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eAppendix. Statistical Methods 

Throughout, uppercase letters denote random variables and lowercase versions of the same letters denote realized 

values. Probands are indexed by 𝑖, and 𝑚𝑖 = 1,… ,28 indexes the site of enrollment of proband 𝑖. Twenty-six of these 

were advanced heart failure programs (one was inactivated after 3 probands were enrolled leaving 25 who completed 

the study), one was a satellite site of a program, and one was a virtual site at the coordinating center. This study 

included an embedded open-label randomized controlled trial of a behavioral intervention that was administered to 

probands in order to increase screening and surveillance uptake in family members.1 Analyses described below 

included families in both the control and intervention arms because the analysis would be unaffected by variation in 

screening uptake among families as long as other assumptions were correct. 

Prevalence of familial DCM among probands 

Let 𝑛𝑖 denote the number of living first-degree relatives of proband 𝑖 that could have been screened at some point 

during the study period, 𝑑𝑖 ≤ 𝑛𝑖 denote the number of these who would have disease by a particular definition (dilated 

cardiomyopathy [DCM] or DCM, left ventricular systolic dysfunction [LVSD], or left ventricular enlargement [LVE] 

without known cause) if all 𝑛𝑖 first-degree relatives were screened, 𝑠𝑖 ≤ 𝑛𝑖 denote the number actually screened by 

the study, and 𝑧𝑖 denote a set of proband-level characteristics. A proband had familial DCM per a particular definition 

if 𝑑𝑖 > 0; the goal was to model Pr(𝐷𝑖 > 0|𝑧𝑖 , 𝑚𝑖), the prevalence of familial DCM among probands with 

characteristics 𝑧𝑖 at site 𝑚𝑖. However, because it was not possible to observe or confirm disease in unenrolled first-

degree relatives, the observed quantity was 𝑑𝑖
∗ ≤ min(𝑠𝑖 , 𝑑𝑖), the number of living first-degree relatives of proband 𝑖 

who were enrolled in the study and found to have disease by a particular definition, rather than 𝑑𝑖. The original analysis 

plan1 was to follow prior studies2 in modeling Pr(𝐷𝑖
∗ > 0|𝑧𝑖 , 𝑚𝑖) directly. At each site, this probability represented a 

lower bound on Pr(𝐷𝑖 > 0|𝑧𝑖 , 𝑚𝑖) because, in order for 𝐷𝑖
∗ > 0 to occur, 𝐷𝑖 > 0 must have occurred as well, which 

implies that: 

Pr(𝐷𝑖
∗ > 0|𝑧𝑖 , 𝑚𝑖) = Pr(𝐷𝑖

∗ > 0,𝐷𝑖 > 0|𝑧𝑖 , 𝑚𝑖) = Pr(𝐷𝑖 > 0|𝑧𝑖 , 𝑚𝑖) − Pr(𝐷𝑖
∗ = 0,𝐷𝑖 > 0|𝑧𝑖 , 𝑚𝑖) 

If all first-degree relatives that could have been screened were screened for all probands, then 𝑆𝑖 ≡ 𝑁𝑖, the event 
{𝐷𝑖

∗ = 0, 𝐷𝑖 > 0} would have probability zero, and modeling Pr(𝐷𝑖
∗ > 0|𝑧𝑖 , 𝑚𝑖) would directly model Pr(𝐷𝑖 >

0|𝑧𝑖 , 𝑚𝑖). However, if 𝑆𝑖 < 𝑁𝑖 for some probands, those with 𝐷𝑖 > 0 may have had 𝐷𝑖
∗ = 0 simply because not all 

first-degree relatives were screened. In this case, Pr(𝐷𝑖
∗ = 0,𝐷𝑖 > 0|𝑧𝑖 , 𝑚𝑖) ≥ 0 and Pr(𝐷𝑖

∗ > 0|𝑧𝑖 , 𝑚𝑖) ≤
Pr(𝐷𝑖 > 0|𝑧𝑖 , 𝑚𝑖). Moreover, if the joint distribution of 𝑆𝑖 and 𝑁𝑖 depended on 𝑧𝑖, Pr(𝐷𝑖

∗ = 0,𝐷𝑖 > 0|𝑧𝑖 , 𝑚𝑖) would 

also vary with 𝑧𝑖, and variation in Pr(𝐷𝑖
∗ > 0|𝑧𝑖 , 𝑚𝑖) at a given site might not reflect variation in Pr(𝐷𝑖 > 0|𝑧𝑖 , 𝑚𝑖). 

Put differently, differences in the lower bound between proband subpopulations at a given site might reflect differences 

in first-degree relative participation or family structure in addition to differences in familial DCM prevalence. 

An additional consideration was that Pr(𝐷𝑖 > 0|𝑧𝑖 , 𝑚𝑖) depends on the distribution of 𝑁𝑖 because, for larger 𝑛𝑖, there 

are more chances that at least one first-degree relative who could be screened had disease. More formally: 

Pr(𝐷𝑖 > 0|𝑧𝑖 , 𝑚𝑖) = ∑Pr(𝐷𝑖 > 0|𝑧𝑖 , 𝑚𝑖 , 𝑛) Pr(𝑁𝑖 = 𝑛|𝑧𝑖 , 𝑚𝑖)

∞

𝑛=1

 

where Pr(𝐷𝑖 > 0|𝑧𝑖 , 𝑚𝑖 , 𝑛 = 0) = 0 trivially. Thus, even if Pr(𝐷𝑖 > 0|𝑧𝑖 , 𝑚𝑖 , 𝑛) and Pr(𝐷𝑖 > 0|𝑧𝑖
′, 𝑚𝑖 , 𝑛) were 

identical for all 𝑛, it could happen that Pr(𝐷𝑖 > 0|𝑧𝑖 , 𝑚𝑖) ≠ Pr(𝐷𝑖 > 0|𝑧𝑖
′, 𝑚𝑖) if Pr(𝑁𝑖 = 𝑛|𝑧𝑖 , 𝑚𝑖) ≠ Pr(𝑁𝑖 =

𝑛|𝑧𝑖
′, 𝑚𝑖) for some 𝑛. As a result, an approach using the observed data {𝑑𝑖

∗, 𝑠𝑖 , 𝑛𝑖} to model Pr(𝐷𝑖 > 0|𝑧𝑖 , 𝑚𝑖 , 𝑛𝑖) was 

chosen instead. 

The distribution of 𝐷𝑖
∗ in a proband randomly selected from among those with characteristics {𝑧𝑖 , 𝑛𝑖 , 𝑠𝑖} at site 𝑚𝑖 was 

obtained by treating 𝐷𝑖 as a latent variable and summing over its possible values with observed data {𝑑𝑖
∗, 𝑠𝑖 , 𝑛𝑖}. With 

𝑛𝑖 = 0, 𝑑𝑖
∗ ≡ 𝑑𝑖 ≡ 0, and 𝑑𝑖

∗ ≡ 0 with 𝑠𝑖 = 0 regardless of 𝑛𝑖. Thus, for 𝑛𝑖 = 0 or 𝑠𝑖 = 0, 𝑑𝑖
∗ = 0 with probability 1. 

