APPENDIX

Bacteria elicit a phage tolerance response subsequent to infection of their neighbors

Elhanan Tzipilevich^{1,2*}, Osher Pollak-Fiyaksel^{1*} Bushraa Shraiteh¹, Sigal Ben-Yehuda^{1,3}

¹Department of Microbiology and Molecular Genetics Institute for Medical Research Israel-Canada (IMRIC) The Hebrew University-Hadassah Medical School, POB 12272 The Hebrew University of Jerusalem, 91120 Jerusalem, Israel.

² Current address: Department of Biology and Howard Hughes Medical Institute, Duke University, Durham, North Carolina, USA

³To whom correspondence should be addressed. E-mail: <u>sigalb@ekmd.huji.ac.il</u> (S. B-Y)

* These authors contributed equally to this work

TABLE OF CONTENT

Appendix Figures S1. $\Delta sigX$ cells are highly sensitive to infection **Appendix Figures S2.** SigX is activated in response to phage infection **Appendix Figures S3.** Efficient plaque constriction requires DltA

Appendix Table S1. List of bacterial strains and phages used in this study **Appendix Table S2.** List of primers used in this study

Supplementary Figures

Appendix Figure S1

Appendix Figure S1. *∆sigX* cells are highly sensitive to infection

(A) PY79 (WT) and ET19 ($\Delta sigX$) cells were infected with Phi29 (10⁻⁶ PFU/ml), spread over MB agar plates, and plaque diameter was monitored after 20 hrs of incubation. Shown is plaque diameter distribution for each strain (n \geq 120).

(**B**) PY79 (WT) and ET19 ($\Delta sigX$) strains were grown in LB liquid medium and OD_{600nm} monitored. Shown are average values and SD of 3 biological repeats.

(C) PY79 (WT) and ET19 ($\Delta sigX$) cells were infected with Phi29 at either high (phages:bacteria 1:1) or low (phages:bacteria 1:20) MOI, and OD_{600nm} was followed at 5 min intervals. Shown is a representative experiment out of 3 biological repeats, and average values and SD of 6 technical repeats.

(**D**) PY79 (WT), ET19 ($\Delta sigX$) and OF211 ($\Delta sigX$, P_{IPTG}-sigX) cells were infected with SPP1 at low (phages:bacteria 1:20) MOI, and OD_{600nm} was followed at 2 min intervals. Complementation was apparent even without IPTG addition, due to low promoter activity. Shown is a representative experiment out of 2 biological repeats, and the average values and SD of 3 technical repeats.

(E) PY79 (WT), ET19 ($\Delta sigX$) and ET26 (P_{sigX} -sigX-gfp) cells were infected with SPP1 at low (phages:bacteria 1:20) MOI, and OD_{600nm} was followed at 2 min intervals. SigX-GFP is functional and appears more stable than the native protein as in provides higher phage tolerance in comparison to the WT. Shown is a representative experiment out of 2 biological repeats, and the average values and SD of 3 technical repeats.

Appendix Figure S2

Figure S2. SigX is activated in response to phage infection

(A) Quantification of the images presented in Fig 2E at the indicated time points. Fluorescence intensity (AU) of the plaque formed by phages infecting a mixture of BDR2637 (P_{veg} -*mCherry*) (WT, purple) and ET191 (P_{rmE} -*gfp*, $\Delta sigX$) ($\Delta sigX$, cyan) cells. Fluorescence from Z sections that include the plaque region and flanking area was measured.

(**B**) Quantification of the images presented in Fig 2F at the indicated time points. Fluorescence intensity (AU) of the plaque formed by phages infecting ET27 (P_{sigX} -*gfp*) cells. Fluorescence from Z sections that include the plaque region and flanking area was measured.

(C) ET191 (P_{rrnE} -gfp, $\Delta sigX$) cells were mixed with PY79 (WT) or with ET19 ($\Delta sigX$), and fluorescence intensity from P_{rrnE} -gfp (AU) was followed at 2.5 min intervals. Shown is a representative experiment out of 3 biological repeats, and the average values and SD of 3 technical repeats.

Appendix Figure S3

Appendix Figure S3. Efficient plaque constriction requires DltA

(A) Quantification of the images presented in Fig 5F at the indicated time points. Fluorescence intensity (AU) of the plaque formed by phages infecting a mixture of AR16 (P_{rmE} -gfp) (WT, cyan) and ET411 (P_{veg} -mCherry, $\Delta dltA$) ($\Delta dltA$, purple) cells. Fluorescence from Z sections that include the plaque region and flanking area was measured.

(**B**) Quantification of the images presented in Fig 5G at the indicated time points. Fluorescence intensity (AU) of the plaque formed by phages infecting ET43 (*dltA-yfp*) cells. Fluorescence from Z sections that include the plaque region and surrounding area was measured.

