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The Supplementary Material includes:

Figure S1 | Workflow of surgical margin assessment.

Figure S2 | Comparison of state-of-the-art slide-free imaging modalities.

Figure S3 | Contrast difference of a mouse spleen with excitation wavelengths of 265 nm and 340 nm.
Figure S4 | CHAMP and Deep-CHAMP validation with thin mouse brain/kidney slices.

Figure S5 | CHAMP and Deep-CHAMP validation with a thin human lung cancer tissue slice.

Figure S6 | CHAMP and Deep-CHAMP validation with fixed and unprocessed mouse brain/kidney tissues.
Figure S7 | CHAMP and Deep-CHAMP validation with a freshly excised mouse kidney tissue.
Figure S8 | Illustration of intensity modulation by structured illumination microscopy.

Figure S9 | Experimental characterization of CHAMP’s lateral resolution.

Figure S10 | Architecture of generator and discriminator neural networks.

Figure S11 | Convergence plots and training details.

Figure S12 | Cross-validation of the virtual staining network.

Table S1 | Flowchart of super-resolution reconstruction framework.

Other Supplementary Material for this manuscript includes the following:
Video S1 | System setup, image acquisition, and data processing.

Video S2 | A series of close-up and registered CHAMP, Deep-CHAMP, and H&E-stained histological images
of a thin mouse brain slice.

Video S3 | A series of close-up and registered CHAMP, Deep-CHAMP, and H&E-stained histological images
of formalin-fixed thick mouse brain tissues.

Video S4 | A series of close-up and registered CHAMP and Deep-CHAMP images of vibratome-cut mouse
brain/kidney tissues.
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Figure S1. Workflow of surgical margin assessment. a, Conventional standard-of-care histopathology,
which involves two approaches, including (1) intraoperative frozen section with freshly excised tissues, and
(2) postoperative assessment with formalin-fixed and paraffin-embedded tissues. b, Anticipated new
clinical practice by using the CHAMP microscope.



Method ac;:]i:ﬁeion Contrast mechanism Optical sectioning ability Imaging throughput Ease of use Cost-effectiveness
*ok Kok * % gz
Controlled by pinhole size, ~10 megapixels 2 o -
LSCM Exogenous/endogenous can be traded with SNR and ~ Determined by laser scanning speed ch;;i‘}:;‘%th:;c‘:lascr
fluorescence signal intensity and dwell time e
MPM ool
— —_— High system complexity in terms of optical %
SRS Intrinsic vibration of lipids, T * alignment, system synchronization, and Require ultrafast pulsed
2D/3D laser proteins, and nucleic acids Controlled by the size of ~2 megapixels @ 80 MHz laser Inainfenance laser with high peak power,
. N Y Determined by laser repetition rate and high-speed laser
scanning N tightly-focused beam : i
Non-centrosymmetric and dwell time scanning module
SHG properties of endogenously
orientated structure
% * %
*
i . * x : = *oK K Require pulsed laser with
PAM Optical abs9mt‘0" of Controlled by the bandwidth 10 mggaplxels @100 kHZ laser Require coupling media and no image can high energy, and high-
endogenous biomolecules . Determined by laser repetition rate > . : s
of ultrasonic transducer and dural fime be provided in real time speed laser scanning
module
*ok KoKk kKoK KoK
Controlled by the thickness ~850 megapixels e e
LSFM . y ; 8ap : Tissue clearing for Require laser and high-
of light-sheet, can be traded Determined by exposure time and ohiméirictinacin St caiiet
with field-of-view light sheet thickness e P
* kK il
Kok KoK K *ok Require well- L
SIM Two (;?mmll?d bi)‘/"t‘heaﬁz?:e::g ~800 megapixels Precisely controlled regulated staining Require spatial light
. P 2 Determined by exposure time and pattern generation protocol to avoid modulator and camera with
fluorescence analog of H&E be traded with SNR and ; i . v .
imaging depth pattern switching time module fluorescence high dynamic range
Wide-field saturation and
illumination it P leakage
~110 megapixels . . .
MUSE Determined by exposure time and Vana}b]e ff)cusmg B FEEEE
. . required for surface Only require UV LED
Toue number of axial scanning for : e
ded DOF irregularities
Controlled by the UV Sxtence
penetration depth, which is # % % %
tissue dependent ~200 megapixels g oy
CHAMP Endogenous fluorescence Determined by exposure time and Label-free, large DOF d Require UV laser
number of acquisitions required for tissue irregularities q
super-resolution reconstruction

Figure S2. Comparison of state-of-the-art slide-free imaging modalities. The throughput of each
imaging modality is calculated based on the reported literature, including laser scanning confocal
microscopy (LSCM)!", multiphoton microscopy (MPM)™, stimulated Raman scattering (SRS) and second
harmonic generation (SHG)®!, photoacoustic microscopy (PAM)™, light-sheet fluorescence microscopy
(LSFM)¥!, structured illumination microscopy (SIM)'®, and microscopy with ultraviolet surface excitation
(MUSE)/".