If 𝑛𝑖 > 0 and 𝑠𝑖 > 0, there were 𝑑𝑖
∗ individuals who were screened and had disease and 𝑠𝑖 − 𝑑𝑖

∗ who did not, which 

implies that at least 𝑑𝑖
∗ individuals and at most  𝑛𝑖 − (𝑠𝑖 − 𝑑𝑖

∗) would have had disease if all 𝑛𝑖 were screened. It 

follows that: 



 © 2022 American Medical Association. All rights reserved. 

Pr(𝐷𝑖
∗ = 𝑑𝑖

∗|𝑧𝑖 , 𝑚𝑖 , 𝑛𝑖 , 𝑠𝑖)

    =

{
 
 

 
 𝐼[𝑑𝑖

∗ = 0] if 𝑛𝑖 = 0 or 𝑠𝑖 = 0

∑ Pr(𝐷𝑖
∗ = 𝑑𝑖

∗|𝐷𝑖 = 𝑑, 𝑧𝑖 , 𝑚𝑖 , 𝑛𝑖 , 𝑠𝑖) Pr(𝐷𝑖 = 𝑑|𝑧𝑖 , 𝑚𝑖 , 𝑛𝑖)

𝑛𝑖−(𝑠𝑖−𝑑𝑖
∗)

𝑑=𝑑𝑖
∗

if 𝑛𝑖 > 0 and 𝑠𝑖 > 0

(1) 

In the above expression, the conditional independence of 𝐷𝑖 from 𝑆𝑖 given {𝑧𝑖 , 𝑚𝑖 , 𝑛𝑖} follows from assumptions made 

below about the probability model for first-degree relative screening. 

To model Pr(𝐷𝑖 = 𝑑|𝑧𝑖 , 𝑚𝑖 , 𝑛𝑖) in (1), 𝐷𝑖 was conceptualized as the sum of 𝑛𝑖 Bernoulli disease indicators in first-

degree relatives that were correlated due to shared genetic and other risk factors. Although the disease probability in 

a particular first-degree relative may have depended on his or her age or gender, the former was not readily available 

for unenrolled first-degree relatives. A family-specific first-degree relative disease probability, 𝑝𝑖(𝑧𝑖 , 𝑚𝑖), that was 

the same for all first-degree relatives of proband 𝑖 with characteristics 𝑧𝑖 at site 𝑚𝑖 was therefore assumed; disease 

statuses for first-degree relatives in a family were assumed conditionally independent given 𝑝𝑖(𝑧𝑖 , 𝑚𝑖). The quantity 

𝑝𝑖(𝑧𝑖 , 𝑚𝑖) can be conceptualized as an average disease probability for first-degree relatives in a particular family. 

Within-family correlation arose because 𝑝𝑖(𝑧𝑖 , 𝑚𝑖) was allowed to vary randomly across families with the same 𝑧𝑖 at 

site 𝑚𝑖, which implies a constant correlation between the disease statuses in pairs of first-degree relatives, also known 

as an exchangeable correlation structure. Allowing random variation in 𝑝𝑖(𝑧𝑖 , 𝑚𝑖) across families also captured 

differences in this average first-degree relative disease probability between families arising from factors such as the 

age and gender composition of living first-degree relatives. Each family-specific first-degree relative disease 

probability was assumed to be an independent draw from a Beta(𝑝(𝑧𝑖 , 𝑚𝑖)𝜗
−1 , (1 − 𝑝(𝑧𝑖 , 𝑚𝑖))𝜗

−1 ) distribution, 

where 0 < 𝑝(𝑧𝑖 , 𝑚𝑖) < 1 is the marginal disease probability in the population of first-degree relatives of probands 

with characteristics 𝑧𝑖 at site 𝑚𝑖. As a result, 𝐷𝑖 for a randomly selected proband from the population with 

characteristics {𝑧𝑖 , 𝑛𝑖} at site 𝑚𝑖 was assumed to follow a beta-binomial distribution given by:3 

Pr(𝐷𝑖 = 𝑑|𝑧𝑖 , 𝑚𝑖 , 𝑛𝑖) = (
𝑛𝑖
𝑑
)
∏ (𝑝(𝑧𝑖 , 𝑚𝑖) + 𝜗𝑣)
𝑑−1
𝑣=0 ∏ (1 − 𝑝(𝑧𝑖 , 𝑚𝑖) + 𝜗𝑣)

𝑛𝑖−𝑑−1
𝑣=0

∏ (1 + 𝜗𝑣)
𝑛𝑖−1

𝑣=0

(2) 

with mean 𝑛𝑖 𝑝(𝑧𝑖 , 𝑚𝑖) and variance 𝑛𝑖 𝑝(𝑧𝑖 , 𝑚𝑖)(1 − 𝑝(𝑧𝑖 , 𝑚𝑖)) (1 + (𝑛 − 1)
𝜗

1+𝜗
), where 

𝜗

1+𝜗
 is the common 

correlation between disease outcomes in pairs of first-degree relatives. Note that this probability mass function is 

defined only for 𝜗 ≥ max (−𝑝(𝑧𝑖 , 𝑚𝑖)(𝑛𝑖 − 1)
−1, −(1 − 𝑝(𝑧𝑖 , 𝑚𝑖))(𝑛𝑖 − 1)

−1). A major benefit of this beta-

binomial parameterization, as opposed to a generalized linear mixed model (GLMM) with family-level random effects 

in the linear predictor, was that it replaced an intractable high-dimensional integral with the closed form in (2) for 

evaluating the marginal distribution of 𝐷𝑖 in a subpopulation of probands at a particular site, Pr(𝐷𝑖 = 𝑑|𝑧𝑖 , 𝑚𝑖 , 𝑛𝑖). 

The model in (2) required specification of 𝑝(𝑧𝑖 , 𝑚𝑖). Let 𝑗𝑖 = 1 (non-Hispanic White), 2 (non-Hispanic Black), 
3 (Hispanic White), 4 (Hispanic Black) denote the ethnicity-race group of proband 𝑖, 𝑘𝑖 = 1,2,3,4 denote quartile of 

proband age of enrollment, and 𝑙𝑖 = 1 (male), 2 (female) denote the proband sex. For 𝑧𝑖 = {𝑗𝑖 , 𝑘𝑖 , 𝑙𝑖}, the chosen 

model was: 

logit(𝑝(𝑧𝑖 , 𝑚𝑖)) = 𝛼 + 𝛽𝑗𝑖 + 𝛾𝑘𝑖 + 𝛿𝑙𝑖 + 𝑢𝑚𝑖
+ 𝑢𝑗𝑖𝑚𝑖

(3) 

where 𝛽1 ≡ 𝛾4 ≡ 𝛿1 ≡ 0,𝑢𝑚𝑖
~𝑁(0, 𝜎𝑚

2 ) are random effects designed to reflect site-specific random variation in the 

marginal disease odds for a first-degree relative, and 𝑢𝑗𝑖𝑚𝑖
~𝑁(0, 𝜎𝑗𝑚

2 ) are random effects designed to reflect variation 

across sites in the differences in these odds between proband ethnicity-race groups at the same site. Under this model, 

exp(𝛾𝑘𝑖) is the ratio of the disease odds for a first-degree relative of a proband in enrollment age quartile 𝑘𝑖 to those 

for a first-degree relative of a proband in enrollment age quartile 4 at the same site who is identical on all other factors. 

