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S1. Effect of increased wideband filter on microstates

The EEG microstate literature commonly relies on a frequency range that includes delta

rhythms. We repeat our main microstate analysis (K = 4 AAHC at GFP peak time points,

frequency sampling at 40 Hz) but from  EEG/MEG signals filtered between 1 Hz and 40 Hz.

Figure S1 shows the spatial topographies of EEG and MEG microstates derived both

between 4–30 Hz and 1–40 Hz. We observe a high spatial correspondence among pairs of

microstates, and in fact the lowest spatial correlation among these pairs was. This indicates that

widening the frequency range has no effect on the spatial signature of microstates.

Figure S1: Effect of the filter settings (1–40 Hz vs. 4–30 Hz) on the spatial signature of EEG

(left) and MEG (right) microstates (four-cluster AAHC at GFP peaks). Microstates were paired

based on their unambiguous spatial correspondence.



On the other hand, widering the frequency range from 4–30 Hz to 1–40 Hz significantly

increased the mean lifetime of microstates estimated from their (non-smoothed) activation time

series ( ; compare Table S1 to Table 1 in the main text).𝑡
41

> 34. 8,  𝑝 =  0

EEG microstates MEG microstates

Mean
lifetimes (ms)

Fractional
occupancies

(%)

Mean
lifetimes (ms)

Fractional
occupancies

(%)

Microstate A 55 ± 7 23.3 ± 3.9 Microstate ɑ 37 ± 2 11 ± 1.6

Microstate B 57 ± 6 24.9 ± 4.3 Microstate β 42 ± 2 16.2 ± 2.2

Microstate C 58 ± 6 26.4 ± 3.2 Microstate 𝛾 102 ± 9 62.3 ± 2.3

Microstate D 55 ± 4 25.3 ± 3.9 Microstate δ 37 ± 2 10.3 ± 1.9

Table S1:  Mean lifetimes and fractional occupancies (mean ± SD) associated with each

microstate inferred from EEG or MEG topographies filtered between 1–40 Hz (without temporal

smoothing on microstate activation time series).



S2. Comparison of “two-level” and “group-level” microstate clustering

We repeat here the main microstate analysis (K = 4 AAHC of sensor maps downsampled

at 40 Hz and restricted to time points of locally maximal GFP), with the only difference that the

clustering is directly performed at the group level (i.e., after concatenation of EEG/MEG signals

across all subjects), which is more comparable to the group HMM analysis than the two-step

microstate clustering presented in the main text.

Figure S2 displays pairs of microstates obtained in both cases and shows that this

methodological detail does not impact microstate topographies (spatial correlation among pairs:

). Mean lifetimes and fractional occupancies were not significantly affected either (𝑅 > 0. 71

for mean lifetime; for mean fractional𝑡
41

< 1. 8,  𝑝 >  0. 08 𝑡
41

< 1. 14,  𝑝 >  0. 26

occupancy).



Figure S2: Effect of clustering type (“group-level” vs. “two-level”) on the spatial signature of

EEG (left) and MEG (right) microstates (four-cluster AAHC at GFP peaks, 40 Hz sampling

rate). Microstates were paired based on their unambiguous spatial correspondence.



S3. Microstate clustering without temporal restriction

In the main text, microstate topographies were inferred from local GFP maxima, whereas

the HMM ran over the continuous signals. We repeat here the main microstate analysis (K = 4

AAHC of sensor maps at 40 Hz sampling rate) but without restriction to isolated time points.

Figure S3 shows that microstate topography is qualitatively unaffected by this

methodological difference. As discussed in the main text, this is because the AAHC algorithm

explicitly biases microstates towards maximal GFP, suggesting that microstates are mostly

sensitive to neural activity around GFP peak times. In line with this suggestion, we observed an

excellent one-to-one temporal correspondence between each pair of microstates (Fig. S3).

Figure S3: Effect of the temporal restriction to GFP local maxima on EEG (top) and MEG

(bottom) microstates (four-cluster AAHC, 40 Hz sampling rate). Microstates were paired



modality based on their unambiguous spatial correspondence. Temporal correlations of

microstate activation time series (without temporal smoothing) are shown on the far right.



S4. Effect of temporal smoothing on microstate activation time series

The EEG microstate literature commonly employs an ad-hoc temporal smoothing on the

microstate activation time series. We repeated our microstate analysis (i.e., K = 4 AAHC at GFP

peak time points, sampling frequency at 40 Hz) including a temporal smoothing of microstate

activation time series. Microstate topographies were by construction identical to those shown in

Fig. 3, but temporal smoothing significantly increased microstate mean lifetimes (

; compare Table S2 to Table 1 in the main text).𝑡
41

> 49. 8,  𝑝 =  0

EEG microstates MEG microstates

Mean
lifetimes (ms)

Fractional
occupancies

(%)

Mean
lifetimes (ms)

Fractional
occupancies

(%)

Microstate A 138 ± 19 28 ± 6.5 Microstate ɑ 102 ± 7 18.6 ± 3.1

Microstate B 122 ± 24 24.8 ± 6.8 Microstate β 117 ± 12 26.7 ± 5.4

Microstate C 124 ± 26 24.1 ± 7 Microstate 𝛾 141 ± 12 37.5 ± 4.3

Microstate D 122 ± 23 23 ± 6.3 Microstate δ 94 ± 9 17.2 ± 2.9

Table S2:  Mean lifetimes and fractional occupancies (mean ± SD) associated with each

microstate inferred from EEG or MEG topographies with temporal smoothing on microstate

activation time series.

