1 Supplementary File

Method 1

 $\mathbf{2}$

3

4	Hindlimb suspension
5	Rats in the HS and HS-OA groups were subjected to tail suspension for 4 weeks.
6	Hindlimb suspension was performed according to the tail-suspension method described
7	in our previous studies ^{1–3} . Briefly, under inhalation anesthesia with isoflurane, the tail of
8	each rat was disinfected. A sterile steel wire was then used to drill into the proximal
9	coccyx in which the wire remained and was shaped into a ring. The tail ring was then
10	connected to a track hung above the cage by using another wire, thereby enabling the
11	animals to move freely on their forelimbs in the cage. The head-down tilt angle was
12	monitored throughout the experimental period and remained at approximately $30^{\circ 4}$.
13	
14	Surgical induction of OA
15	The same highly experienced operators (IT and KT) performed all DMM surgeries.
16	The DMM was induced by transecting the medial meniscotibial ligament (MMTL) in
17	the left knee joint as described previously ^{5–7} . Anesthesia was induced via isoflurane

18 inhalation, and both knees were shaved and disinfected. Both knee joints were exposed

19	after making a 3-cm skin incision and a 1-cm medial capsular incision with a #15 blade
20	(Feather Safety Razor Co., Ltd., Osaka, Japan). When it was difficult to secure the
21	visual field because of bleeding, the bleeding was stopped by pressing the bleeding site
22	with a swab soaked with adrenaline (Bosmin solution; Daiichi Sankyo Co., Ltd., Tokyo,
23	Japan) ⁵ . While the patellar tendon and fat pad were pulled and shifted laterally with
24	forceps (without dislocating the patella), we confirmed that the MMTL was exposed.
25	Then, the MMTL was transected with a #15 blade, and with each surgical procedure, we
26	confirmed that the medial meniscus had displaced medially and that the instability had
27	been induced. After thoroughly washing the surgical site with saline, we closed the
28	articular capsule and skin incisions with 5-0 nylon (Akiyama Medical Manufacturing
29	Co., Ltd., Tokyo, Japan). For internal controls, a sham operation was performed on the
30	right knee joint by using the same approach without MMTL transection. A previous
31	study reported that there was no significant difference in OA severity between sham
32	operated and age-matched unoperated control joints ⁸ .

33

34 Histomorphometrical analyses

To evaluate the cartilage thickness, intensity of matrix staining with toluidine blue,
chondrocyte density, and osteophyte length, we used Adobe Photoshop CC imaging

 $\mathbf{2}$

37	software (Adobe Systems, Inc., San Jose, CA, USA) and measured these parameters ^{2,4,9} .
38	For evaluation of cartilage thickness, staining intensity and chondrocyte density in the
39	OA and HS-OA groups, 1 section with the highest OARSI score among 3 sections was
40	chosen. For evaluation of osteophyte length in the OA and HS-OA groups, 1 section
41	with the longest osteophyte among 3 sections was chosen.
42	To evaluate cartilage thickness, digitized images of the sections stained with toluidine
43	blue were used ¹⁻³ . The cartilage thickness was defined as the distance between the
44	cartilage surface and the osteochondral junction. We measured the area of the cartilage
45	with a width of 1 mm in the center of the lesion at the tibia in the medial tibiofemoral
46	joint and used this value as the average cartilage thickness. In the CON and HS groups,
47	we measured the area of the cartilage with a width of 1 mm in the center at the tibia in
48	the medial tibiofemoral joint.
49	To evaluate matrix intensity, digitized images of cartilage stained with toluidine blue
50	were converted to greyscale (white, 255; black, 0) to assess the relative intensity of
51	toluidine blue staining. The average staining intensity was calculated at the same area in
52	the same manner as performed for the measurement of articular cartilage thickness.
53	To evaluate chondrocyte density, digitized images of the sections stained hematoxylin
54	and eosin were used. Chondrocyte density was determined as the number of