The odds ratio exp(𝛿𝑙𝑖) is interpreted similarly. The odds ratio comparing a first-degree relative of a proband in 

ethnicity-race group 𝑗𝑖 to a first-degree relative of a non-Hispanic White proband at the same site who is identical on 

all other factors is a random variable given by exp(𝛽𝑗𝑖 + 𝑢𝑗𝑖𝑚𝑖
− 𝑢1𝑚𝑖

). As a result, exp(𝛽𝑗𝑖) is interpretable as the 

within-site odds ratio for a typical advanced heart failure program in the US (i.e., one at the mean or mode of the 

random effects distribution describing the population of such programs)4-6 or the median within-site odds ratio across 

such programs if 𝜎𝑗𝑚
2 > 0.7 In the event that 𝜎𝑗𝑚

2 = 0, all sites have the same within-site odds ratio. 
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Estimating the parameters in (2) and (3) required modeling Pr(𝐷𝑖
∗ = 𝑑𝑖

∗|𝐷𝑖 = 𝑑, 𝑧𝑖 , 𝑚𝑖 , 𝑛𝑖 , 𝑠𝑖) in (1) to obtain the 

likelihood component for each proband. 𝑆𝑖 was also conceptualized as the sum of 𝑛𝑖 correlated Bernoulli random 

variables that arose when each of the 𝑛𝑖 first-degree relatives in family 𝑖 completed or did not complete screening 

independently with a probability 𝜋𝑖(𝑧𝑖 , 𝑚𝑖) that varied randomly across probands with the same 𝑧𝑖 at site 𝑚𝑖. This 

probability was assumed to depend on proband/family characteristics in a way that varied across sites but not on first-

degree relative characteristics, such as age and disease status. Under these conditions, Pr(𝐷𝑖
∗ = 𝑑𝑖

∗, 𝑆𝑖 = 𝑠𝑖|𝐷𝑖 =

𝑑, 𝑧𝑖 , 𝑚𝑖 , 𝑛𝑖 , 𝜋𝑖(𝑧𝑖 , 𝑚𝑖)) was simply the probability of screening 𝑑𝑖
∗ of the 𝑑 first-degree relatives with disease and 𝑠𝑖 −

𝑑𝑖
∗ of the 𝑛𝑖 − 𝑑 without disease when each is screened independently with probability 𝜋𝑖(𝑧𝑖 , 𝑚𝑖). As a result: 

Pr(𝐷𝑖
∗ = 𝑑𝑖

∗|𝐷𝑖 = 𝑑, 𝑧𝑖 , 𝑚𝑖 , 𝑛𝑖 , 𝜋𝑖(𝑧𝑖 , 𝑚𝑖), 𝑠𝑖)

          =

(
𝑑
𝑑𝑖
∗) (

𝑛𝑖 − 𝑑

𝑠𝑖 − 𝑑𝑖
∗) 𝜋𝑖(𝑧𝑖 , 𝑚𝑖)

𝑠𝑖(1 − 𝜋𝑖(𝑧𝑖 , 𝑚𝑖))
𝑛𝑖−𝑠𝑖  

∑ (
𝑑
𝑑𝑖
∗) (

𝑛𝑖 − 𝑑
𝑠𝑖 − 𝑑𝑖

∗)𝜋𝑖(𝑧𝑖 , 𝑚𝑖)
𝑠𝑖(1 − 𝜋𝑖(𝑧𝑖 , 𝑚𝑖))

𝑛𝑖−𝑠𝑖min(𝑑,𝑠𝑖)

𝑑𝑖
∗=0

          =

(
𝑑
𝑑𝑖
∗) (

𝑛𝑖 − 𝑑

𝑠𝑖 − 𝑑𝑖
∗)

(
𝑛𝑖
𝑠𝑖
)

(4) 

where the second equality followed from applying the Vandermonde identity in the denominator.8 Thus, 

Pr(𝐷𝑖
∗ = 𝑑𝑖

∗|𝐷𝑖 = 𝑑, 𝑧𝑖 , 𝑚𝑖 , 𝑛𝑖 , 𝜋𝑖(𝑧𝑖 , 𝑚𝑖), 𝑠𝑖) has the same hypergeometric distribution depending on only {𝑑, 𝑛𝑖 , 𝑠𝑖} 
for every family, and it immediately follows that the marginal Pr(𝐷𝑖

∗ = 𝑑𝑖
∗|𝐷𝑖 = 𝑑, 𝑧𝑖 , 𝑚𝑖 , 𝑛𝑖 , 𝑠𝑖) in (1) was also given 

by (4). Conditioning on 𝑠𝑖 removes the impact of any family-level factor that could influence 𝜋𝑖(𝑧𝑖 , 𝑚𝑖), including the 

randomized trial intervention, as well as any site-level factor. It also immediately follows from the denominator in the 

first equality in (4) that Pr(𝑆𝑖 = 𝑠𝑖|𝐷𝑖 = 𝑑, 𝑧𝑖 , 𝑚𝑖 , 𝑛𝑖 , 𝜋𝑖(𝑧𝑖 , 𝑚𝑖)) = (
𝑛𝑖
𝑠𝑖
) 𝜋𝑖(𝑧𝑖 , 𝑚𝑖)

𝑠𝑖(1 − 𝜋𝑖(𝑧𝑖 , 𝑚𝑖))
𝑛𝑖−𝑠𝑖

, which 

does not depend on 𝑑. This implies that, after marginalizing over 𝜋𝑖(𝑧𝑖 , 𝑚𝑖), Pr(𝑆𝑖 = 𝑠𝑖|𝐷𝑖 = 𝑑, 𝑧𝑖 , 𝑚𝑖 , 𝑛𝑖) =
Pr(𝑆𝑖 = 𝑠𝑖|𝑧𝑖, 𝑚𝑖 , 𝑛𝑖), thereby demonstrating conditional independence of 𝐷𝑖 from 𝑆𝑖 given {𝑧𝑖 , 𝑚𝑖 , 𝑛𝑖} assumed in 

(1). 