* Note. Throughput is defined by the ratio of attainable field-of-view per minute to the square of half-pitch
resolution. For an easy comparison, computational time and fluorescence labeling time are not considered
here. Throughput is calculated for each imaging modality under the same level of tissue irregularity of 80
um. For instance, in LSCM!"), 10 mm?*/minute with 0.6-pm lateral resolution and 8-pm focus tracking is
10 mm? /(0.6 pm/2)?
(80 pm/8 pm)
microscopy, including MPM?, SRS, and SHG"!, | mm*/minute with 0.4-um lateral resolution is obtained,
and the axial scanning interval is 5 pm for each slice, such that the throughput is calculated as

1mm?/(0.4 um/2)% . (5] 2 .
Goam/sam) 2 megapixels. In LSFM"™, 100 mm</12.5 s at 80-um depth-of-field (DOF) with 1.5-

um lateral resolution is achieved, such that the throughput is calculated as 480 mm? /(1.5 um/2)? ~ 850
megapixels. In MUSE!), 110 mm?/minute with 0.7-um lateral resolution is achieved, and multiple z-stacks
are acquired at 10-um spacing for extended DOF, such that the throughput is calculated as
110 mm? /(0.7 um/2)?
(80 um/10 um)
um DOF is achieved, such that the throughput is calculated as 60 mm? /(1.1 um/2)? =~ 200 megapixels.

achieved, such that the throughput is calculated as ~ 10 megapixels. In nonlinear

~ 110 megapixels. In CHAMP, 60 mm*minute with 1.1-um lateral resolution at 80-



Figure S3. Contrast difference of a mouse spleen with excitation wavelengths of 265 nm and 340 nm.
a, CHAMP image of a thin mouse spleen slice excited by a 265-nm light-emitting-diode (LED). b,c,
Zoomed-in images of solid and dashed regions in a, respectively. d, CHAMP image of the same thin mouse
spleen slice excited by a 340-nm LED. e,f, Zoomed-in images of solid and dashed regions in d, respectively.
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Figure S4. CHAMP and Deep-CHAMP validation with thin mouse brain/kidney slices. a, CHAMP
(top), Deep-CHAMP (middle), and H&E-stained image (bottom) of a thin mouse brain slice, inset at the
bottom left of CHAMP shows the photograph of the specimen (the yellow dashed box shows the slice that
is imaged). b,c, Zoomed-in CHAMP images of green and blue dashed regions in a, respectively. d—f,g—i,
Zoomed-in CHAMP and Deep-CHAMP images of yellow solid, orange dashed, and magenta dashed
regions in b and c, respectively. j—o0, The corresponding H& E-stained histological images. p, CHAMP (top),
Deep-CHAMP (middle), and H&E-stained image (bottom) of a thin mouse kidney slice, inset at the bottom



left of CHAMP shows the photograph of the specimen (the yellow dashed box shows the slice that is
imaged). q,r, Zoomed-in CHAMP images of green and blue dashed regions in p, respectively. s—v, Zoomed-
in CHAMP and Deep-CHAMP images of yellow solid and orange dashed regions in q and r, respectively.
w—z, The corresponding H&E-stained histological images. Arrows indicate the segmentation-induced
staining artifacts in Deep-CHAMP images.
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Figure S5. CHAMP and Deep-CHAMP validation with a thin human lung cancer tissue slice. a—c,
CHAMP, Deep-CHAMP, and H&E-stained histological images of a thin human lung cancer tissue slice
with large cell carcinoma, respectively. The dashed curves outline the interface between normal and tumor
regions. d—f, g—i, CHAMP, Deep-CHAMP, and H&E-stained histological images of orange solid and blue
dashed regions in a, respectively. Arrows indicate the alveolar macrophages.
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Figure S7. CHAMP and Deep-CHAMP validation with a freshly excised mouse Kkidney tissue. a,
CHAMP image of a freshly excised mouse kidney tissue, inset at the bottom left shows the photograph of
the specimen (the yellow dashed box shows the mouse kidney that is imaged). b—e, Zoomed-in CHAMP
images of red solid, green dashed, blue dashed, and orange dashed regions in a, respectively. f—i, The
corresponding ‘brain-style’ Deep-CHAMP images output by the virtual staining network trained for mouse
brain. j—m, The corresponding ‘kidney-style’ Deep-CHAMP images output by the style transformation
network with f—i as the input. Arrows indicate the segmentation-induced staining artifacts in Deep-CHAMP
images.
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Figure S8. Illustration of intensity modulation by structured illumination microscopy. a—d,
Diffraction-limited wide-field imaging with uniform illumination. e—h, Linear SIM with sinusoidal
illumination. i-1, Nonlinear SIM with saturated sinusoidal illumination. m—p, CHAMP imaging with
translated speckle illumination. For SIM, the sinusoidal pattern is phase-shifted and rotated to synthesize
an isotropic aperture (h,1). While for CHAMP, the speckle pattern is translated to isotropically fill the
Fourier space (p). f,pj: frequency of objective lens, f,: frequency of sinusoidal pattern, n: the order of