55	chondrocytes per unit area of cartilage. This unit area was calculated by using the same
56	method as used for the above cartilage thickness, and the width to be measured was set
57	to 200 μ m. Chondrocytes with visible nuclei within the area of interest were counted
58	manually.
59	To evaluate osteophyte formation of the tibia in the medial tibiofemoral joint, we
60	used digitized images of sections stained with toluidine blue and measured the length
61	from the deepest point of its base at the chondro-osseous junction to the surface of the
62	overlying cartilage at its thickest point ¹⁰ .
63	
64	References
64 65	References 1. Takahashi I, Matsuzaki T, Kuroki H, Hoso M. Joint unloading inhibits articular
65	1. Takahashi I, Matsuzaki T, Kuroki H, Hoso M. Joint unloading inhibits articular
65 66	1. Takahashi I, Matsuzaki T, Kuroki H, Hoso M. Joint unloading inhibits articular cartilage degeneration in knee joints of a monosodium iodoacetate-induced rat model of
65 66 67	1. Takahashi I, Matsuzaki T, Kuroki H, Hoso M. Joint unloading inhibits articular cartilage degeneration in knee joints of a monosodium iodoacetate-induced rat model of osteoarthritis. <i>Osteoarthr Cartil</i> . 2019;27(7):1084-1093.
65 66 67 68	 Takahashi I, Matsuzaki T, Kuroki H, Hoso M. Joint unloading inhibits articular cartilage degeneration in knee joints of a monosodium iodoacetate-induced rat model of osteoarthritis. <i>Osteoarthr Cartil.</i> 2019;27(7):1084-1093. Takahashi I, Matsuzaki T, Kuroki H, Hoso M. Disuse histological changes of an
65 66 67 68 69	 Takahashi I, Matsuzaki T, Kuroki H, Hoso M. Joint unloading inhibits articular cartilage degeneration in knee joints of a monosodium iodoacetate-induced rat model of osteoarthritis. <i>Osteoarthr Cartil</i>. 2019;27(7):1084-1093. Takahashi I, Matsuzaki T, Kuroki H, Hoso M. Disuse histological changes of an unloading environment on joint components in rat knee joints. <i>Osteoarthr Cartil Open</i>.

73 Assoc. 2014;17(1):22-30.

74	4. Nomura M	l, Sakitani N, I	wasa	wa H	, Kohara Y, Ta	kano	o S, Wa	kimoto Y, Ku	ıroki H,
75	Moriyama H	Thinning of ar	ticula	ar car	tilage after joint	t unl	oading c	or immobiliza	tion. An
76	experimental	investigation	of	the	pathogenesis	in	mice.	Osteoarthr	Cartil.
77	2017;25(5):72	27-736.							

- 5. Glasson SS, Blanchet TJ, Morris EA. The surgical destabilization of the medial
 meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. *Osteoarthr Cartil.*2007;15(9):1061-1069.
- 81 6. Ulici V, Kelley KL, Azcarate-Peril MA, Cleveland RJ, Sartor RB, Schwartz TA,
- 82 Loeser RF. Osteoarthritis induced by destabilization of the medial meniscus is reduced
- in germ-free mice. Osteoarthr Cartil. 2018;26(8):1098-1109.
- 84 7. Iijima H, Aoyama T, Ito A, Tajino J, Nagai M, Zhang X, Yamaguchi S, Akiyama H,
- 85 Kuroki H. Destabilization of the medial meniscus leads to subchondral bone defects and
- 86 site-specific cartilage degeneration in an experimental rat model. Osteoarthr Cartil.
- 87 2014;22(7):1036-1043.
- 88 8. Loeser RF, Olex AL, McNulty MA, Carlson CS, Callahan MF, Ferguson CM, Chou J,
- 89 Leng X, Fetrow JS. Microarray analysis reveals age-related differences in gene
- 90 expression during the development of osteoarthritis in mice. Arthritis Rheum.

91 2012;64(3):705-717.

92	9. Iijima H, Aoyama T, Ito A, Tajino J, Nagai M, Zhang X, Yamaguchi S, Akiyama H,
93	Kuroki H. Immature articular cartilage and subchondral bone covered by menisci are
94	potentially susceptive to mechanical load. BMC Musculoskelet Disord. 2014;15:101.
95	10. Gerwin N, Bendele AM, Glasson S, Carlson CS. The OARSI histopathology
96	initiative-recommendations for histological assessments of osteoarthritis in the rat.
97	Osteoarthr Cartil. 2010;18(suppl 3):S24-S34.
98	
99	
100	
101	
102	
103	
104	
105	
106	
107	