Substituting (4) and (2) into (1) and simplifying the binomial coefficients yields the conditional likelihood component 

for a proband randomly selected from the population with characteristics {𝑧𝑖 , 𝑛𝑖 , 𝑠𝑖} at site 𝑚𝑖: 

Pr(𝐷𝑖
∗ = 𝑑𝑖

∗|𝑧𝑖 , 𝑚𝑖 , 𝑛𝑖 , 𝑠𝑖)

    =

{
 
 

 
 𝐼[𝑑𝑖

∗ = 0] if 𝑛𝑖 = 0 or 𝑠𝑖 = 0

∑ (
𝑠𝑖
𝑑𝑖
∗) (

𝑛𝑖 − 𝑠𝑖
𝑑 − 𝑑𝑖

∗)
∏ (𝑝(𝑧𝑖 , 𝑚𝑖) + 𝜗𝑣)
𝑑−1
𝑣=0 ∏ (1 − 𝑝(𝑧𝑖 , 𝑚𝑖) + 𝜗𝑣)

𝑛𝑖−𝑑−1
𝑣=0

∏ (1 + 𝜗𝑣)
𝑛𝑖−1

𝑣=0

𝑛𝑖−(𝑠𝑖−𝑑𝑖
∗)

𝑑=𝑑𝑖
∗

if 𝑛𝑖 > 0 and 𝑠𝑖 > 0

(5) 

for 0 < 𝑝(𝑧𝑖 , 𝑚𝑖) < 1 and 𝜗 ≥ max (−𝑝(𝑧𝑖 , 𝑚𝑖)(𝑛𝑖 − 1)
−1, −(1 − 𝑝(𝑧𝑖 , 𝑚𝑖))(𝑛𝑖 − 1)

−1). Probands’ 𝐷𝑖
∗ were 

assumed to be conditionally independent within each site given the random effects, so the conditional likelihood was 

simply the product of the components in (5) over probands. To obtain estimates of the model parameters, SAS/STAT 

PROC NLMIXED was used to maximize the marginal likelihood obtained by integrating the conditional likelihood 

over the distributions of the 𝑢𝑚𝑖
 and 𝑢𝑗𝑖𝑚𝑖

 using adaptive Gaussian quadrature. Probands without living or screened 

first-degree relatives do not influence the likelihood because they have 𝑑𝑖
∗ = 0 with probability 1 for all parameter 

values; such probands were therefore excluded from likelihood calculation. To prevent optimization steps outside of 

the feasible region, constraints 𝜗 ≥ 0, 𝜎𝑚 ≥ 0, and 𝜎𝑗𝑚 ≥ 0 were imposed. Although the probability mass function in 

(5) is defined for some 𝜗 < 0,  𝜗 ≥ 0 was taken as the plausible range because correlation in the Bernoulli disease 

status between first-degree relatives was expected to be positive in general. Negative correlation was implausible and 

would likely indicate a model specification issue, so this constraint was not expected to be active at the solution. The 

loglikelihood component was also set to -1e-20 for any 𝑝(𝑧𝑖 , 𝑚𝑖) within 1e-12 of 0 or 1 to avoid optimization steps 

into these regions. Model-based estimates of the covariance matrix were obtained as the inverse of the Hessian matrix 

at the solution. 

Parameter estimates, standard errors, and odds ratios with Wald 95% confidence intervals (CIs) constructed using 

standard normal quantiles are presented in eTables 1 and 3. This model fit was used to obtain marginally standardized 
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estimates of familial DCM prevalence among probands at a typical US advanced heart failure program, as described 

below. 

Age-specific cumulative risk for first-degree relatives 

For each screened first-degree relative, it was possible to determine whether DCM or partial phenotypes were present 

by the age of enrollment. This observation scheme yielded current status data, a special type of interval-censored 

survival data9, 10 that can be used to estimate age-specific cumulative risks. Let 𝑟 = 1,… , 𝑠𝑖 index the screened first-

degree relatives of proband 𝑖, 𝑗𝑖 = 1 (non-Hispanic White), 2 (non-Hispanic Black), 3 (Hispanic White), 
4 (Hispanic Black) denote the proband ethnicity-race group, 𝑘𝑖 = 1, 2, 3, 4 denote quartile of proband age at first 

diagnosis, 𝑙𝑖 = 1 (male), 2 (female) denote the proband sex, and 𝑙𝑖𝑟 = 1 (male), 2 (female) denote first-degree 

relative sex.  Age at disease onset, 𝑇𝑖𝑟, in a first-degree relative with characteristics {𝑗𝑖 , 𝑘𝑖 , 𝑙𝑖 , 𝑙𝑖𝑟} at site 𝑚𝑖 was assumed 

to have a marginal distribution with a Weibull baseline survivor function 𝑆0(𝑡) = exp[−exp(𝑎) 𝑡
𝑏] influenced by 

covariates and random effects through a proportional hazards model,9, 10 yielding the following marginal survivor 

function: 

𝑆(𝑡|𝑗𝑖 , 𝑘𝑖 , 𝑙𝑖 , 𝑙𝑖𝑟 , 𝑚𝑖) = exp[− exp(𝑎) 𝑡
𝑏 exp(𝜃𝑗𝑖 + 𝜙𝑘𝑖 + 𝜏𝑙𝑖 +𝜔𝑙𝑖𝑟 + 𝑣𝑚𝑖

+ 𝑣𝑗𝑖𝑚𝑖
)] (6) 

where 𝜃1 ≡ 𝜙4 ≡ 𝜏1 ≡ 𝜔1 ≡ 0, 𝑣𝑚𝑖
~𝑁(0, 𝜎𝑚

2 ) are random effects designed to reflect site-specific random variation 

in the marginal disease hazard for a first-degree relative, and 𝑣𝑗𝑖𝑚𝑖
~𝑁(0, 𝜎𝑗𝑚

2 ) are random effects designed to reflect 

variation across sites in the differences in these hazards between proband ethnicity-race groups at the same site. Under 

this model, exp(𝜙𝑘𝑖) is the ratio of the disease hazard for a first-degree relative of a proband in enrollment age quartile 

𝑘𝑖 to that for a first-degree relative of a proband in enrollment age quartile 4 at the same site who is identical on all 

other factors. The hazard ratios exp(𝜏𝑙𝑖) and exp(𝜔𝑙𝑖𝑟) are interpreted similarly. The hazard ratio comparing a first-

degree relative of a proband in ethnicity-race group 𝑗𝑖 to a first-degree relative of a non-Hispanic White proband at 

the same site who is identical on all other factors is a random variable given by exp(𝜃𝑗𝑖 + 𝑣𝑗𝑖𝑚𝑖
− 𝑣1𝑚𝑖

). As a result, 

exp(𝜃𝑗𝑖) is interpretable as the within-site hazard ratio for a typical advanced heart failure program in the US (i.e., 

one at the mean or mode of the random effects distribution describing the population of such programs)4-6 or the 

median within-site hazard ratio across such programs if 𝜎𝑗𝑚
2 > 0.7 In the event that 𝜎𝑗𝑚

2 = 0, all sites have the same 

within-site hazard ratio. 

