
APPENDIX A 

Artifact detection algorithms 

The rejection matrix is stored in EEG.artifacts.BCT.  

The input of each artifact algorithm is the EEGLAB structure and some parameters. The 

output of each artifact detection algorithm is the EEGLAB structure and a logical matrix 

containing the data rejected by that algorithm. The algorithms update the rejection matrix in the 

EEGLAB structure, such as it contains the old and new rejected data. The data already rejected is 

not used for the estimation of relative thresholds. 

 

The following algorithms are particularly sensitive to the detection of non-functional 

channels: 

 eega_tRejCorrCh: This algorithm relies on the high correlation existing between adjacent 

channels, especially in high-density systems. The correlation between all channels is 

computed in sliding time windows (4 s length, 2 s step by default), and for each channel 

and time window, the average over the stronger correlations (top 5% by default) is the 

measure used for defining bad data. The algorithm rejects channels per time window with 

a top correlation lower than a threshold. Because the method’s measure is independent of 

the signal amplitude and its distribution is not normal, we recommend using an absolute 

threshold (0.4 by default). However, the function supports the estimation of a unique 

relative threshold for all electrodes.  

 eega_tRejPwr: This algorithm identifies segments of bad data based on the power at 

different frequency bands. It applies FFT in sliding time windows (4 s length, 2 s step by 

default), and computes the average power in each frequency band, electrode, and time 



window, and expresses it in decibels relative to the median value across all time windows 

and electrodes. By default, the algorithm z-scores the data per channel, uses relative 

thresholds, and rejects data when the power in the frequency band [1, 10] Hz is below the 

threshold or the power in the frequency band [20, 40] Hz is above the threshold. Notice 

that for this algorithm, the same threshold is used for all electrodes. 

 

The following algorithms are more specifically sensitive to motion artifacts, but they will also 

partially identify non-working channels and other types of artifacts. 

 eega_tRejAmp: This algorithm rejects samples with an amplitude below or above a 

threshold. By default, it sets the thresholds relatively and per electrode and applies a 50 ms 

mask (it removes the 50ms before and after any segment rejected by the algorithm). 

 eega_tRejTimeVar: This algorithm computes the variance of the signal in a sliding time 

window (0.5 s length, 0.1 s step by default) and rejects samples with a variance above or 

below a threshold. By default, it sets the thresholds relatively and per electrode. 

 eega_tRejRunningAvg: This algorithm computes for each sample two weighted running 

averages and rejects samples with a too high fast running average or with a too high 

difference between the fast and the slow running average. The fast-running average is 

computed as 𝐴𝑣𝑔𝐹𝑗 = 0.800 × 𝐴𝑣𝑔𝐹𝑗−1 + 0.200 × 𝑋𝑗 where 𝑋𝑗 is the data at sample j, 

and the slow running average as 𝐴𝑣𝑔𝑆𝑗 = 0.975 × 𝐴𝑣𝑔𝐹𝑗−1 + 0.025 × 𝑋𝑗. By default, it 

sets the thresholds relatively and by electrode and applies a 50 ms mask to the bad 

segments. 

 eega_tRejFastChange: This algorithm rejects data when the maximum change in a given 

time window (20 ms by default) is larger than a threshold. It specifically detects jumps in 



the signal and can identify some non-neural activity like heartbeats. By default, it sets the 

thresholds relatively and by electrode. 

 eega_tRejAmpElecVar: This algorithm rejects data based on the variance of the signal 

across electrodes. If the amplitude for a given electrode is too far away from the median of 

all electrodes, it is rejected. Notice that for this algorithm, the threshold is by definition 

relative and defined for all the electrodes. By default, it applies a 50 ms mask to the bad 

segments. 

 

The following algorithms can be used to reject/re-include data according to the rejection matrix 

EEG.artifacts.BCT. 

 eega_tIncShortBad: This function includes segments of rejected data that are shorter than 

a lower threshold (20 ms by default). 

 eega_tRejShortGood: This function rejects segments of good data between segments of 

bad data if they are shorter than a lower threshold (2 s by default). 

 eega_tMask: This function applies a mask to the bad segments (50 ms by default). 

 eega_tRejChPercSmpl: This function rejects all the data for channel and epoch if more 

than an upper limit of samples were rejected (50% by default). 

 eega_tRejSmplPercCh: This function rejects all the data at a particular time-point if more 

than an upper limit of channels were rejected (30% by default). 