Strain Name	Genotype	Source
E. coli		
pET2	amyE::promoter less gfp- cm	Constructed by amplifying the <i>gfpmut2</i> gene from pKL147 (Lemon & Grossman, 1998), by PCR using primers <i>BamH1-Not1-gfp-U</i> and <i>gfp-EcoRI-L</i> . The PCR-amplified DNA was digested with <i>BamHI</i> and <i>EcoRI</i> and was cloned into pDG364 (BGSC) digested with the same enzymes.
pET26	amyE::P _{sigX} -sigX-gfp-cm	Constructed by amplifying the <i>sigX</i> ORF with 200 bp upstream of the start codon from gDNA of <i>B. subtilis</i> strain (PY79), using primers <i>PsigX</i> -U- <i>BamH</i> I and <i>sigX-L-Not</i> I. The PCR-amplified DNA was digested with <i>BamH</i> I and <i>Not</i> I and was cloned into pET2 digested with the same enzymes.
pET27	amyE::P _{sigX} -gfp-cm	Constructed by amplifying 200 bp upstream of the start codon of <i>sigX</i> from gDNA of <i>B. subtilis</i> strain (PY79), using primers <i>PsigX</i> -U- <i>BamH</i> I and <i>PsigX-L</i> - <i>Not</i> I. The PCR-amplified DNA was digested with <i>BamH</i> I and <i>Not</i> I and was cloned into pET2 digested with the same enzymes.
pET28	amyE::P _{hyper-spank} -sigX-spc	Constructed by amplifying the <i>sigX</i> from gDNA of <i>B</i> . <i>subtilis</i> strain (PY79), using primers <i>sigX</i> -U- <i>Sal</i> I and <i>sigX-L-Nhe</i> I. The PCR-amplified DNA was digested with <i>Sal</i> I and <i>Nhe</i> I and was cloned into pDR111 digested with the same enzymes.
pET29	thrC::P _{hyper-spank} -sigX-mls	Constructed by amplifying the <i>sigX</i> from gDNA of <i>B</i> . <i>subtilis</i> strain (PY79), using primers <i>sigX</i> -U- <i>Sal</i> I and <i>sigX-L-Nhe</i> I. The PCR-amplified DNA was digested with <i>Sal</i> I and <i>Nhe</i> I and was cloned into pDG1743 digested with the same enzymes.
pET43	dltA::dltA-yfp-spc	Constructed by amplifying the <i>C- terminus</i> of <i>dltA</i> from gDNA of <i>B. subtilis</i> strain (PY79), using primers <i>dltA-Mfe</i> I-U and <i>dltA-Xho</i> I-L. The PCR-amplified DNA was digested with <i>Mfe</i> I and <i>Xho</i> I and was cloned into pKL147 digested with <i>EcoR</i> I and <i>Xho</i> I
pET72	amyE::P _{xyl} -dltABCDE-spc	Constructed by amplifying the dlt operon from gDNA of B. subtilis strain (PY79), using primers dltA-U-SalI and dltE-L-NheI. The PCR-amplified DNA was digested with SalI and NheI and was cloned into pDR160 digested with the same enzymes.

Appendix Table S1. List of bacterial strains and phages used in this study

B. subtilis		
PY79	B. subtilis	Wild type (Youngman et al., 1984).
AR16	amyE::PrrnE-gfp-spc	Lab stock (Rosenberg et al., 2012).
BDR2637	sacA::Pveg-mCherry-phleo	Kindly provided by Prof. David Rudner (Harvard university)
BS1	thrC::P _{hyper} -spank-sigX- mls	Constructed by transforming gDNA from ET29 into PY79.
BS4	amyE::P _{sigX} -gfp-cm	Constructed by transforming the gDNA of ET27 into PY79.
BS12	amyE::P _{sigX} -gfp-cm ДуиеВ::tet	Constructed by transforming the gDNA of BS4 into ET6.
OF83	thrC::P _{pen} -lacI∆11-cfp- mls	Constructed by transforming gDNA from GSY1000 (Jakutyte et al., 2011) (Kindly provided by Prof. Paulo Tavares, CNRS, Gif-sur-Yvette) into PY79.
OF132	∆spx::cm	Constructed using Gibson assembly kit (NEB, USA) utilizing primers <i>spx::cm</i> -P1-P4 and transforming into PY79.
OF211	∆sigX::kan amyE::P _{hyper-spank} -sigX- spc	Constructed by transforming gDNA from ET19 into OF28.
ET9	amyE::P _{xyl} -gfp- gp8(phi29)-cm	Lab stock (Tzipilevich et al., 2017).
ET18	∆sigW∷kan	Constructed using Gibson assembly kit (NEB, USA) utilizing primers <i>sigW::kan</i> -P1-P4 and transforming into PY79.
ET19	∆sigX::kan	Constructed using Gibson assembly kit (NEB, USA) utilizing primers <i>sigX::kan</i> -P1-P4 and transforming into PY79.
ET20	∆sigY∷mls	Constructed by transforming gDNA from HB10108 (Mascher et al., 2007) (Kindly provided by Prof. John Helmann, Cornell University) into PY79.
ET21	∆sigZ::kan	Constructed by transforming gDNA from HB10109 (Mascher et al., 2007) (Kindly provided by Prof. John Helmann, Cornell University) into PY79.
ET22	∆sigV::cm sacA::P _{veg} -mCherry-phleo	Constructed using Gibson assembly kit (NEB, USA) utilizing primers <i>sigV::cm</i> -P1-P4 and transforming into BDR2637.
ET23	∆sigM∷kan sacA::P _{veg} -mCherry-phleo	Constructed using Gibson assembly kit (NEB, USA) utilizing primers <i>sigM::kan</i> -P1-P4 and transforming into BDR2637.