109 Method 2

Grade	Description			
0	No changes.			
1	Increased basophilia at tidemark.			
	No fragmentation of tidemark.			
	No marrow changes or, if present, minimal and focal.			
	Increased thickening of subchondral bone subjacent to the area of greatest			
	articular cartilage lesion severity.			
	Increased basophilia at tidemark.			
	Minimal to mild focal fragmentation of calcified cartilage of tidemark.			
2	Mesenchymal change in marrow (fibroblastic cells) involving approximately			
2	1/4 of the subchondral region under the lesion.			
	Increased thickening of subchondral bone subjacent to the area of greatest			
	articular cartilage lesion severity.			
	Increased basophilia at tidemark.			
	Mild to marked fragmentation (multiple larger areas) of calcified			
2	cartilage/subchondral bone loss Mesenchymal change in marrow in up to 3/4			
3	of the total area.			
	Areas of marrow chondrogenesis may be evident but no major collapse of			
	articular cartilage into epiphyseal bone (definite depression in the surface).			
1	Increased basophilia at tidemark.			
4	Marked to severe fragmentation of calcified cartilage.			

		Marrow mesenchymal change involves up to 3/4 of the area.				
		Articular cartilage has collapsed into the epiphysis to a depth of $\leq 250 \text{ mm}$				
	from the tidemark (see definite depression in the surface cartilage).					
		Increased basophilia at the tidemark.				
		Marked to severe fragmentation of calcified cartilage.				
	5	Marrow mesenchymal change involves up to 3/4 of the area.				
		Articular cartilage has collapsed into the epiphysis to a depth of >250 mm				
		from the tidemark.				
110	Calcifie	ed cartilage and subchondral bone damage score				
111						
110						
112						
113						
114						
115						
115						
116						
117						
118						
110						
119						
120						
121						

122 Result 1. Changes in the body weights (g) of the rats throughout the experiment

	CON group	HS group
A to an a start	284.6 ± 5.8	287.2 ± 10.4
At experiment start	(277.3–291.8)	(274.1–300.2)
A. (A 1	$410.0\pm15.0\texttt{*}$	$344.6 \pm 19.5*$ †
At 4 weeks	(391.2–428.7)	(320.2–368.9)

123 **Preliminary study of cartilage atrophy under the unloading condition.**

124

125 At 2 weeks

	OA group	HS-OA group
	421.0 ± 14.3	359.8 ± 13.6‡
At DMM	(403.1–438.8)	(342.8–376.7)
	431.6 ± 17.3	376.8 ± 12.5‡
At 2 weeks	(410.1–453.0)	(361.8–392.4)

126

127 At 4 weeks

	OA group	HS-OA group
	378.4 ± 10.9	$330.4 \pm 14.3 \ddagger$
At DMM	(364.8–391.9)	(312.5–348.2)
	429.0 ± 21.2	403.4 ± 16.4
At 4 weeks	(402.5–455.4)	(383.0-423.7)

128 * Significant differences from baseline for the same group.

129	Ť	Significant differences from CON group at the same experimental period.
130	‡	Significant differences from OA group at the same experimental period.
131	<i>P</i> <	< .05 for all.
132		
133		
134		
135		
136		
137		
138		
139		
140		
141		
142		
143		
144		
145		
146		

Result 2. Cartilage atrophy

	CON group	HS group
At 4 weeks	395.1 ± 21.0	$355.0\pm19.7*$
At 4 weeks	(380.1–410.1)	(340.9–369.2)

148 Thickness of the articular cartilage (µm)

150 Matrix staining by toluidine blue (pixel value)

	CON group	HS group
At 4 weeks	42.8 ± 11.0	$61.2 \pm 8.5*$
	(34.9–50.7)	(55.1–67.3)

151 Mean \pm SD (95% CI)

152 * Significant differences from CON group at the same experimental period.

160 **Result 3. Histological scores**

161 Maximum OARSI score

	OA group	HS-OA group
At 2 weeks	4 (3–7.5)	6 (6–10.5)
At 4 weeks	8 (6–9)	16 (14–16) *
At 8 weeks	12 (10.5–12)	16 (12–16) *

162

_

163 Summed OARSI score

	OA group	HS-OA group
At 2 weeks	8 (5.5–11)	12 (10.5–15) *
At 4 weeks	17 (15.5–19)	22 (20–25) *
At 8 weeks	20 (17.5–26)	36 (29–40) *

164

165 Subchondral bone damage score

	OA group	HS-OA group
At 2 weeks	0 (0-0)	0 (0–0)
At 4 weeks	0 (0–1)	0 (0–1)
At 8 weeks	1(0–1)	2(1-2.5) *

166 Median (lower quartile–upper quartile)

167 * Significant differences from Con group during the same experimental period.