The parameters in (6) were estimated as follows using current status data. The age at disease onset was unobserved 

because DCM and partial phenotypes are typically asymptomatic for months or years before presentation. However, 

enrolling a first-degree relative at a particular age (𝐶𝑖𝑟) and examining him or her allowed determination of whether 

𝑇𝑖𝑟 was before or after 𝐶𝑖𝑟 on the basis of whether the individual had disease at 𝐶𝑖𝑟. Defining the observable random 

variable 𝑌𝑖𝑟 = 𝐼(𝑇𝑖𝑟 ≤ 𝑐𝑖𝑟) and assuming conditional independence of 𝐶𝑖𝑟 and 𝑇𝑖𝑟 given {𝑗𝑖 , 𝑘𝑖 , 𝑙𝑖 , 𝑙𝑖𝑟 , 𝑚𝑖} yielded: 

Pr(𝑌𝑖𝑟|𝐶𝑖𝑟 = 𝑐𝑖𝑟 , 𝑗𝑖 , 𝑘𝑖 , 𝑙𝑖 , 𝑙𝑖𝑟 , 𝑚𝑖) = 

[1 − 𝑆(𝑐𝑖𝑟|𝑗𝑖 , 𝑘𝑖 , 𝑙𝑖 , 𝑙𝑖𝑟, 𝑚𝑖)]
𝑌𝑖𝑟 𝑆(𝑐𝑖𝑟|𝑗𝑖 , 𝑘𝑖 , 𝑙𝑖 , 𝑙𝑖𝑟 , 𝑚𝑖)

1−𝑌𝑖𝑟
 

Thus, 𝑌𝑖𝑟 was a Bernoulli random variable with conditional success probability Pr(𝑌𝑖𝑟 = 1|𝑐𝑖𝑟 , 𝑗𝑖 , 𝑘𝑖 , 𝑙𝑖 , 𝑙𝑖𝑟 , 𝑚𝑖) = 1 −
𝑆(𝑐𝑖𝑟|𝑗𝑖 , 𝑘𝑖 , 𝑙𝑖 , 𝑙𝑖𝑟 , 𝑚𝑖). Furthermore, this probability can be related to the parameters in (6) by applying the 

complementary log-log link: 

ln(− ln(1 − Pr(𝑌𝑖𝑟 = 1|𝑐𝑖𝑟, 𝑗𝑖 , 𝑘𝑖 , 𝑙𝑖 , 𝑙𝑖𝑟 , 𝑚𝑖))) = 𝑎 + 𝑏 ln 𝑐𝑖𝑟 + 𝜃𝑗𝑖 + 𝜙𝑘𝑖 + 𝜏𝑙𝑖 + 𝜔𝑙𝑖𝑟 + 𝑣𝑚𝑖
+ 𝑣𝑗𝑖𝑚𝑖

(7) 

With a single first-degree relative per proband, the model could have been fit using a standard GLMM with a binary 

outcome, site-level random effects, a complementary log-log link, and a linear predictor given by (7). However, with 

multiple first-degree relatives per proband, the effect of non-independence on estimated standard errors needed to be 

taken into account. The parameters and variance components for the model in (7) were therefore estimated using a 

generalized estimating equation (GEE)-type GLMM4, 11 with a binary outcome, site-level random effects, a 

complementary log-log link, a linear predictor given by (7), and a compound symmetry working correlation matrix 

within families. This model was fit with residual subject-specific pseudolikelihood as implemented in SAS/STAT 

PROC GLIMMIX, and inference on fixed effects used the Morel-Bokossa-Neerchal corrected empirical covariance 

estimator with sites as independent units.4, 11, 12 Estimation within this framework assumed that, given covariates and 

site, first-degree relative participation did not depend on 𝑌𝑖𝑟. 
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As in the familial DCM prevalence analysis, DCM or partial phenotypes in a first-degree relative were required to 

have no known cause for 𝑌𝑖𝑟 = 1. Thus, 𝑌𝑖𝑟 = 0 for individuals without LVSD or LVE as well as for those with DCM 

or partial phenotypes with a probable environmental cause. This approach is tantamount to assuming that first-degree 

relatives with a DCM phenotype arising from an environmental cause would not have developed disease absent this 

exposure. As these first-degree relatives were genetically at-risk, they may still have developed disease absent the 

exposure, and so this approach likely underestimates the age-specific cumulative risk. 

Parameter estimates, standard errors, and hazard ratios with Wald 95% CIs constructed using standard normal 

quantiles are presented in eTables 5 and 6. Select hazard ratios and their 95% CIs are also shown in Table 4 of the 

main text. This model fit was also used to obtain marginally standardized estimates of age-specific cumulative risk 

among first-degree relatives at a typical US advanced heart failure program, as described below. 

Marginally standardized estimates for a typical US advanced heart failure program 

In addition to identifying factors affecting disease risk in first-degree relatives, the models in (3) and (7) can produce 

two types of estimates of familial DCM prevalence and age-specific cumulative risk: conditional estimates for a single 

advanced heart failure program in the US or marginal estimates across all advanced heart failure programs in the US. 

These two types of estimates will not be equal unless there is no heterogeneity in these programs,4-6 and the appropriate 

choice depends on how the estimates will be applied.13, 14 In the current context, we expect that these estimates will 

be used by clinicians to understand risks among different groups at their programs as well as for comparison with 

prior single-center studies, in which case conditional estimates for a single advanced heart failure program in the US 

are most relevant.13, 14 For advanced heart failure programs in our study, empirical Bayes predictions of the random 

effects 𝑢𝑚𝑖
 and 𝑢𝑗𝑖𝑚𝑖

 ( or 𝑣𝑚𝑖
 and 𝑣𝑗𝑖𝑚𝑖

) could have been used to generate program-specific estimates,4, 13-15 but these 

would not apply to an external program not included in our sample.4, 13, 14 To facilitate application at such a program, 

conditional estimates for a typical advanced heart failure program in the US with 𝑢𝑚𝑖
= 𝑢𝑗𝑖𝑚𝑖

= 0 (or 𝑣𝑚𝑖
= 𝑣𝑗𝑖𝑚𝑖

=

0),4-6 which have the best expected within-program calibration for external programs,13, 14 were presented. Such a 

typical US advanced heart failure program is defined by being at the mean or mode of the random effects distribution 

describing the population of such programs in the US.4-6, 13, 14 

On the basis of the beta-binomial mixed model in (2) and (3), the familial DCM prevalence in the subpopulation of 

probands with characteristics {𝑧𝑖 , 𝑛𝑖} at a typical US advanced heart failure program was obtained as: 

Pr(𝐷𝑖 > 0|𝑧𝑖 , 𝑛𝑖 , 𝐮𝑚𝑖
= 0) = 1 −

∏ (1 − (1 + exp (−(𝛼 + 𝛽𝑗𝑖 + 𝛾𝑘𝑖 + 𝛿𝑙𝑖)))
−1

+ 𝜗𝑣)
𝑛𝑖−1
𝑣=0

∏ (1 + 𝜗𝑣)
𝑛𝑖−1

𝑣=0

(8) 