ET24	∆ylaC::spec	Constructed by transforming gDNA from HB10233 (Mascher et al., 2007) (Kindly provided by Prof. John Helmann, Cornell University) into PY79.
ET26	amyE::P _{sigX} -sigX-gfp-cm	Constructed by transforming pET26 into PY79.
ET27	amyE::P _{sigX} -gfp-cm, sacA::P _{veg} -mCherry-phleo	Constructed by transforming pET27 into BDR2637.
ET28	amyE::P _{hyper-spank} -sigX-spc	Constructed by transforming pET28 into PY79.
ET29	thrC::P _{hyper-spank} -sigX-mls sacA::P _{veg} -mCherry-phleo	Constructed by transforming pET29 into BDR2637.
ET40	thrC::P _{pen} -lacIA11-cfp- mls, amyE::P _{hyper-spank} -sigX-spc	Constructed by transforming gDNA from ET28 into OF83.
ET41	∆dltA∷cm	Constructed using Gibson assembly kit (NEB, USA) utilizing primers <i>dltA::cm</i> -P1-P4 and transforming into PY79.
ET42	∆dltA∷cm, amyE::P _{hyper-spank} -sigX- spc.	Constructed by transforming gDNA from ET41 into ET28.
ET43	<i>dltA::dltA-yfp-spc,</i> <i>sacA::</i> P _{veg} -mCherry-phleo	Constructed by transforming pET43 into BDR2637.
ET44	amyE::P _{xyl} -gfp- gp8(phi29)-cm, thrC::P _{hyper-spank} -sigX-mls, sacA::P _{veg} -mCherry-Phleo	Constructed by sequential transformation of gDNA from ET9 into ET29.
ET47	yceCDEFGH::cm, sacA::P _{veg} -mCherry-phleo	Constructed using Gibson assembly kit (NEB, USA) utilizing primers <i>yceCDEFGH::cm</i> -P1-P4 and transforming into BDR2637.
ET48	yrhH::cm, sacA::P _{veg} -mCherry-phleo	Constructed using Gibson assembly kit (NEB, USA) utilizing primers <i>yrhH::cm</i> -P1-P4 and transforming into BDR2637.
ET49	yabMNOPQ::cm. sacA::P _{veg} -mCherry-phleo	Constructed using Gibson assembly kit (NEB, USA) utilizing primers <i>yabMNOPQ::cm</i> -P1-P4 and transforming into BDR2637.
ET50	ywbO::cm, sacA::P _{veg} -mCherry-phleo	Constructed using Gibson assembly kit (NEB, USA) utilizing primers <i>ywbO::cm</i> -P1-P4 and transforming into BDR2637.
ET52	csbB::kan	Constructed using Gibson assembly kit (NEB, USA) utilizing primers <i>csbB::kan</i> -P1-P4 and transforming into PY79.
ET53	pssA::mls sacA::P _{veg} -mCherry-Phleo	Constructed using Gibson assembly kit (NEB, USA) utilizing primers <i>pssA::mls</i> -P1-P4, and transforming into BDR2637.

		Constructed using Gibson assembly kit (NEB, USA)
ET54	bcrC::cm	utilizing primers <i>bcrC::cm</i> -P1-P4, and transforming
		into PY79.
		Constructed using Gibson assembly kit (NEB, USA)
ET55	ywnJ::cm	utilizing primers <i>ywnJ::cm</i> -P1-P4, and transforming
		into PY79.
		Constructed using Gibson assembly kit (NEB, USA)
ET56	tagU::cm	utilizing primers <i>tagU::mls</i> -P1-P4, and transforming
		into PY79.
ET58	abh::mls sacA::P _{veg} -mCherry-Phleo	Constructed using Gibson assembly kit (NEB,
		FUSA) utilizing primers abh::mls-P1-P4 , and
		transforming into BDR2637.
		Constructed using Gibson assembly kit (NEB, USA)
ET59	fatR-yrhJ::mls	utilizing primers <i>fatR-yrhJ::mls</i> -P1-P4 and
		transforming into PY79.
FT191	∆sigX::kan,	Constructed by transforming gDNA from ET19 into
	<i>amyE</i> ::P _{rrnE} -gfp-spc.	AR16.
ET261	∆yueB∷tet,	Constructed by transforming gDNA from ET26 into
L1201	amyE::P _{sigX} -sigX-gfp-cm.	ET6 (Tzipilevich et al., 2017).
ET411	$\Delta dltA::cm,$	Constructed by transforming gDNA from ET41 into
	<i>sacA::</i> P _{veg} -mCherry-phleo	BDR2637.
	yceCDEFGH::cm,	Constructed using Gibson assembly kit (NEB, USA)
ET471	amyE::Phyper-spank-sigX-	utilizing primers <i>yceCDEFGH::cm</i> -P1-P4 and
	spc,	transforming into ET28.
	yrhH::cm,	
ET481	amyE::Phyper-spank-sigX-	Constructed by transforming gDNA from ET48 into
	spc,	ET28.
	sacA::P _{veg} -mCherry-phleo	
	yabMNOPQ::cm,	
ET491	amyE::Phyper-spank-sigX-	Constructed by transforming gDNA from ET49 into
	spc,	ET28.
	sacA::P _{veg} -mCherry-phleo	
	ywbO::mls,	
ET501	amyE::P _{hyper-spank} -sigX-	Constructed by transforming gDNA from ET50 into
	spc,	E128.
	sacA::P _{veg} -mCherry-phleo	
	csbB::kan,	Constructed by transforming gDNA from ET52 into
E1521	$amyE::P_{hyper-spank}$ - $sigX$ -	ET28.
	spc	
ET531	pssA::mls,	Constructed by transforming gDNA from ET53 into
	amyE::P _{hyper-spank} -sigX-spc	
ET541	bcrC::cm,	Constructed by transforming gDNA from ET54 into
	amyE::P _{hyper-spank} -sigX-spc	E128.