 

We also provide a function to run a combination of multiple artifact detection algorithms. 

 eega_tArtifacts: This function runs a combination of artifact detection algorithms to ensure 

proper artifact detection. The function performs a defined number of loops of rejection. 



Within each loop, it applies the specified algorithms on the data remaining from the 

previous loops. After each loop, it updates the rejection matrix. Both the algorithms to run 

and its parameters are provided to the function as a structure. For some algorithms to work 

correctly, it is important that the data is filtered—especially low-pass filtered to remove 

line noise. It can be specified that the data needs to be low or high pass filter before 

performing the artifact rejection (notice that the function never modifies the output data, 

the filtered data are only used for the computation). The function can either reset or keep 

(default) the initial rejection matrix. 

  

APPENDIX B 

Description of the function to define BT and BC 

We created a single function to define bad times (BT), bad channels per epoch (BC), and 

bad channels during the whole recording (BCall) on both continuous and epoched data. Notice that 

the definition of bad times and channels based on the rejection matrix are linked. For example, if 

we define BT as samples with more than 15% of rejected electrodes and that for one subject, 18% 

of the channels are non-functional, we will define all times as bad and discard the entire recording. 

To avoid this kind of problem, we created a function that can iteratively approximate the final 

thresholds used for defining BT, BC, and BCall.   

 eega_tDefBTBC: This function defines EEG.artifacts.BT as a logical matrix with size 1 x 

samples x epochs signaling the bad samples, EEG.artifacts.BC as a logical matrix with size 

channels x 1 x epochs specifying the bad channels during each epoch, and 

EEG.artifacts.BCall as a logical vector with a length equal to the number of channels, 

indicating non-functional channels for the entire recording. The thresholds used to define 



BT, BC, and Bcall have to be provided as input. If more than one threshold is provided for 

each definition, they will be applied as follows. First, the function defines bad times as 

those where the proportion of rejected channels (excluding bad-channel in BC) at each 

sample is above the first threshold. Second, it defines bad channels during the whole 

recording as those for which the proportion of total rejected samples (excluding bad times 

in BT) is above the first threshold. Third, it defines bad channels per epoch in an analog 

way, but computing the rejected samples per epoch and using the corresponding first 

threshold. It repeats the process by looping over all the thresholds provided. This iterative 

approximation to the thresholds allows a better definition of BT, BC, and Bcall. The 

function also allows applying a mask to bad-times (non applied by default), ignoring bad 

times shorter than a lower limit (0 by default), and marking as bad-times short good-times 

between two bad-times (0 by default). 

 

APPENDIX C 

Description of the artifact correction algorithms 

We provide a function to perform the target PCA correction and two separate functions to 

perform the spatial interpolation of channels. One function interpolates channels non-functional 

during the entire recording (or an entire epoch when applied on epoched data). The second function 

interpolates segments of rejected data. All functions mark corrected data as good in the rejection 

matrix and indicate which data has been interpolated in another logical matrix, EEG.artifacts.CCT 

(true indicates corrected data).   

 eega_tTargetPCAxElEEG: This functions corrects transient artifacts using target PCA. It 

concatenates the data segment to correct, applies PCA to this subset of data, and removes 



the first n components. Finally, the interpolated segments are spliced back into the data and 

aligned to it to avoid discontinuities. By default, the segments are concatenated relatively 

to the immediate previous sample. This alignment introduces drifts in the signal; thus, after 

artifact correction using this method, the data should be high-pass filtered again.Small 

drifts might remain affecting frequencies below the filter frequency; therefore, noticeable 

on long data segments (or continuous data). However, these drifts will not affect baseline-

corrected epoched data or frequencies above the high-pass filter. By default, the correction 

is restricted to data segments indicated as good data in EEG.artifacts.BT, shorter than 100 

ms, and to the channels indicated as good in EEG.artifacts.BC. Applying the method to 

very short data segments guarantees that it is implemented on sudden short signal changes 

as jumps or heartbeats. We recommend removing 90 % of the variance because we have 

observed that this is the minimum percentage of variance removal that results in a proper 

artifact correction. 