To generate marginally standardized16 ethnicity-race-specific familial DCM prevalence estimates at a typical US 

advanced heart failure program, the weighted average of prevalences in (8) was taken over {𝑘𝑖 , 𝑙𝑖 , 𝑛𝑖} in each ethnicity-

race group assuming balance across the eight possible sex and age quartile combinations and 𝑛𝑖~Poisson(4.53). The 

sum over 𝑛𝑖 was truncated at 31, the smallest 𝑛𝑖 for which the Poisson cumulative distribution function was within 

machine epsilon of 1. To marginalize over multiple ethnicity-race groups, the weighted average of the groups’ familial 

DCM prevalences determined as described above was taken with weights given by the appropriate conditional 

distribution derived from 2019 US census population estimates.17 For example, to calculate the marginally 

standardized familial DCM prevalence among Black probands, the average of the marginally standardized prevalences 

in Hispanic and non-Hispanic Black probands weighted by the estimated proportions of Hispanic and non-Hispanic 

Black individuals among those who identify as Black in the US population was taken. Further details regarding 

specific weights are provided in the footnotes to Table 2. The delta method18 as implemented in SAS/STAT PROC 

NLMIXED was applied to these parameter estimates and their covariance matrix to obtain estimates and standard 

errors for marginally standardized familial DCM prevalence estimates, and Wald 95% CIs were obtained using 

standard normal quantiles. Marginally standardized familial DCM prevalence estimates for various ethnicity-race 

groups are presented in Table 2 of the main text, and differences between these estimates are presented in eTables 2 

and 4. 

The age-specific cumulative risk for a first-degree relative with characteristics {𝑗𝑖 , 𝑘𝑖 , 𝑙𝑖 , 𝑙𝑖𝑟} at a typical US advanced 

heart failure program was obtained as: 

𝐹(𝑡|𝑗𝑖 , 𝑘𝑖 , 𝑙𝑖 , 𝑙𝑖𝑟 , 𝐯𝑚𝑖
= 0) = 1 − exp[− exp(𝑎) 𝑡𝑏 exp(𝜃𝑗𝑖 + 𝜙𝑘𝑖 + 𝜏𝑙𝑖 +𝜔𝑙𝑖𝑟)] (9) 
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Marginally standardized age-specific cumulative risk functions were obtained as the weighted average of 

𝐹(𝑡|𝑗𝑖 , 𝑘𝑖 , 𝑙𝑖 , 𝑙𝑖𝑟 , 𝐯𝑚𝑖
= 0) over the distribution of {𝑗𝑖 , 𝑘𝑖 , 𝑙𝑖 , 𝑙𝑖𝑟} or a subset of these factors in a subpopulation of first-

degree relatives for each 𝑡 = 1,… ,80. Further details regarding weights are provided in the legend to the Figure in the 

main text. The delta method18 was applied to these parameter estimates and their covariance matrix to obtain estimates 

of marginally standardized age-specific cumulative risk functions and their standard errors at each 𝑡, which were used 

to construct Wald pointwise 95% CIs at each 𝑡 using standard normal quantiles. These age-specific cumulative risk 

functions are shown in the Figure in the main text. 

Different choices of weights could yield different absolute familial DCM prevalence and age-specific cumulative risk 

estimates than those reported. However, these choices were designed to reflect the likely experience at a typical 

advanced heart failure program serving a population representative of the US population in terms of the ethnicity-race 

groups considered, which should be a broadly relevant presentation for practicing clinicians. Moreover, differences in 

the odds or hazard of disease between subpopulations of first-degree relatives at such a program are also reflected as 

odds and hazard ratios that do not depend on our choices for marginal standardization. To assist researchers wishing 

to obtain their own marginally standardized estimates under different assumptions, parameter estimates and covariance 

matrices for each model have been provided in the following supplemental files: 

1) fam_prev_ests_cov.csv (Supplement 2): For each model, this data set contains estimates for each parameter 

in the beta-binomial mixed model from (3) and (5) and their model-based covariance matrix. The MODEL 

column identifies the model in which a particular parameter was estimated, and the PARAMETER column 

identifies the parameter with data appearing in that row. The ESTIMATE column contains the parameter 

estimate, and the covariance matrix row for that parameter is displayed in the columns named for parameters. 

Each of these columns contains the covariance matrix column for the named parameter. 

2) fdr_risk_ests_cov.csv (Supplement 3): For each outcome, this data set contains estimates for each fixed effect 

parameter in the binary-normal GEE-type GLMM in (7) and their Morel-Bokossa-Neerchal bias-corrected 

robust covariance matrix. The OUTCOME column identifies the outcome model in which a particular 

parameter was estimated, and combination of PARAMETER and LEVEL columns identifies the parameter 

with data appearing in that row. The ESTIMATE column contains the parameter estimate, and the covariance 

matrix row for that parameter is displayed in the columns with names COLn. The number n in the ROW 

column indicates that the covariance matrix column for that parameter appears in COLn; for example, the 

covariance between LOG_ENROLL_AGE and FEMALE = Yes can be found in COL3 of the 

LOG_ENROLL_AGE row and COL2 of the FEMALE = Yes row. Reference levels with estimates fixed to 

zero and the corresponding rows and columns of the covariance matrix that are identically zero have been 

omitted. 
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eTable 1. Model Fit for the Marginal Probability of DCM in the Population of First-
Degree Relatives of Probands with Specified Characteristics at a Particular US 
Advanced Heart Failure Program 

Proband Characteristic Estimate Standard Error Odds Ratio (95% CI) P value 

Intercept -2.7354 0.2351 - - 

Non-Hispanic White 0 - 1.00 - 

Non-Hispanic Black 0.5146 0.1968 1.67 (1.14 – 2.46) 0.009 

Hispanic White 0.0432 0.3536 1.04 (0.52 – 2.09) 0.90 

Hispanic Black -0.1020 1.0741 0.90 (0.11 – 7.41) 0.92 

Enrollment age [15.78, 42.35] 0.3418 0.2428 1.41 (0.87 – 2.27) 0.16 

Enrollment age [42.38, 52.81] -0.1744 0.2662 0.84 (0.50 – 1.42) 0.51 

Enrollment age [52.83, 61.83] -0.1099 0.2598 0.90 (0.54 – 1.49) 0.67 

Enrollment age [61.86, 85.12] 0 - 1.00 - 

Female 0.3340 0.1776 1.40 (0.99 – 1.98) 0.06 

Variance Parameter Estimate Standard Error   

Site (𝜎𝑚) 0.3274 0.1360   

Ethnicity-race within site (𝜎𝑗𝑚) 0a -   

First-degree relative correlation 

(𝜗 (1 + 𝜗)⁄ ) 