ET551	ywnJ::cm,	Constructed by transforming gDNA from ET55 into
E1331	amyE::Phyper-spank-sigX-spc	ET28.
ET561	tagU::cm,	Constructed by transforming gDNA from ET56 into
E1301	amyE::Phyper-spank-sigX-spc	ET28.
ET571	spx::cm,	Constructed by transforming gDNA from OF132 into
E13/1	amyE::P _{hyper-spank} -sigX-spc	ET28.
	abh::mls ,	
ET591	amyE::Phyper-spank-sigX-	Constructed by transforming gDNA from ET58 into
E1301	spc,	ET28.
	sacA::Pveg-mCherry-Phleo	
	fatR-yrhJ::mls,	Constructed by transforming gDNA from ET50 into
ET591	$amyE::P_{hyper-spank}-sigX$ –	ET29
	spc	L120.
ET72	amyE::P _{xyl} -dltABCDE-spc	Constructed by transforming pET72 into PY79.
Phages		
SDD1	Wild type P subtilis phage	Kindly provided by the Bacillus Genetic Stock
5111	who type <i>D</i> . <i>subtitis</i> phage	Center, BGCID 1P7.
SPP1-lysin-yfp	gp51::gp51-yfp	Described previously (Tzipilevich et al., 2017).
SPP1-	dol¥1101ac064	Kindly provided by Prof. Paulo Tavares (Gif-sur-
delX110lacO64	ueiA11010C004	Yvette, France).
Dhi20	Wild type P subtilis phase	Kindly provided by the Bacillus Genetic Stock
F 11127	who type <i>D</i> . <i>subtitis</i> phage	Center, BGCID 1P19.

Appendix Table S2. List of primers used in this study

Primer Name	Primer Sequence (5'-3')
∆sigW::kan-P1	GCCAGTGCCTCCTATGATTTCTGCG
∆sigW:kan-P2	CTGAGCGAGGGAGCAGAAATTTATCTAACCTCTGCCTTCACCGG
∆sigW::kan-P3	GTTGACCAGTGCTCCCTGGTGGGGTGATGAAATGAGCTG
∆sigW::kan-P4	TCCATCAGCCATTGAAGTGTGCTGAG
∆sigX::kan-P1	TGACGCTTCAAGGCAGATCATGGGT
∆sigX::kan-P2	CTGAGCGAGGGAGCAGAATTGAAACCCCTCCGTTCACTTTTTGTCG
∆sigX::kan-P3	GTTGACCAGTGCTCCCTGAGACCATCGTTCGCCTCAGGATATT TACAA
∆sigX:kan-P4	TGCATCTGATATGTCATATTTGCCGA
∆sigM::kan-P1	GATCCATCTGACAGCCAAGTGAATCAC
∆sigM::kan-P2	CTGAGCGAGGGAGCAGAATGCCTTTTCTCCCCCTCTATGTTATAC
∆sigM::kan-P3	GTTGACCAGTGCTCCCTG GATCCATCTG ACAGCCAAGT GAATCAC
∆sigM::kan-P4	CTGGATTTCCTTGGTTGGCCCTGTAAC
∆sigV::cm-P1	ACCTCAATTTTACAGAATATGAATCGAAAGC
∆sigV::cm-P2	CTGAGCGAGGGAGCAGAATGCAATAAAGGGCTCCTTTTTGAATATACG
∆sigV::cm-P3	GTTGACCAGTGCTCCCTGTGGATAAGAGAGTTACAGCA ATTAAGAGAAGAAT
∆sigV::cm-P4	ATGTATCGATGATGCTGTGTCTTGTGATAC
sigX-U-SalI	TAGGTCGACAAAGGAGGTGAAATGTACAC ATGGAAGAAACCTTTCAATTATTATATG
sigX-L-NheI	TAGGCTAGCTTAACTGCCGGAAGTTGACTTAACAAC
$\Delta dltA::cm-P1$	CCAGCTGCTGGCACAAATATAGACA
$\Delta dltA::cm-P2$	CTGAGCGAGGGAGCAGAAAGTTATTCTCTCTCCCAATTAGAAATCGTTA
$\Delta dltA::cm-P3$	GTTGACCAGTGCTCCCTGATAAAGAATAAAAACGAGCTGTAAGGCG
$\Delta dltA::cm-P4$	ATATATTGCGGCGCGAGCCCGTGC
dltA-MfeI-U	TAGCAATTGCATGCGGACACATTTATGTTTTGCGGA
dltA-XhoI-L	TAGCTCGAGTACAAGAACCTCTTCGCCAATGCG
∆yceC∷cm-P1	CTGCCTCTTCATCTGTTTTTGCGC
∆yceC::cm-P2	CTGAGCGAGGGAGCAGAAACGATTCACTCCTACTCATCAAAATGTGAA
⊿усеН∷ст-Р3	GTTGACCAGTGCTCCCTGTAAAAACCCCCGCTTGTGGAACATAAGCG
∆yceH∷cm-P4	GCTTCCTGCTGTGCCAATCAAGTAA
∆yrhH∷cm-P1	ATTTTTAGAAAAAGATGTTTACAAAATGGA