 eega_tInterpSpatialSegmentEEG: This function uses spherical spline to spatially 

interpolate channels not working during limited periods. The interpolated segments are 

spliced back into the data and aligned to it to avoid discontinuities. By default, the segments 

are concatenated relatively to the immediate previous sample. As before, this alignment 

introduces drifts in the signal, requiring subsequent high-pass filtering. The signal is 

reconstructed only during segments indicated as good data in EEG.artifacts.BT and when 

the proportion of channels rejected in the rejection matrix is lower than a threshold. By 

default, segments shorter than 100 ms are not interpolated, and a 1 s mask is applied to all 

segments before interpolation. 



 eega_tInterpSpatialEEG: This function uses a spherical spline to interpolate channels 

identified in EEG.artifacts.BC as non-functional during an entire epoch (or the entire 

recording when applied to continuous data). 

 

 APPENDIX D 

Description of the function for ICA and DSS 

We created a function that performs the ICA combined with wavelet-thresholding ICA and 

afterward uses the iMARA algorithm to identify components associated with non-neural artifacts 

automatically. For short recordings, the function can run the analysis on subsets of electrodes or 

use PCA to reduce the dimensionality. 

 eega_pcawtica: This function applies ICA to the removal of non-neural sources. The 

function operates as follows. (1) It makes a copy of the data, which is high-pass filtered (at 

2 Hz by default) and low-pass filter (at 40 Hz by default). (2) It removes bad samples and 

bad channels. (3) If channel subsets are provided, it restricts the analysis to them. (4) It 

performs a first PCA (optional) + ICA. (5) It uses wavelet-thresholding to estimate 

transient artifacts and subtracts them from the data. (6) It performs a second PCA (optional) 

+ ICA on the artifacts-free data. (7) It identifies the components to remove using iMARA. 

(8) It estimates the artifacts using those components. (9) It removes the estimated artifacts 

from the original data. 

 

We provide a function, dss_denoise_EEG, which performs a DSS on an EEGLAB structure 

containing epoched data. 



 dss_denoise_EEG: This function performs a DDS. It applies a first PCA, discards the last 

components, and normalizes the retained components. Then, it computes the average ERP, 

applies a second PCA to the average. The filter is the conjunction of the two PCA 

decompositions.  Afterward, it projects the data into the filter and keeps only the first 

components. Finally, it projects the data back to the sensor space. This function enables 

designing a single filter and applying it to all the epochs or designing different filters for 

each condition (in this case, experimental factors have to be previously defined using 

eega_definefactors). The number of components to retain in the first and second PCA are 

provided as inputs to the function. 

 

APPENDIX E 

Other functions 

Usually, a delay exists between the time the stimulation computer gives the order of 

presenting a stimulus and its actual presentation. Therefore, the latency of the events is usually 

corrected by the latency of DINs. We provide a function that performs this latency correction. 

 eega_latencyevent: This function corrects the latency of certain types of events (indicated 

as input) using the latency information of the first DIN event (its name also has to be 

indicated as input). 

  

For segmenting the data, we provide a function that, besides epoching the data, also epochs 

the logical matrices defining artifacts. 

 eega_epoch: This function epochs the data and the logical matrices in the EEG.artifacts 

field. 



 

We also provide two functions for identifying bad epochs, either based on the amount of 

rejected data or on the distance to the average evoked response.  

 eega_tDefBEbaddata: This function identifies bad epochs based on the amount of 

rejected data and saves it as a logical vector in EEG.artifacts.BE. The function defines 

epoch k as bad based on (1) the proportion of bad data in EEG.artifacts.BCT(:,:,k), (2) of 

bad samples in EEG.artifacts.BT(1,:,k), (3) of bad channels in EEG.artifacts.BC(:,1,k), 

and (4) of corrected data in EEG.artifacts.CCT(:,:,k). 

 eega_tDefBEdist: This function identifies bad epochs based on the Euclidean distance of 

the average referenced response during epoch k to the average response across all epochs. 