sinusoidal harmonics, f,,  : the maximum frequency of the speckle pattern.
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Figure S9. Experimental characterization of CHAMP’s lateral resolution. a, CHAMP image of blue
fluorescent beads (500-nm in diameter with an emission wavelength of 445 nm). b, Zoomed-in CHAMP
image of the white dashed box in a. ¢, Gaussian-fitted intensity distribution along the solid line in b, showing
that the full width at half maximum is 1.1 pm in CHAMP (blue solid line) and 2.9 pm in wide-field
microscopy with a 0.1-NA objective lens (magenta dashed line).
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Figure S10. Architecture of generator and discriminator neural networks. The Resnet-based generator
network!™ (top) consists of a downsampling path (gray), a residual path (pink), and an upsampling path
(purple). The first convolution layer (kernel 7 x 7, stride 1 x 1) in the downsampling path increases the
image channel to 64 with size unchanged, while the other two layers (kernel 3 x 3, stride 2 x 2) will halve
the image size and double the image channel. The network is then followed by 9 residual blocks, in which
the image size and channel will remain unchanged. In the upsampling path, the first two layers (kernel 3 x
3, stride 2 x 2) will double the image size and halve the image channel, while the third layer (kernel 7 x 7,
stride 1 % 1) decreases the image channel to 3. The last convolution layer is followed by a hyperbolic tangent
activation while other convolution layers are followed by an instance normalization and rectified linear unit
(ReLU) activation. The PatchGAN-based discriminator network!® (below) consists of 5 convolutional
layers. The image size will be halved by each of the first 4 convolution layers (kernel 4 x 4, stride 2 x 2),
with each layer followed by an instance normalization and Leaky-ReLU activation. The last layer (kernel
4 x 4, stride 1 x 1) decreases the channel to 1 to output the probability labels.
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Figure S11. Convergence plots and training details. a—c, L1-loss (moving average) with respect to the
number of iterations of the fixed brain network, fresh brain network, and style transformation network,
respectively. The table below shows the parameters of the neural networks a—c.
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Figure S12. Cross-validation of the virtual staining network. a—d, CHAMP images of formalin-fixed
mouse brain/kidney tissues with varying thickness. e-h, The corresponding H&E-stained images. i1, The
corresponding ‘brain-style’ Deep-CHAMP images output by the virtual staining network for fixed mouse
brains. m,n, The corresponding ‘kidney-style’ Deep-CHAMP images output by the style transformation
network with k and 1 as the input, respectively.



Reconstruction Framework

Input: 36 speckle-illuminated autofluorescence images /; and pre-estimated position shifts (xj, y j)
Output: Resolution-enhanced object 0 (x, y) and unknown speckle pattern p (x, y)

1. Initialize o(x,y) and p(x,y)
2. for iteration = 1:10
3 for j =1:36
4. 0 = o(x —x,y - ¥))
5. @j(x,y) = 0;-p(x,y)
6 Vi (ky ky) = F (coj(x. y)) - OTF (ky, ky)
7 lost = |F_1 (lp]'(kx’ kY))|
8 1P (1:3:3M,1:3:3M) =
updatey _ conj(oTF) - [F(15H2%) -]
9 F((Pj ) - F((pi) + (1-@)|OTF|2+a|OTF|%, 45
_ conj(p) - (<P?pdate—<ﬂj)

10. %= Ot D Bl
" B conj(oj) i ((p}lpdare_(pj)

’ p a-ploj*+vlojl> ..
12. o(x,y) = o;(x + x;,y +¥;)
13. end
14. end

Table S1. Flowchart of super-resolution reconstruction framework. The object o(x,y) is firstly
initialized by averaging all captured raw images which are correspondingly back-shifted according to the
pre-estimated scanning trajectory (xj, yj), and followed by zero-padding in the Fourier domain from the
size of M x M to 3M x 3M. Similarly, the speckle pattern p(x, y) is initialized by averaging all captured
raw images and padded in the Fourier domain to a size of 3M x 3M. For the /" captured image, the pattern
p(x,y) is multiplied with a shifted object o(x - X,y — yj) and Fourier transformed into the frequency
domain, which is subsequently lowpass filtered by the optical transfer function of the imaging system, and
inversely Fourier transformed to obtain an estimated output intensity I,g;. This estimated intensity is
updated by the correspondingly captured autofluorescence intensity I; in the spatial domain with a sub-
sampled method to bypass the resolution limit set by the physical pixel size. After that, the object o; and
speckle pattern p are alternately updated with the momentum-assisted regularized ptychographic iterative
engine!'”. We adopt o = 1 while # =y = 0.3 in the updating function. The shifting operation (line 4 and line
12) is achieved by applying the angular spectrum in the frequency domain.
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