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Supplementary Methods

Identification of clonal hematopoiesis from WES data

To identify putative somatic driver mutations from WES data, individual gVCF files from the
DeepVariant version 0.10.0 caller! were converted to VCF format and merged into one multi-
sample VCF using SAMtools/Bcftools?. Multi-allelic variants were split into separate variants
and the location of indels was normalised using their left most position.3 The multisample VCF
was annotated using Annovar and the RefSeq gene database.* Variants were defined as
putative somatic driver mutations if they met the following criteria; (i) exonic, or splice
donor/acceptor site; (ii) the alternative allele had a minimum of 3 reads for point mutation
and 6 reads for indels; (iii) alternate allele frequency <1% in GnomAD V2.1;> (iv) predicted to
be pathogenic (CADD® phred score >20 meaning that the variant is among the 1% most
deleterious variants in the human genome); (v) minor allele frequency (MAF) < 0.01% in UKB;
(vi) observed in COSMIC version 91 database’ at least 3 times in hematopoietic and lymphoid
tissues; (vii) inferred as somatic by failing the hypothesis that the alternative allele is normally
distributed with a mean of 0.45 and a false positive rate of P=0.05 using a binomial test as
described.® Several exceptions to the rules to define putative somatic driver mutations were
made in order to capture all relevant variants in known driver genes: (i) MAF >0.01 in UKB for
DNMT3A R882, JAK2 V617F and GNB1 K57E; (ii) TP53: all mutations seen in at least once in
COSMIC and validated in the International Agency for Research on Cancer database® were
included (iii) TET2: all missense mutations were included in regions encoding the catalytic
domains (amino acids 1104-1481 and 1843-2002)% 1: (iv) any DNMT3A variant was included
that was seen at least once in COSMIC; (v) all frameshift indels, stopgain, and splice site

mutations listed in a list of known myeloid neoplasia related genes were included!?.



Exceptions to the binomial test were made for established driver variants with high fitness,
e.g. U2AF1 Q157, FLT3 Y842C, JAK3 R657Q, IDH2 R140L, CBL Y371H, and KRAS G12V due to
the high fitness of these variants.!® Variants that were absent from COSMIC were only
considered if they had a heterozygous “0/1” or homozygous “1/1” genotype indicative of high

guality genotype calls.

Diagnosis of ESKD

ICD10 codes used to classify ESKD in UKB participants were E85.3, N16.5, N18.0, N18.5,
Q60.1,T82.4,T86.1, Y60.2, Y61.2,Y62.2,Y84.1, 7Z49.0, Z49.1, 749.2, 794.0, 799.2. ESKD was
also inferred by relevant interventions and procedures (OPCS4: L74.1, L74.2,1.74.3, L74.4,
L74.5, L74.6, L74.8, L74.9, M01.2, M01.3, M01.4, M01.5, M01.8, M01.9, M02.3, M08.4,
M17.2, M17.4, M17.8, M17.9, X40.1, X40.2, X40.3, X40.4, X40.5, X40.6, X40.7, X40.8, X40.9,
X41.1, X41.2, X41.8, X41.9, X42.1, X42.8, X42.9, X43.1)*4

Prevalent and incident myeloid neoplasia

Participants with myeloid malignancy were identified from the national cancer registry and
hospital inpatient records using the ICD10 codes €920, C921, €923, C924, C925, €927, C929,
€930, €931, €940, €944, C946, €962, D45, D460, D461, D462, D464, D467, D469, D470, D471
and D473. Myeloid malignancies were considered prevalent if diagnosed before or within one
year of study (n=320) entry, or incident (n=419) if diagnosed a year or more after study entry.
The relationship between CH and ESKD in the absence of prevalent myeloid neoplasia was
tested using multivariable logistic regression in R where ESKD diagnosed after the study entry
was used as the dependant and CH as a binary predictor, and adjusted for the same CKD risk

factors.
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Supplementary Figure 1: CKD, defined by eGFR <60, is associated with VAF of driver mutations
in myeloid related genes in 3,328 participants. Meta-analysis of discovery and validation
cohorts (A) eGFR.cys: CKD (n=293), median = 0.24; CKD-free (n=3,035), median = 0.21 (P =
1.71x107; Mann-Whitney test), (B) eGFR.creat: CKD (n=111), median = 0.23; CKD-free (n=
3,217), median = 0.21 (P=0.12), (C) eGFR.creat.cys: CKD (n=144), median=0.23; CKD-free
(n=3,184), median=0.21 (P = 0.0002).
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Supplementary Figure 2: Restricted cubic spline to test the linearity of eGFR scores. Adjusted spline of each eGFR score was plotted against HR
for outcome with default values for the number of knots (n=5) and degrees of freedom (n=4). The upper and the lower dotted lines indicate
95% confidence intervals. A, B, and C refer to the discovery cohort. D, E, and F refer to the validation cohort for each eGFR score.
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Supplementary Figure 3: Kaplan-Meier survival estimates for the three CKD groups according to absence or presence of myeloid CH, and
excluding the 966 participants with potential SPS. Log-rank test P values are reported for each group, and numbers at risk at 0, 2.5, 5, 7.5, and
10 years after study entry.
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