It calculates the Euclidean distance to the average at each sample for all epochs. Then it 

establishes a threshold based on a certain number of interquartile ranges from the third 

quartile. If, for epoch k, the distance to the average response is bigger than the threshold 

during a certain proportion of the epoch, the function rejects the epoch. 

 

After data has been segmented and the epochs with artifacts rejected, additional steps are 

usually performed to obtain the ERP responses. These typically include average referencing, and 

eventually, data normalization and baseline correction. While normalizing the data is not 

necessary, this process can improve statistical power. We provide a function for data normalization 

flexible to normalized based on different dimensions. 

 eega_normalization: This function z-scores the data. The function can apply the 

normalization over single or all electrodes and single or all epochs. It is also possible to 



define specific values for the mean or the standard deviation. For example, setting the mean 

to 0 implies only dividing by the standard deviation. 

 

In classical ERPs analysis, the responses across trials belonging to the same experimental 

condition are averaged to obtain an ERP per condition and subject. While the selection of trials 

usually needs to be adapted to specific requirements of each experiment, we provide two functions 

that can facilitate this process. The first defines experimental factors across trials and the second 

averages across any of them. 

 eega_definefactors: This function creates a field, F, in the EEG structure that specifies 

different experimental factors. F is a cell array containing all the possible experimental 

factors. The values for each experimental factor are determined based on the information 

present within each epoch in EEG.epoch(i).(field of interest). 

 eega_avgdatabyfactors: This function averages across one or multiple of the factors 

previously defined.  

 

To obtain a summary of the preprocessing output for a group of subjects, we created a 

function that prints a table with the number of channels, samples, and epochs, the number of 

rejected and interpolated points, and the number of bad times, bad channels, and bad epochs. The 

table is created for some critical points during the pipeline: before epoching the data, before the 

rejection of bad epochs, and on the final stage. 

 eega_printsummary: This function takes all the files in a given folder adhering to a 

specific name and creates a summary report for them. 

 



Here we present the preprocessing reports obtained using APICE(3) for Datasets 1 and 2 before 

epoching. 

 

Table S1. Example of a preprocessing report. The summary table corresponds to Dataset 1 after artifacts detection 

and correction using APICE(3). Column 1 (Subject): subject name. Column 2 (Ch): number of channels. Column 3 

(Smpl): number of samples per epoch. Column 4 (Ep): number of epochs. Column 5 (BCT(%)): percentage of bad 

data computed as the number of bad data points relative to the total number of points (channels x samples x epochs). 

Column 6 (CCT(%)): percentage of interpolated data computed as the number of interpolated data points relative to 

the total number of points (channels x samples x epochs). Column 7 (BT(%)): percentage of bad times, computed as 

the number of bad times relative to the total number of time points (samples x epochs). Column 8 (BC(%)):  percentage 

of bad channels computed as the number of bad channels relative to the total channels (channels x epochs). 