∆yrhH∷cm-P2	CTGAGCGAGGGAGCAGAATTTAAACACCTGCTTTTGGTTTCCTATGTT
∆yrhH∷cm-P3	GTTGACCAGTGCTCCCTGAAAATTTCTCGGGAAATATATCCAAGATC
∆yrhH∷cm-P4	GTGGCCGGACACAAAAACACTGGATA
∆yabM∷cm-P1	AGACAAATCGGACTGGGAATGGAAGGG
∆yabM∷cm-P2	CTGAGCGAGGGAGCAGAACCAAAAGCTCCTTCCCAACGTCAGGGGC
∆yabQ∷cm-P3	GTTGACCAGTGCTCCCTGAAGGAGGACCGTCTGGTTTGAA
∆yabQ∷cm-P4	CAAAGGTTTGTCTCTTTCGTCAACAG
∆ywbO∷cm-P1	TGAAAAGCAGGGAGGCGGGGACATCTGC
∆ywbO∷cm-P2	CTGAGCGAGGGAGCAGAAGATAATCTCCTTTCATACTAAATTG
∆ywbO∷cm-P3	GTTGACCAGTGCTCCCTGGGAAAAAGCTCTCGATAAAGAGAGCTT
∆ywbO∷cm-P4	GATTTCGATTATCGTGTTTTCGAAATTC
$\Delta csbB::kan-P1$	CTCCATGGATTTCCTGAGTTTTGGTACGG
$\Delta csbB::kan-P2$	CTGAGCGAGGGAGCAGAATAAGGCACCTTCTTTTATTATTCTTTTAAG
$\Delta csbB::kan-P3$	GTTGACCAGTGCTCCCTGAAATACCAAGCGCCATTGGCAGTGCTTTTT TTGC
$\Delta csbB::kan-P4$	CACACGGTTTTTGTAAAAAGAAATAATAAAC
$\Delta pssA::mls-Pl$	GATTGAGTCGGAAGCATTCTATGTTTC
∆pssA∷mls-P2	CTGAGCGAGGGAGCAGAAAGTGTAACCAAACCTCCAATTG
ΔpssA::mls-P2 ΔpssA::mls-P3	CTGAGCGAGGGAGCAGAAAGTGTAACCAAACCTCCAATTG GTTGACCAGTGCTCCCTGTTCAGCAGCTCATAGCGGATTACGGT
ΔpssA::mls-P2 ΔpssA::mls-P3 ΔpssA::mls-P4	CTGAGCGAGGGAGCAGAAAGTGTAACCAAACCTCCAATTG GTTGACCAGTGCTCCCTGTTCAGCAGCTCATAGCGGATTACGGT CATCTTTCCCGTATTTTAAGCC
ΔpssA::mls-P2 ΔpssA::mls-P3 ΔpssA::mls-P4 ΔbcrC::cm-P1	CTGAGCGAGGGAGCAGAAAGTGTAACCAAACCTCCAATTG GTTGACCAGTGCTCCCTGTTCAGCAGCTCATAGCGGATTACGGT CATCTTTCCCGTATTTTAAGCC TGCTCGGAGCGGTATCTGGGGGCAATCGCC
ΔpssA::mls-P2 ΔpssA::mls-P3 ΔpssA::mls-P4 ΔbcrC::cm-P1 ΔbcrC::cm-P2	CTGAGCGAGGGAGCAGAAAGTGTAACCAAACCTCCAATTGGTTGACCAGTGCTCCCTGTTCAGCAGCTCATAGCGGATTACGGTCATCTTTCCCGTATTTTAAGCCTGCTCGGAGCGGTATCTGGGGGCAATCGCCCTGAGCGAGGGAGCAGAAATAATCACCTTTTACATTTTATATTTAG
ΔpssA::mls-P2 ΔpssA::mls-P3 ΔpssA::mls-P4 ΔbcrC::cm-P1 ΔbcrC::cm-P2 ΔbcrC::cm-P3	CTGAGCGAGGGAGCAGAAAGTGTAACCAAACCTCCAATTGGTTGACCAGTGCTCCCTGTTCAGCAGCTCATAGCGGATTACGGTCATCTTTCCCGTATTTTAAGCCTGCTCGGAGCGGTATCTGGGGGCAATCGCCCTGAGCGAGGGAGCAGAAATAATCACCTTTTACATTTTATATTTAGGTTGACCAGTGCTCCCTGGAAAGACAAAAGCCGGCGTCTGAAATCA AGAC
ΔpssA::mls-P2 ΔpssA::mls-P3 ΔpssA::mls-P4 ΔbcrC::cm-P1 ΔbcrC::cm-P2 ΔbcrC::cm-P3 ΔbcrC::cm-P4	CTGAGCGAGGGAGCAGAAAGTGTAACCAAACCTCCAATTGGTTGACCAGTGCTCCCTGTTCAGCAGCTCATAGCGGATTACGGTCATCTTTCCCGTATTTTAAGCCTGCTCGGAGCGGTATCTGGGGGCAATCGCCCTGAGCGAGGGAGCAGAAATAATCACCTTTTACATTTTATATTTAGGTTGACCAGTGCTCCCTGGAAAGACAAAAGCCGGCGTCTGAAATCA AGACTGTTAAAGCTGAAAAAGATCCAGTGCTGGGAG
ДрssA::mls-P2ДрssA::mls-P3ДрssA::mls-P4ДbcrC::cm-P1ДbcrC::cm-P2ДbcrC::cm-P3ДbcrC::cm-P4ДуwnJ::cm-P1	CTGAGCGAGGGAGCAGAAAGTGTAACCAAACCTCCAATTGGTTGACCAGTGCTCCCTGTTCAGCAGCTCATAGCGGATTACGGTCATCTTTCCCGTATTTTAAGCCTGCTCGGAGCGGTATCTGGGGGCAATCGCCCTGAGCGAGGGAGCAGAAATAATCACCTTTTACATTTTATATTTAGGTTGACCAGTGCTCCCTGGAAAGACAAAAGCCGGCGTCTGAAATCA AGACTGTTAAAGCTGAAAAAGATCCAGTGCTGGGAGCAGAAAAGTGTTCAGAATGTTGCTGAGG
ДрssA::mls-P2ДрssA::mls-P3ДрssA::mls-P4ДbcrC::cm-P1ДbcrC::cm-P2ДbcrC::cm-P3ДbcrC::cm-P4ДуwnJ::cm-P1ДуwnJ::cm-P2	CTGAGCGAGGGAGCAGAAAGTGTAACCAAACCTCCAATTGGTTGACCAGTGCTCCCTGTTCAGCAGCTCATAGCGGATTACGGTCATCTTTCCCGTATTTTAAGCCTGCTCGGAGCGGTATCTGGGGCAATCGCCCTGAGCGAGGGAGCAGAAATAATCACCTTTTACATTTTATATTTAGGTTGACCAGTGCTCCCTGGAAAGACAAAAGCCGGCGTCTGAAATCA AGACTGTTAAAGCTGAAAAAGATCCAGTGCTGGGAGCAGAAAAGTGTTCAGAATGTTGCTGAGGCTGAGCGAGGGAGCAGAAAGACATAACCTCCTTTATAACGTAC
ДрssA::mls-P2ДрssA::mls-P3ДрssA::mls-P4ДbcrC::cm-P1ДbcrC::cm-P2ДbcrC::cm-P3ДbcrC::cm-P4ДуwnJ::cm-P1ДуwnJ::cm-P2ДуwnJA::cm-P3	CTGAGCGAGGGAGCAGAAAGTGTAACCAAACCTCCAATTGGTTGACCAGTGCTCCCTGTTCAGCAGCTCATAGCGGATTACGGTCATCTTTCCCGTATTTTAAGCCTGCTCGGAGCGGTATCTGGGGCAATCGCCCTGAGCGAGGGAGCAGAAATAATCACCTTTTACATTTTATATTTAGGTTGACCAGTGCTCCCTGGAAAGACAAAAGCCGGCGTCTGAAATCA AGACTGTTAAAGCTGAAAAAGATCCAGTGCTGGGAGCAGAAAAGTGTTCAGAATGTTGCTGAGGCTGAGCGAGGGAGCAGAAGACATAACCTCCTTTATAACGTACGTTGACCAGTGCTCCCTGAGCGGCGTCTTGATTTCAGACGCCG
