloor J/2 \rfloor + 1, \ldots, J \}$ is defined by the following:

Let $\mathbf{k} = k_1, \dots, k_{\lceil J/2 \rceil} = w_1 - a_1, \dots, w_{\lceil J/2 \rceil} - a_{\lceil J/2 \rceil}$ and \mathbf{k}^* be a random permutation of $\mathbf{k} : k_1^* = k_{\pi(1)}, \dots, k_{\lceil J/2 \rceil}^* = k_{\pi(\lceil J/2 \rceil)}$.

Then define $\mathbf{n} = \mathbf{k}^* = k^*_{\pi(1)}, \dots, k^*_{\pi(\lceil J/2 \rceil)}$.

Web Appendix 2: Inverse probability weights

This section describes the estimation of stabilized inverse probability weights used in the main analysis:

$$SW = SW^A \cdot SW^C$$

$$SW^{A} = \prod_{k=0}^{K} \frac{f(A_{k}|A_{k-1}, V)}{f(A_{k}|A_{k-1}, \overline{L}_{k-1}, V)}$$

where $f(A_k|A_{k-1}, \overline{L}_{k-1}, V)$ is the conditional probability mass function $f_{A_k|A_{k-1}, \overline{L}_{k-1}, V}(a_k|a_{k-1}, \overline{l}_{k-1}, v)$ evaluated at the random expression $A_k|A_{k-1}, \overline{L}_{k-1}, V$ and, as described in the main text, A is the sum of baseline volume W and assignment X.

Additionally, because a one-interval deviation is permitted, the numerator and denominator are deterministically equal to 1 in the first interval k = 0 following consecutive adherence to the randomized assignment (all individuals are by convention considered to be adherent during interval k = -1).

To estimate the quantities in the numerator and denominator, under the assumption that the operative volume of a surgeon in any given interval (A_k) is a negative binomial random variable with non-constant dispersion, we fit the following discrete-time regressions:

$$\hat{\mathbb{E}}[A_k|A_{k-1},V] = \exp\left(\theta_{0,k} + \theta_1^T h(a_k) + \theta_2^T V\right)$$
(2)

$$\hat{\mathbb{E}}[A_k|A_{k-1}, \overline{L}_{t-1}, V] = \exp\left(\theta_{0,k} + \theta_1^T h(a_k) + \theta_3^T \overline{l}_k + \theta_4 V\right)$$
(3)

where $\theta_{.,k} = \theta_{.}^T g(k)$ is a time-varying parameter and the overbar denotes a variable's history in the prior interval. The dispersions for Equations (2) and (3) are separately modeled using the same covariates, using gamma regression. Surgeon-specific mean and dispersion predictions for the numerator and denominator equations are then used to generate negative binomial distributions with which corresponding probabilities can be computed for each surgeon-specific observed value of A_k . Finally, only surgeons who perform one or more operations during interval K + 1 will have measurable outcomes during that interval. To account for this potential selection bias, the following stabilized censoring weights can be used:

$$SW^{C} = \frac{p(C_{K+1} = 0|A_{K}, V)}{p(C_{K+1} = 0|A_{K}, \overline{L}_{K}, V)}$$

where C_{K+1} denotes censoring in interval K + 1. The numerator and denominator of the weights can be estimated with the following discrete-time logistic regressions:

$$\hat{p}(C_{K+1} = 0 | A_K = a_K, V = v) = \exp(\theta_0 + \theta_1^T h(a_k) + \theta_2^T v)$$
$$\hat{p}(C_{K+1} = 0 | A_K = a_K, \overline{L}_K = \overline{l}_K, V = v) = \exp(\theta_0 + \theta_1^T h(a_k) + \theta_2^T \overline{l}_t + \theta_4 v)$$

Web Appendix 3: Sensitivity analysis

This section describes the estimation of stabilized inverse probability weights used in the main analysis:

$$SW = SW_K^A \cdot SW_{K+1}^C$$

Treatment weights

$$SW_t^A = \prod_{k=1}^t \frac{f(A_k | A_{k-1}, V, C_k = 0)}{f(A_k | A_{k-1}, \overline{L}_{k-1}, V, C_k = 0)}$$
(4)

We fit the same discrete-time regressions for the numerator and denominator as in the main analysis, now conditional on not having been censored ($\overline{C}_k = 0$) for deviating from the assignment a second time or performing zero operations in period k.

$$\mathbb{E}[A_k|A_{k-1}, V, \overline{C}_k = 0] = \exp\left(\theta_{0,k} + \theta_1^T g(A_{k-1}) + \theta_2^T V\right)$$
(5)

$$\mathbb{E}[A_k|A_{k-1}, V, \overline{L}_{k-1}, \overline{C}_k = 0] = \exp\left(\theta_{0,k} + \theta_1^T g(A_{k-1}) + \theta_2^T \overline{L}_k + \theta_3^T V\right)$$
(6)

where $\theta_{.,k} = \theta_{.,k}^T g(k)$ is a time-varying parameter, $g(\cdot)$ is a flexible function such as restricted cubic splines, and the overbar denotes a variable's history including the previous interval.