Subject Ch Smpl Ep BCTx100 CCTx100 BTx100 BCx100 

Session 20180926 S02.set 128 474632 1 0.19 8.31 0.29 0 

Session 20180927 S03.set 128 473612 1 6.02 11.51 8.54 0 

Session 20180927 S04.set 128 473702 1 1.74 11.39 2.92 0 

Session 20180927 S05.set 128 475142 1 7.10 12.00 9.96 0 

Session 20181003 S06.set 128 473703 1 9.96 6.93 13.98 0 

Session 20181003 S07.set 128 473223 1 3.04 8.32 4.74 0 

Session 20181004 S08.set 128 473762 1 0.69 7.23 0.89 0 

Session 20181004 S09.set 128 473552 1 2.74 10.86 4.28 0 

Session 20181004 S10.set 128 474842 1 0.88 8.05 1.59 0 

Session 20181005 S11.set 128 473718 1 1.05 5.76 1.56 0 

Session 20181005 S13.set 128 475021 1 1.53 11.81 2.88 0 

Session 20181022 S14.set 128 476837 1 1.86 6.92 3.20 0 

Session 20181022 S15.set 128 473117 1 1.79 13.52 2.98 0 

Session 20181022 S16.set 128 474362 1 6.21 17.60 10.84 0 

Session 20181023 S18.set 128 472562 1 2.50 10.60 3.76 0 

Session 20181023 S20.set 128 474812 1 12.79 12.03 18.21 0 

Session 20181024 S21.set 128 475622 1 3.98 7.66 6.77 0 

Session 20181024 S22.set 128 473432 1 3.49 15.63 6.30 0 

Session 20181128 S23.set 128 473793 1 1.87 11.14 3.19 0 

Session 20181129 S24.set 128 473417 1 2.46 9.65 4.00 0 

Session 20181129 S25.set 128 473642 1 10.85 15.92 16.79 0 

Session 20181211 S29.set 128 473285 1 1.77 16.92 3.01 0 

Session 20181211 S30.set 128 474557 1 3.09 10.92 5.64 0 

Session 20181211 S31.set 128 473957 1 12.92 19.65 18.30 0 



 

Table S2. Example of a preprocessing report, analog to Table S1. The summary table corresponds to Dataset 2 after 

artifacts detection and correction using APICE(3).  

Subject Ch Smpl Ep BCTx100 CCTx100 BTx100 BCx100 

SLCat_test_04 128 447924 1 3.66 8.67 5.06 0 

SLCat_test_05 128 363156 1 4.12 18.61 5.49 0 

SLCat_test_06 128 246804 1 7.15 21.62 9.77 0 

SLCat_test_09 128 421924 1 2.71 20.52 4.19 0 

SLCat_test_10 128 361000 1 7.56 28.56 11.45 0 

SLCat_test_12 128 270476 1 30.40 29.93 43.93 0 

SLCat_test_14 128 404125 1 27.87 34.45 36.17 0 

SLCat_test_15 128 319828 1 23.35 35.47 32.93 0 

SLCat_test_16 128 340604 1 21.38 18.11 26.51 0 

SLCat_test_19 128 818724 1 29.15 36.41 41.36 0 

SLCat_test_24 128 315424 1 18.75 21.15 25.14 0 

SLCat_test_28 128 278088 1 1.88 25.42 1.93 0 

SLCat_test_30 128 260272 1 6.10 44.11 7.55 0 

SLCat_test_32 128 231316 1 7.86 22.00 12.39 0 

SLCat_test_34 128 259744 1 24.76 19.90 32.95 0 

SLCat_test_35 128 356780 1 8.32 25.53 13.27 0 

SLCat_test_36 128 374336 1 9.23 25.92 12.83 0 

SLCat_test_38 128 366024 1 6.27 24.36 8.38 0 

SLCat_test_39 128 341388 1 9.94 20.11 15.52 0 

SLCat_test_40 128 337004 1 12.64 18.02 17.25 0 

SLCat_test_41 128 298860 1 6.44 30.44 11.06 0 

SLCat_test_43 128 325968 1 6.69 22.01 9.50 0 

SLCat_test_44 128 281164 1 13.08 31.35 17.39 0 

SLCat_test_45 128 422608 1 4.40 23.58 7.45 0 

 

 

When preprocessing a dataset, a series of processes are sequentially applied to many files. We 

have created a function that sequentially applies a series of specified functions to a set of files. The 

function operates on all the specified files in an input folder and saves the final files in an output 

folder. 



 eega_RunAll: This function considers all the files adhering to a provided file name in a 

specified folder and saves the resulting EEGLAB structure in a specified output folder. 

The functions to apply and their parameters are provided to the function as a string, 

corresponding to the function name, followed by a cell array containing its inputs 

(excluding EEGLAB structure). It can run the functions for all the files found in the input 

folder or limit the output files that do not exist.  It can create the output name by 

concatenating a string provided as input with the input file name.    