ДрssA::mls-P2ДрssA::mls-P3ДрssA::mls-P4ДbcrC::cm-P1ДbcrC::cm-P2ДbcrC::cm-P3ДbcrC::cm-P4ДуwnJ::cm-P1ДуwnJ::cm-P2ДуwnJA::cm-P3ДуwnJA::cm-P4	CTGAGCGAGGGAGCAGAAAGTGTAACCAAACCTCCAATTGGTTGACCAGTGCTCCCTGTTCAGCAGCTCATAGCGGATTACGGTCATCTTTCCCGTATTTTAAGCCTGCTCGGAGCGGTATCTGGGGGCAATCGCCCTGAGCGAGGGAGCAGAAATAATCACCTTTTACATTTTATATTTAGGTTGACCAGTGCTCCCTGGAAAGACAAAAGCCGGCGTCTGAAATCA AGACTGTTAAAGCTGAAAAAGATCCAGTGCTGGGAGCAGAAAAGTGTTCAGAATGTTGCTGAGGCTGAGCGAGGGAGCAGAAGACATAACCTCCTTTATAACGTACGTTGACCAGTGCTCCCTGAGCGGCTGTCTTGATTTCAGACGCCGGTTGACCAGTGCTCCCTGAGCCGGCTGTCTTGATTTCAGACGCCGGGGGTAAAAATAGAAAGCAATGT
ДрssA::mls-P2ДрssA::mls-P3ДрssA::mls-P4ДbcrC::cm-P1ДbcrC::cm-P2ДbcrC::cm-P3ДbcrC::cm-P4ДуwnJ::cm-P1ДуwnJ::cm-P2ДуwnJA::cm-P3ДуwnJ::cm-P4ДуwnJ::cm-P4ДуwnJ::cm-P4ДуwnJ::cm-P4ДуwnJ::cm-P4	CTGAGCGAGGGAGCAGAAAGTGTAACCAAACCTCCAATTGGTTGACCAGTGCTCCCTGTTCAGCAGCTCATAGCGGATTACGGTCATCTTTCCCGTATTTTAAGCCTGCTCGGAGCGGTATCTGGGGCAATCGCCCTGAGCGAGGGAGCAGAAATAATCACCTTTTACATTTTATATTTAGGTTGACCAGTGCTCCCTGGAAAGACAAAAGCCGGCGTCTGAAATCA AGACTGTTAAAGCTGAAAAAGATCCAGTGCTGGGAGCAGAAAAGTGTTCAGAATGTTGCTGAGGCTGAGCGAGGGAGCAGAAGACATAACCTCCTTTATAACGTACGTTGACCAGTGCTCCCTGAGCCGGCTGTCTTGATTTCAGACGCCGGGGGTAAAAAAGAAGCAATGTCTTTTCACAGCGCCATATGATTTCAGCTTG
ДрssA::mls-P2ДрssA::mls-P3ДрssA::mls-P4ДbcrC::cm-P1ДbcrC::cm-P2ДbcrC::cm-P3ДbcrC::cm-P4ДуwnJ::cm-P1ДуwnJ::cm-P2ДуwnJA::cm-P3ДуwnJ::cm-P4ДуwnJ::cm-P4ДуwnJ::cm-P4ДуwnJ::cm-P1ДуwnJ::cm-P4ДуwnJ::cm-P4ДуwnJ::cm-P4ДуwnJ::cm-P4ДуwnJ::cm-P1	CTGAGCGAGGGAGCAGAAAGTGTAACCAAACCTCCAATTGGTTGACCAGTGCTCCCTGTTCAGCAGCTCATAGCGGATTACGGTCATCTTTCCCGTATTTTAAGCCTGCTCGGAGCGGTATCTGGGGCAATCGCCCTGAGCGAGGGAGCAGAAATAATCACCTTTTACATTTTATATTTAGGTTGACCAGTGCTCCCTGGAAAGACAAAAGCCGGCGTCTGAAATCA AGACTGTTAAAGCTGAAAAGATCCAGTGCTGGGAGCAGAAAAGTGTTCAGAATGTTGCTGAGGCTGAGCGAGGGAGCAGAAGACATAACCTCCTTTATAACGTACGTTGACCAGTGCTCCCTGAGACAAAACCTCCTTTATAACGTACGTTGACCAGTGCTCCCTGAGCCGGCTGTCTTGATTTCAGACGCCGGGGGTAAAAATAGAAAGCAATGTCTTTTCACAGCGCCATATGATTTCAGCTTGCTGAGCGAGGGAGCAGAAACCTTTGCACCTCGTCTGTTAAATTAC
ΔpssA::mls-P2 ΔpssA::mls-P3 ΔpssA::mls-P4 ΔbcrC::cm-P1 ΔbcrC::cm-P2 ΔbcrC::cm-P3 ΔbcrC::cm-P4 ΔywnJ::cm-P1 ΔywnJA::cm-P3 ΔywnJA::cm-P4 ΔtagU::cm-P1 ΔtagU::cm-P2 ΔtagU::cm-P3	CTGAGCGAGGGAGCAGAAAGTGTAACCAAACCTCCAATTGGTTGACCAGTGCTCCCTGTTCAGCAGCTCATAGCGGATTACGGTCATCTTTCCCGTATTTTAAGCCTGCTCGGAGCGGTATCTGGGGCAATCGCCCTGAGCGAGGGAGCAGAAAATAATCACCTTTTACATTTTATATTTAGGTTGACCAGTGCTCCCTGGAAAGACAAAAGCCGGCGTCTGAAATCA AGACTGTTAAAGCTGAAAAAGATCCAGTGCTGGGAGCAGAAAAGTGTTCAGAATGTTGCTGAGGCTGAGCGAGGGAGCAGAAGACATAACCTCCTTTATAACGTACGTTGACCAGTGCTCCCTGAGCCGGCTGTCTTGATTTCAGACGCCGGGGGTAAAAATAGAAAGCAATGTCTTTTCACAGCGCCATATGATTTCAGCTTGCTGAGCGAGGGAGCAGAAACCTTTGCACCTCGTCTGTTAAATTACGTTGACCAGTGCTCCCTGAACAAAAGAAGCTTCGCACAATGTGC
ΔpssA::mls-P2 ΔpssA::mls-P3 ΔpssA::mls-P4 ΔbcrC::cm-P1 ΔbcrC::cm-P2 ΔbcrC::cm-P3 ΔbcrC::cm-P4 ΔywnJ::cm-P1 ΔywnJA::cm-P2 ΔywnJA::cm-P3 ΔywnJA::cm-P4 ΔtagU::cm-P1 ΔtagU::cm-P3 ΔtagU::cm-P4	CTGAGCGAGGGAGCAGAAAGTGTAACCAAACCTCCAATTG GTTGACCAGTGCTCCTGTTCAGCAGCTCATAGCGGATTACGGT CATCTTTCCCGTATTTTAAGCC TGCTCGGAGCGGTATCTGGGGCAATCGCC CTGAGCGAGGGAGCAGAAATAATCACCTTTTACATTTTATATTTAG GTTGACCAGTGCTCCCTGGAAAGACAAAAGCCGGCGTCTGAAATCA AGAC TGTTAAAGCTGAAAAAGATCCAGTGCTGGGAG CAGAAAAGTGTTCAGAATGTTGCTGAGG CTGAGCGAGGGAGCAGAAGACATAACCTCCTTTATAACGTAC GTTGACCAGTGCTCCCTGAGCCGGCTGTCTGATTTCAGACGCCG GGGGTAAAAATAGAAAGCAATGT CTTTTCACAGCGCCATATGATTTCAGCTTG CTGAGCGAGGGAGCAGAACCTTTGCACCTCGTTAAAATTAC GTTGACCAGTGCTCCCTGAACAAAAAGCATGT CTGAGCGAGGGAGCAGAACCTTTGCACCTCGTCTGTTAAATTAC GTTGACCAGTGCTCCCTGAACAAAAAGAAGCTTCGCACAATGTGC GAACATTATGAAGGAGCGGCAGA