Censoring weights

After following the regime in each interval k, only surgeons who perform one or more operations during interval k + 1 will have measurable outcomes during that interval. To account for this censoring, the following weights were used:

$$SW_t^C = \prod_{k=1}^t \frac{f(C_k | A_k, V, C_{k-1} = 0)}{f(C_k | A_k, \overline{L}_k, V, C_{k-1} = 0))}$$
(7)

The numerator and denominator of the surgeon-specific censoring weights were estimated with the following discretetime logistic regression equations:

$$\mathbb{E}[C_k|V] = \exp\left(\theta_{0,k} + \theta_1 A_{k-1} + \theta_2^T V\right)$$
(8)

$$\mathbb{E}[C_k|A_{k-1},\overline{L}_{k-1},V] = \exp\left(\theta_{0,k} + \theta_1 A_{k-1} + \theta_2^T \overline{L}_{k-1} + \theta_4^T V\right)$$
(9)

Standardization

As described above, the time-fixed covariates were included in the numerators of the stabilized weights. These variables can be adjusted for using the following outcome regression, weighted by SW:

$$\mathbb{E}\left[\pi|X=x\right] = \sum_{w \in W, v \in V} \mathbb{E}\left(\pi|X=x,W,V\right) p(W=w,V=v)$$
(10)

$$= \hat{\mathbb{E}}_{w \in W, v \in V} \mathbb{E}\Big[\pi | X = x, W, V)\Big]$$
(11)

$$= \hat{\mathbb{E}}_{w \in W, v \in V} \operatorname{expit}\left(\alpha_0 + \alpha_1 g(X) + \alpha_2^T V + \alpha_3^T W\right)$$
(12)

Interaction terms were additionally included between the intervention arm and all time-fixed covariates.

Web Appendix 4: Consideration of positivity violations

In the Medicare data, eligible surgeons were observed to perform between 0 and 59 operations per interval. Among surgeons with a pre-baseline operative volume of 0-4, very few were observed to perform higher numbers of operations in the following interval. Conversely, among surgeons with a pre-baseline operative volume of 15 or greater, very few were observed to perform lower numbers of operations in the following interval. A summary of observed operative volumes for different pre-baseline operative volume histories is reported in Appendix Table **??**. Given this concern for non-random violations of positivity in the available observed data (especially when including other covariate patterns), we did not consider this trial further. These problems were magnified with a static sustained regime.

Web Tables

ICD code	Revision version	Description
361	ICD-9	Bypass anastomosis for heart revascularization
362	ICD-9	Heart revascularization by arterial implant
02100	ICD-10	Bypass coronary artery, one artery
02110	ICD-10	Bypass coronary artery, two arteries
02120	ICD-10	Bypass coronary artery, three arteries
02130	ICD-10	Bypass coronary artery, four or more arteries

Web Table 1: International Classification of Diseases (ICD) Codes

u	1550551110	/m.				
Surgeon ID.clone	Arm	Interval	Operative volume	Change from pre-baseline volume (x)	Mortality proportion	Artificial censoring
#1.1	-	-2	3	-	1/3	0
#1.1	-	-1	1	-	0/1	0
#1.1	x = 1	0	2	1	1/2	0
#1.1	x = 1	1	2	1	0/2	0
#1.1	x = 1	2	2	1	0/2	0
#1.1	x = 1	3	2	1	0/2	0
#1.1	x = 1	4	6	5	2/6	0
#1.2	-	-2	3	-	1/3	0
#1.2	-	-1	1	-	0/1	0
#1.2	x = 2	0	2	1	1/2	0
#1.2	x = 2	1	2	1	0/2	1
#3.1	-	-2	5	-	1/5	0
#3.1	-	-1	2	-	0/2	0
#3.1	x = 1	0	3	1	1/3	0
#3.1	x = 1	1	0	-2	0	0
#3.1	x = 1	2	3	1	0/3	0
#3.1	x = 1	3	1	-1	0/1	1
#3.2	-	-2	5	-	1/5	0
#3.2	-	-1	2	-	0/2	0
#3.2	x = 2	0	3	1	1/3	0
#3.2	x = 2	1	0	1	0	1

Web Table 2: Example of expanded dataset and artificial censoring for emulation of Target Trial #2 (arms x = 1 and x = 2 shown; K = 3). Gray shading indicates intervals prior to eligibility assessment.

^{*}Among patients who underwent an operation during the current interval.

Volume category	History: 0 to 4	History: 5 to 9	History: 10 to 14	History: 15+
-5	0	647	510	352
-4	174	889	533	311
-3	521	1288	587	318
-2	1104	1496	611	284
-1	1750	1493	592	238
0	1736	1486	521	246
1	1689	1327	499	193
2	1298	1051	383	176
3	982	867	309	157
4	695	616	276	118
5	456	454	193	93

Web Table 3: Positivity check for Target Trial #1

Web Table 4: Positivity check for Target Trial #2

Volume category	History: 0 to 4	History: 5 to 9	History: 10 to 14	History: 15+
-5	0	161	17	6
-4	136	59	16	11
-3	199	66	18	4
-2	349	93	19	8
-1	506	89	6	4
0	176	83	15	4
1	131	44	13	3
2	102	37	10	2
3	38	25	3	1
4	24	11	1	4
5	21	8	2	0

Change in volume	90-day mortality (%)
-5	6.8 (4.6-10.4)
-4	6.9 (5.4-8.9)
-3	6.8 (5.6-8.8)
-2	6.7 (5.4-8.7)
-1	6.6 (5.4-8.1)
0	6.3 (5.5-7.2)
1	5.9 (5.0-7.0)
2	5.6 (4.5-6.8)
3	5.2 (4.3-6.3)
4	4.9 (3.7-6.3)
5	4.5 (2.8-7.2)

Web Table 5: Mortality estimates for sensitivity analysis of Target Trial #2 (IPW)