0.0098 0.0316   

Estimated parameters for the beta-binomial mixed model from (3) and (5) were obtained using maximum likelihood with 
adaptive Gaussian quadrature. Model-based standard errors were obtained using the inverse Hessian, and two-sided p-values 
and Wald 95% confidence intervals were calculated using the standard normal distribution. Within-site odds ratios and their 
95% confidence intervals were obtained by exponentiating corresponding estimates on the model scale. Probands without living 
or screened first-degree relatives provided no information on the parameters of interest in the likelihood; all model-based 
estimates were therefore derived from 822 probands (8 Hispanic Black, 64 Hispanic White, 290 Non-Hispanic Black, 460 Non-
Hispanic White) with at least one screened first-degree relative. 
a The final model excluded this random effect because convergence occurred on the boundary constraint of zero when it was 
included. 
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eTable 2. Differences in Marginally Standardized Familial DCM Prevalences 
(Standard Definition) between Proband Subpopulations Defined by Self-Reported 
Ethnicity and Race at a Typical US Advanced Heart Failure Program 

Difference % (95% CI) 

Non-Hispanic Black – Non-Hispanic White 12.5 (2.9 – 22.1) 

Hispanic Black – Hispanic White -3.1 (-47.4 – 41.2) 

Black – White 11.3 (1.9 – 20.8) 

Hispanic White – Non-Hispanic White 0.9 (-14.3 – 16.2) 

Hispanic Black – Non-Hispanic Black -14.6 (-57.9 – 28.6) 

Hispanic – Non-Hispanic -1.4 (-15.9 – 13.1) 

Differences between marginally standardized estimates for familial DCM prevalence (standard definition) in Table 2 with 95% 

confidence intervals (CIs) obtained using the delta method. 
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eTable 3. Model Fit for the Marginal Probability of DCM or Partial Phenotypes in 
the Population of First-Degree Relatives of Probands with Specified 
Characteristics at a Particular US Advanced Heart Failure Program 

Proband Characteristic Estimate Standard Error Odds Ratio (95% CI) P value 

Intercept -1.6177   0.1661 - - 

Non-Hispanic White 0 - 1.00 - 

Non-Hispanic Black 0.1692 0.1442 1.18 (0.89 – 1.57) 0.24 

Hispanic White  -0.0916   0.2540 0.91 (0.55 – 1.50) 0.72 

Hispanic Black  -0.4102   0.7955 0.66 (0.14 – 3.15) 0.61 

Enrollment age [15.78, 42.35]   0.2800   0.1797 1.32 (0.93 – 1.88) 0.12 

Enrollment age [42.38, 52.81]   0.2054   0.1825 1.23 (0.86 – 1.76) 0.26 

Enrollment age [52.83, 61.83] -0.0790   0.1867 0.92 (0.64 – 1.33) 0.67 

Enrollment age [61.86, 85.12]   0 - 1.00 - 

Female  0.2619 0.1261 1.30 (1.01 – 1.66) 0.04 

Variance Parameters Estimate Standard Error   

Site (𝜎𝑚) 0.2417 0.0906   

Ethnicity-race within site (𝜎𝑗𝑚) 0a -   

First-degree relative correlation 
(𝜗 (1 + 𝜗)⁄ ) 

0.0457 0.0330   

Estimated parameters for the beta-binomial mixed model from (3) and (5) were obtained using maximum likelihood with 
adaptive Gaussian quadrature. Model-based standard errors were obtained using the inverse Hessian, and two-sided p-values 
and Wald 95% confidence intervals were calculated using the standard normal distribution. Within-site odds ratios and their 
95% confidence intervals were obtained by exponentiating corresponding estimates on the model scale. Probands without living 
or screened first-degree relatives provided no information on the parameters of interest in the likelihood; all model-based 
estimates were therefore derived from 822 probands (8 Hispanic Black, 64 Hispanic White, 290 Non-Hispanic Black, 460 Non-
Hispanic White) with at least one screened first-degree relative. 
a The final model excluded this random effect because convergence occurred on the boundary constraint of zero when it was 
included. 
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eTable 4. Differences in Marginally Standardized Familial DCM Prevalences 
(Expanded Definition) between Proband Subpopulations Defined by Self-
Reported Ethnicity and Race at a Typical US Advanced Heart Failure Program 

Difference % (95% CI) 

Non-Hispanic Black – Non-Hispanic White 4.9 (-3.2 – 13.0) 

Hispanic Black – Hispanic White -9.2 (-54.4 – 36.1) 

Black – White 4.3 (-3.9 – 12.5) 

Hispanic White – Non-Hispanic White -2.7 (-17.2 – 11.8) 

Hispanic Black – Non-Hispanic Black -16.7 (-60.8 – 27.3) 

Hispanic – Non-Hispanic -4.0 (-17.8 – 9.9) 

Differences between marginally standardized estimates for familial DCM prevalence (expanded definition) in Table 2 with 95% 

confidence intervals (CIs) obtained using the delta method. 
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eTable 5. Model Fit for the Age-Specific Cumulative Risk of DCM in a First-Degree 
Relative of a Patient with DCM at a Particular US Advanced Heart Failure Program 

Weibull Baseline Survivor 
Function Parameters Estimate SE 95% CI 

a -8.1069 0.9188 -9.9078 – -6.3061 

b 1.3554 0.2205 0.9232 – 1.7876 

Covariates Estimate SE P Hazard Ratio (95% CI) 

First-degree relative  

    Female -0.3339 0.2014 0.10 0.72 (0.48 – 1.06) 

Proband  

    Non-Hispanic White 0 - - 1.00 

    Non-Hispanic Black 0.6365 0.2063 0.002 1.89 (1.26 – 2.83) 

    Hispanic White 0.2468 0.3499 0.48 1.28 (0.64 – 2.54)  

    Hispanic Black 0.4102 0.8397 0.63 1.51 (0.29 – 7.82) 

    Diagnosis age [4.73, 34.33] 0.7816 0.3088 0.01 2.19 (1.19 – 4.00) 

    Diagnosis age [34.34, 44.16] 0.4936 0.3009 0.10 1.64 (0.91 – 2.95) 

    Diagnosis age [44.18, 53.62] 0.2041 0.3224 0.53 1.23 (0.65 – 2.31) 

    Diagnosis age [53.66, 82.67] 0 - - 1.00 

    Female 0.3465 0.1600 0.03 1.41 (1.03 – 1.93) 