 

APPENDIX F 

Grand average ERPs for the different pipelines 

The responses obtained using different pipelines were compared by running a one-sample t-test 

(FDR corrected by the number of samples) between each pair of preprocessing approaches. When 

significant differences were observed (p ≤ 0.05 FDR corrected), they were reported. Notice that 

the grand average ERP might appear different between two conditions, but the difference might 

not be significant because the effect is driven by a single (few) subject(s). Significant differences 

across pipelines denote a consistent difference across subjects.  

 



 

Figure S1. Grand average ERPs obtained using APICE with varying thresholds for artifact rejection. (A) Central 

electrodes (in red) considered for dataset 1. (B) Grand average ERP for the electrodes of interest for dataset 1. The 

peaks after the dotted lines (syllables’ onset) correspond to the auditory ERP following each syllable. The shaded area 

shows the time windows where the SME was computed (250-350 ms, peak of the auditory response to the last syllable 

of the epoch). No significant differences were observed between ERPs (p > 0.05, FDR corrected). (C) Occipital 

electrodes (in red) considered for dataset 2. (D) Grand average ERP for the electrodes of interest for dataset 2. The 

first two dotted lines indicate the onset of two images, and the third dotted line the appearance of the attention grabber. 

P1 and P400 are visible after the onset of the images, followed by the visual response to the attention grabber. The 

shaded area shows the time windows where the SME was computed (550-650 ms, P400 to the second image). The 

gray line shows where significant differences (p ≤ 0.05, FDR corrected) were observed between APICE(2) and 

APICE(4). No other significant differences were observed between ERPs (p > 0.05, FDR corrected). 

 



 

Figure S2. Grand average ERPs obtained using APICE and APICE variations. Analog to figure S1. (B) The blue line 

corresponding to APICE(3) is below the violet line corresponding to APICE(3)+W-ICA. No significant differences 

were observed between ERPs (p > 0.05, FDR corrected).  (D) The blue line corresponding to APICE(3) is below the 

green line corresponding to APICEa(3). The dark gray line shows where significant differences were observed 

between APICE(3) and APICE(3)+W-ICA, and the light gray line between APICE(3)  and APICE(3)+DSS (p ≤ 0.05, 

FDR corrected). No other significant differences were observed between ERPs (p > 0.05, FDR corrected). 

 

 



 

Figure S3. Grand average ERPs obtained using APICE(3), the Standard pipeline (STD), and MADE. Analog to figure 

S1. No significant differences were observed between ERPs (p > 0.05, FDR corrected). 

 

These results suggest that any preprocessing approach introduced no important biases. While 

APICE(3) shows a slightly higher amplitude ERPs than APICE(3)+W-ICA and APICE(3)+DSS, 

the effect is very small in magnitude. The effect is probably due to a slight reduction of the neural 

response due to the cleaning methods applied to the data. The fact that it reaches significance is 

not surprising given that the pipelines APICE(3)+W-ICA and APICE(3)+DSS only differ from 

APICE(3) in the addition of ICA/DSS. These methods reduce the variance in the data and therefore 

tend to consistently decrease the signal’s amplitude across subjects due to some reduction of the 

neural signal (Haresign, et al., 2021).  

 

MADE using different thresholds for rejection 



 

Figure S4. Comparison of APICE’s performance with the Standard pipeline (STD) and the MADE pipeline using 

different thresholds for rejection (500 μV, 200 μV, 150 μV) for dataset 1. The boxplot shows the median, 25 and 75 

percentiles, and the whiskers 1.5 interquartile ranges. The cross shows the mean and the error bar the standard error. 

(A) SME for dataset 1. (B) Retained epochs for dataset 1.  

 

 

Figure S5. Comparison of APICE’s performance with the Standard pipeline (STD) and the MADE pipeline using 

different thresholds for rejection (500 μV, 200 μV, 150 μV) for dataset 2. The boxplot shows the median, 25 and 75 

percentiles, and the whiskers 1.5 interquartile ranges. The cross shows the mean and the error bar the standard error. 

(A) SME for dataset 1. (B) Retained epochs for dataset 1.  
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