Figure S4 shows the spatio-temporal correlation analysis between temporally-smoothed

microstates and HMM states. Results were virtually identical to those obtained with raw



(non-smoothed) microstate activation time series (compare with Fig. 5). This shows that

temporal smoothing of microstate activations does not impact our main results.

Figure S4: Spatial and temporal correlations in the case of smoothed microstate activation time

series. Compare with Fig. 5 in the main text.



S5. Hidden Markov modeling of EEG power envelopes at higher dimensionality

In our main HMM analyses, we fixed the data dimensionality (i.e., the number N of

principal components fed to the HMM classification algorithm) so the fraction of explained

variance is identical for MEG and EEG power envelope signals. This approach naturally takes

into account the inherently distinct spatial smoothness of the two recording modalities. However,

this difference might impact HMM state classification in EEG and underlie some discrepancies

with MEG HMM states. Here, we consider the HMM analysis of EEG power envelopes with N =

41, as for MEG.

Figure S5 shows side-by-side the spatial signature of EEG power envelope HMM states

at low (N = 10; see Fig. 4, left) and higher (N = 41) dimensions. Sensor-level maps show that

HMM states are qualitatively similar, although some brain power maps exhibited a higher degree

of bilaterality (see, e.g., state 1) and more dynamical competition (state 2) when N = 41. State 5

was the only state qualitatively different as it involved a frontal activation at when N = 41 instead

of a left sensorimotor activation at when N = 10.

Figure S6 shows the spatial (Fig. S6, top) and temporal (Fig. S6, bottom) correlation

analyses between EEG HMM states inferred at N = 41 and MEG HMM states at the same

dimensionality (Fig. S6, left) or EEG microstates (Fig. S6, right). Despite some qualitative

topographical differences, increasing the dimensionality of EEG power envelope data did not

affect substantially the spatial or temporal correspondence across state clustering methods or

recording modality (compare to Fig. 5). The observations and conclusions discussed in the main

text thus stand.



Figure S5: Spatial signature of EEG sensor-level power envelope HMM states obtained with N =

10 (left; see Fig. 4, left in the main text) and N = 41 (right) components retained prior to HMM

inference.



Figure S6: Spatial (top) and temporal (bottom) correlations when the HMM of EEG power

envelopes is inferred from N = 41 components. Compare with Fig. 5 in the main text.



S6. Power envelope hidden Markov model with four states

We repeated the sensor-level power envelope HMM analysis by lowering the number of

states to classify from K = 6 (used in the main text) to K = 4, for better comparability with the

four-microstate clustering.

Figures S7 and S8 present the main results of this analysis. The four-state HMM merely

disclosed a subset of the six-state HMM, specifically states 2MEG–5MEG for MEG and states 1EEG,

3EEG–5EEG for EEG (compare Fig. S7 to Fig. 4 in the main text). The spatio-temporal correlation

analysis comparing microstates vs. HMM states and EEG vs. MEG (Fig. S8) then naturally led to

similar observations than in the case of six-state HMM (compare to Fig. 5 in the main text).

Therefore, the observations and conclusions discussed in the main text stand.

Figure S7: Spatial signature of EEG (left) and MEG (right) sensor-level power envelope HMM

states obtained with K = 4. Compare with Fig. 4 in the main text.



Figure S8: Spatial (top) and temporal (bottom) correlations in the case of a four-state power

envelope HMM. Compare with Fig. 5 in the main text.



S7. Microstate clustering with six states

We repeated the microstate analysis with K = 6 clusters, and examined to what extent this

affects our results and comparison to the six-state power envelope HMM.

Figure S9 shows that the four canonical microstates found in Fig. 3 (see main text) are

recovered among the six resulting microstates denoted AEEG’–FEEG’ and AMEG’–FMEG’. For EEG,

microstate EEEG’ was spatially similar to microstate DEEG’ (Fig. S9), suggesting that the increase

in number of clusters led to a splitting of microstate DEEG (Fig. 3). On the other hand, microstate

FEEG’ appeared new. Interestingly, for MEG, the two extra microstates EMEG’ and FMEG’ did not

bring new significant information at the level of power modulations, since their brain power

maps did not reach the statistical threshold .

Additionally, microstates were slightly shorter lived when increasing the number of

microstates (EEG: mean ± SD: 33 ± 1 ms; range : 31 – 34 ms; MEG: mean ± SD: 33 ± 5 ms;

range : 27 – 40 ms), and displayed a higher percentage of global variance explained (EEG: 61%;

MEG: 37%) compared to the four-microstate analysis.

Figure S10 summarizes the spatio-temporal comparison of the six-microstate clustering

vs. the six-HMM states (described in the main text, see also Fig. 5). The observations and

conclusions discussed in the main text appeared to remain valid.



Figure S9: Spatial signature of EEG (left) and MEG (right) microstates obtained with K = 6.

Compare with Fig. 3 in the main text.

Figure S10: Spatial (top) and temporal (bottom) correlations in the case of a six-microstate

clustering. Compare with Fig. 5 in the main text.