∆abh∷mls-P2	CTGAGCGAGGGAGCAGAAAAAAACCCTTCTTCCTTTAAATGTTTC
$\Delta abh::mls-P3$	GTTGACCAGTGCTCCCTGAATTATGCTAAAAAAGGCGGAGTGATATCA
$\Delta abh::mls-P4$	GCAGCAGCAGCTCGCTGAGCACTAAATC
$\Delta fatR::mls-P1$	CAATGCAGCAGCAAAGGCTGTATGTATTCC
$\Delta fatR::mls-P2$	CTGAGCGAGGGAGCAGAAGTAATCTGACAACCTCCGATTCGTTTACGG
$\Delta yrhJ::mls-P3$	GTTGACCAGTGCTCCCTGAATATAAAATCCCGCCAATCTGATT GG
$\Delta yrhJ::mls-P4$	GGGAATACAAGTCTTTTAATCAG
$\Delta spx::mls-P1$	GATACTGATACAGAAAAACGCCTGAGGTTT
Agana mala D2	CTC ACCC ACCC ACCA C A ATC ATCTTC A CTCCTCT A ATT ACT AC
⊿spxmis-r∠	
$\Delta spx::mls-P2$ $\Delta spx::mls-P3$	GTTGACCAGTGCTCCCTGTAGATCGTATCATCATCATCATCATCATCATCATCATCATCATCATC
Δspx::mls-P3 Δspx::mls-P4	GTTGACCAGTGCTCCCTGTAGATCATCTCACTCCTCTAATTAGTAGGATGAACATCTATTT GTTGACCAGTGCTCCCTGTAGATCGTATCATCATCAAAAGAAGGCTGAGTCAT ATTTCTCTGCTCGTCATTGTTGGGATT
Δspx::mls-P3 Δspx::mls-P4 BamH1-Not1-gfp-U	GTTGACCAGTGCTCCCTGTAGATCATCHTCACTCCTCTAATTAGTAGGATGAACATCTATTT GTTGACCAGTGCTCCCTGTAGATCGTATCATCAAAAGAAGGCTGAGTCAT ATTTCTCTGCTCGTCATTGTTGGGATT TAGggatccTAGGCGGCCGCcAGTAAAGGAGAAGAACTTTTCACTGGAGTTG
Δspx::mls-P3 Δspx::mls-P4 BamH1-Not1-gfp-U gfp-EcoRI-L	GTTGACCAGTGCTCCCTGTAGATCATCHTCACTCCTCTAATTAGTAGGATGAACATCTATTT GTTGACCAGTGCTCCCTGTAGATCGTATCATCAAAAGAAGGCTGAGTCAT ATTTCTCTGCTCGTCATTGTTGGGATT TAGggatccTAGGCGGCCGCcAGTAAAGGAGAAGAACTTTTCACTGGAGTTG TAGgaattcTTATTTGTATAGTTCATCCATGCCATGTGTAATCC
\Delta spx::mls-P2\Delta spx::mls-P3\Delta spx::mls-P4BamH1-Not1-gfp-Ugfp-EcoRI-LpsigX-U-BamHI	GTTGACCAGTGCTCCCTGTAGATCATCHTCACTCCTCTAATTAGTAGGATGAACATCTATTT GTTGACCAGTGCTCCCTGTAGATCGTATCATCAAAAGAAGGCTGAGTCAT ATTTCTCTGCTCGTCATTGTTGGGATT TAGggatccTAGGCGGCCGCcAGTAAAGGAGAAGAACTTTTCACTGGAGTTG TAGggattcTTATTTGTATAGTTCATCCATGCCATGTGTAATCC TAGggatccCGAGTCTGAATTTGCCGAAGAATC
Δspx::mls-P3 Δspx::mls-P4 BamH1-Not1-gfp-U gfp-EcoRI-L psigX-U-BamHI sigX-L-NotI	GTTGACCAGTGCTCCCTGTAGATCATCHTCACTCCTCTAATTAGTAGGATGAACATCTATTT GTTGACCAGTGCTCCCTGTAGATCGTATCATCAAAAGAAGGCTGAGTCAT ATTTCTCTGCTCGTCATTGTTGGGATT TAGggatccTAGGCGGCCGCcAGTAAAGGAGAAGAACTTTTCACTGGAGTTG TAGgaattcTTATTTGTATAGTTCATCCATGCCATGTGTAATCC TAGggatccCGAGTCTGAATTTGCCGAAGAATC TAGGCGGCCGCACTGCCGGAAGTTGACTTAACA