Variance Parameters Estimate SE    

Site (𝜎𝑚
2 ) 0.1065 0.0820    

Ethnicity-race within site (𝜎𝑗𝑚
2 ) 0a -    

Compound Symmetry 0.0176 0.0304    

Residual 0.8687 0.0421    

Estimated parameters for the binary-normal GEE-type GLMM in (7) with a compound symmetry working correlation structure 
within each family were obtained using residual subject-specific pseudolikelihood. Bias-corrected robust standard errors were 
obtained using the Morel-Bokossa-Neerchal correction, and two-sided p-values and Wald 95% confidence intervals were 
calculated using the standard normal distribution. Within-site hazard ratios and their 95% confidence intervals were obtained by 
exponentiating corresponding estimates on the model scale. a and b are from the Weibull baseline survivor function of the 

form 𝑆0(𝑡) = exp[− exp(𝑎) 𝑡𝑏]. 1692 first-degree relatives contributed to this analysis (1 non-Hispanic White first-degree relative 

was excluded due to missing covariate data). 
a The final model excluded this random effect because convergence occurred on the boundary constraint of zero when it was 
included. 
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eTable 6. Model Fit for the Age-Specific Cumulative Risk of LVE, LVSD, or DCM in 
a First-Degree Relative of a Patient with DCM at a Particular US Advanced Heart 
Failure Program 

Weibull Baseline Survivor 
Function Parameters Estimate SE 95% CI 

a -4.9505 0.5662 -6.0602 –  -3.8409 

b 0.8224 0.1397 0.5486 – 1.0961 

Covariates Estimate SE P Hazard Ratio (95% CI) 

First-degree relative  

    Female -0.0583 0.1311 0.66 0.94 (0.73 – 1.22) 

Proband  

    Non-Hispanic White 0 - - 1.00 

    Non-Hispanic Black 0.2403 0.1279 0.06 1.27 (0.99 – 1.63) 

    Hispanic White 0.0395 0.2351 0.87 1.04 (0.66 – 1.65) 

    Hispanic Black -0.0706 0.6908 0.92 0.93 (0.24 – 3.61) 

    Diagnosis age [4.73, 34.33] 0.5109 0.1934 0.008 1.67 (1.14 – 2.44) 

    Diagnosis age [34.34, 44.16] 0.4690 0.1966 0.02 1.60 (1.09 – 2.35) 

    Diagnosis age [44.18, 53.62] 0.2445 0.1718 0.15 1.28 (0.91 – 1.79) 

    Diagnosis age [53.66, 82.67] 0 - - 1.00 

    Female 0.2031 0.1216 0.10 1.23 (0.97 – 1.56) 

Variance Parameters Estimate SE    

Site (𝜎𝑚
2 ) 0.0458 0.0345    

Ethnicity-race within site (𝜎𝑗𝑚
2 ) 0a -    

Compound Symmetry 0.0605 0.0309    

Residual 0.9130 0.0421    

Estimated parameters for the binary-normal GEE-type GLMM in (7) with a compound symmetry working correlation structure 
within each family were obtained using residual subject-specific pseudolikelihood. Bias-corrected robust standard errors were 
obtained using the Morel-Bokossa-Neerchal correction, and two-sided p-values and Wald 95% confidence intervals were 
calculated using the standard normal distribution. Within-site hazard ratios and their 95% confidence intervals were obtained by 
exponentiating corresponding estimates on the model scale. a and b are from the Weibull baseline survivor function of the 

form 𝑆0(𝑡) = exp[− exp(𝑎) 𝑡𝑏]. 1692 first-degree relatives contributed to this analysis (1 non-Hispanic White first-degree relative 

was excluded due to missing covariate data). 
a The final model excluded this random effect because convergence occurred on the boundary constraint of zero when it was 
included. 
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eTable 7. Vital Status of First-Degree Relatives at Proband Enrollment, by 

Proband Ethnicity and Race 

 Hispanic 
N = 566 

Non-Hispanic 
N = 6640 

 Black 
N = 48 

White 
N = 518 

Black 
N = 3135 

White 
N = 3505 

Deceased at proband 
enrollment, No. (%) 

17 (35) 109 (21.0) 754 (24.1)a 800 (22.8) 

a Actual denominator was 3133 due to 2 first-degree relatives having unknown vital status. 
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eFigure 1. Clinical Sites of the DCM Consortium. 
 

 
 
Shown are the 25 clinical sites of the DCM Consortium who enrolled probands and family members for this study through the close 
of family member enrollment on April 1, 2021. The Ohio State University site served as an enrolling site as well as the coordinating 
center for this study. The table below shows the probands and first-degree relatives contributed to the final sample in eFigure 2 per 
clinical site. One inactivated clinical site included in the table is not shown on the map. 
 
 

 Probands First-Degree Relatives 

Clinical Site No. % No. % 

Cedars-Sinai Medical Center 49 4.0 130 7.7 

Cleveland Clinic 110 9.0 153 9.0 

Emory University 45 3.7 48 2.8 

Houston Methodist 60 4.9 56 3.3 

Inova Heart and Vascular Institute 53 4.3 50 3.0 

Louisiana State University 25 2.1 18 1.1 

Medical University of South Carolina 8 0.7 9 0.5 

Medstar Washington Hospital Center 149 12.2 192 11.3 

New York University Langone Medical Center 26 2.1 39 2.3 

Northwestern University 34 2.8 35 2.1 

Ohio State University 168 13.8 318 18.8 

South Miami Hospital 32 2.6 38 2.2 

Stanford University 29 2.4 54 3.2 

Tufts University 49 4.0 42 2.5 

University of California Los Angeles Medical Center 16 1.3 14 0.8 

University of Texas Southwestern Medical Center 28 2.3 40 2.4 

University of Alabama Birmingham 32 2.6 43 2.5 
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 Probands First-Degree Relatives 

Clinical Site No. % No. % 

University of Arizona 52 4.3 52 3.1 

University of Maryland 26 2.1 20 1.2 

University of Michigan 18 1.5 24 1.4 

University of Mississippi 10 0.8 12 0.7 

University of Nebraska 38 3.1 69 4.1 

University of Pennsylvania 72 5.9 85 5.0 

University of Washington 39 3.2 36 2.1 

Washington University 49 4.0 113 6.7 

Inactivated Site 3 0.3 3 0.2 

Total 1220 100 1693 100 
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eFigure 2. DCM Precision Medicine Study Participant Recruitment 

 
Probands consented (n = 1265) 

Inclusion criteria not met (n = 27) 

Withdrew consent (n = 10) 

Unable to complete study 

assessments (n = 5) 

Probands enrolled (n = 1223) 
Non-Hispanic Black (n = 516) 
Non-Hispanic White (n = 602) 

Hispanic Black (n = 10) 
Hispanic White (n = 92) 

Other (n = 3) 

Probands analyzed (n = 1220) 

First-degree relatives of 
analyzed probands alive at 

proband enrollment 
(n = 5524) 

First-degree relatives 
interested in participating 

(n = 2217) 

First-degree relatives 
analyzed (n = 1693) 

First-degree relatives 
consented (n = 1781) 

Excluded from analysis due to 
self-reported ethnicity-race 

category outside of those used for 
analysis (n = 3) 

Study withdrawal (n = 4) 
Excluded from analysis 

due to insufficient medical 
record data to assign 
clinical status (n = 84) 
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