168 P < .05 for all.

169 Supplementary Result 4. Histomorphometrical analyses

170 Cartilage thickness (μm)

	OA group		HS-OA group	
	Operated Sham		Operated	Sham
	332.7 ± 27.2	428.0 ± 30.0 **	264.6 ± 18.7*	$424.8 \pm 32.4 **$
At 2 weeks	(298.9–366.5)	(390.7–465.4)	(241.3–287.9)	(384.6–465.1)
At 4 weeks	253.2 ± 39.7	391.1 ± 33.3**	249.9 ± 48.3	397.7 ± 10.4**
	(203.9–302.6)	(349.7–432.5)	(189.9–309.9)	(384.7–410.7)
At 8 weeks	261.1 ± 46.3	360.7 ± 34.4**	233.6 ± 27.9	385.2 ± 17.0**
	(203.5–318.6)	(317.9–403.5)	(198.8–268.3)	(364.0–406.3)

171

172 Matrix intensity (pixel value)

	OA group		HS-OA group	
	Operated	Sham	Operated	Sham
A + 21	44.5 ± 17.6	40.3 ± 9.0	$65.3 \pm 9.2*$	42.8 ± 2.0 **
At 2 weeks	(22.6–66.4)	(29.1–51.5)	(53.9–76.8)	(40.3–45.4)
At 4 weeks	71.1 ± 25.6	41.1 ± 10.5**	83.7 ± 13.5	$35.9 \pm 7.5 **$
	(39.3–103.0)	(28.0–54.3)	(66.9–100.5)	(26.5–45.4)
At 8 weeks	70.4 ± 13.3	$37.0\pm5.5^{\boldsymbol{**}}$	78.9 ± 24.4	$34.0\pm4.4^{\boldsymbol{**}}$
	(53.9–87.0)	(30.1–43.9)	(48.5–109.3)	(28.4–39.6)

173

	OA group		HS-OA group	
	Operated	Sham	Operated	Sham
At 2	869.2 ± 92.4	1150.6 ± 186.1**	616.7 ± 59.3*	1062.5 ± 57.1**
weeks	(754.4–984.1)	(919.5–1381.7)	(542.9–690.4)	(991.5–1133.4)
At 4	679.5 ± 160.8	1016.6 ± 98.8**	741.3 ± 169.0	1131.9 ± 88.5**
weeks	(479.8–879.2)	(893.9–1139.4)	(531.4–951.2)	(1022.0–1241.8)
At 8	670.9 ± 88.2	1120.6 ± 146.6**	555.8 ± 84.4	1155.1 ± 99.4**
weeks	(561.2–780.5)	(938.5–1302.8)	(451.0–660.7)	(1031.7–1278.6)

175 **Chondrocyte density (cells/mm²)**

176

177 **Osteophyte length (μm)**

	OA group		HS-OA group	
	Operated	Sham	Operated	Sham
At 2 weeks	317.3 ± 76.8	181.5 ± 13.9 **	252.1 ± 52.6	164.7 ± 26.4
	(221.8–412.7)	(164.1–198.8)	(186.7–317.5)	(131.8–197.5)
At 4 weeks	350.6 ± 55.4	$201.8\pm20.9^{\boldsymbol{**}}$	325.0 ± 31.9	215.1 ± 14.4**
	(281.8–419.4)	(175.8–227.9)	(285.4–364.6)	(197.2–233.0)
At 8 weeks	456.5 ± 73.1	176.4 ± 25.7**	412.7 ± 107.2	155.5 ± 18.4**
	(365.6–547.4)	(144.4–208.4)	(279.6–545.9)	(132.6–178.4)

178 Mean \pm SD (95% CI)

179 * Significant differences from OA group during the same experimental period.

180 ** Significant differences from operated limb of the same group during the same

- 181 experimental period.
- *P* < .05 for all.