References

Jakutyte L, Baptista C, Sao-Jose C, Daugelavicius R, Carballido-Lopez R, Tavares P (2011) Bacteriophage infection in rod-shaped gram-positive bacteria: evidence for a preferential polar route for phage SPP1 entry in *Bacillus subtilis*. *J Bacteriol* 193: 4893-903

Lemon KP, Grossman AD (1998) Localization of bacterial DNA polymerase: evidence for a factory model of replication. *Science* 282: 1516-9

Mascher T, Hachmann AB, Helmann JD (2007) Regulatory overlap and functional redundancy among *Bacillus subtilis* extracytoplasmic function sigma factors. *J Bacteriol* 189: 6919-27

Rosenberg A, Sinai L, Smith Y, Ben-Yehuda S (2012) Dynamic expression of the translational machinery during *Bacillus subtilis* life cycle at a single cell level. *PLoS One* 7: e41921

Tzipilevich E, Habusha M, Ben-Yehuda S (2017) Acquisition of phage sensitivity by bacteria through exchange of phage receptors. *Cell* 168: 186-199 e12

Youngman P, Perkins JB, Losick R (1984) A novel method for the rapid cloning in *Escherichia coli* of *Bacillus subtilis* chromosomal DNA adjacent to Tn917 insertions. *Mol Gen Genet* 195: 424-33