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The supplementary material includes proofs of Theorem 1, additional discussions, addi-
tional figures, and URLs of data sets used in simulation studies and real data applications.

A Technical proofs

A.1 Proof of Theorem 1(a)

Proof. Define

m(θQ(τ),θL) =

(
X̃{τ − I(Y − X̃>θQ < 0)}
X{I(Y > 0)− π(θL,X)}

)
,

M(θQ(τ),θL) =

∫
m(θQ(τ),θL)dP, Mn(θQ(τ),θL) =

∫
m(θQ(τ),θL)dPn,

where X̃ = (Z̃>, C̃>)>.
By the central limit theorem,

√
nMn(θQ(τ),θL)

d→ N

{
0,

(
τ(1− τ)D0 0p×p

0p×p D1,γ

)}
,

where

D0 = E
{

X̃iX̃
>
i

}
=

 E
{

Z̃iZ̃
>
i

}
E
{

Z̃iC̃
>
i

}
E
{

C̃iZ̃
>
i

}
E
{

C̃iC̃
>
i

}  =

(
A B
B> D

)
. (1)

Noticing the orthogonality of θQ(τ) and θL in the asymptotic distribution of
√
nMn(θQ(τ),θL)

and for simplicity, denote

mα(θQ(τ)) = Z̃{τ − I(Y − X̃>θQ < 0)}, mβ(θQ(τ)) = C̃{τ − I(Y − X̃>θQ < 0)},

and

Mn,α(θQ(τ)) =

∫
mα(θQ(τ))dPn, Mn,β(θQ(τ)) =

∫
mβ(θQ(τ))dPn.

Since θ̂
Q

n (τ) = (α̂n(τ)>, β̂n(τ) = 0)> is the restricted M-estimator, by Lagrange multi-
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plier method,

√
nMn,α(θ̂

Q

n (τ)) = 0, (2)
√
nMn,β(θ̂

Q

n (τ)) +
√
nλ̂n = 0, (3)

where λ̂n is the estimator of the Lagrange multiplier parameter.
Let ∆ be a compact neighborhood of the true θL, T be a compact subset of interval

(0, 1) containing Γ(τ ; X,θL), and Ψ is a compact neighborhood of the true θQ ◦Γ(τ ; X,θL),
where

θQ ◦ Γ(τ ;X,θL) = θQ(τs), and τs = Γ(τ ;X,θL) = max

(
τ − {1− π(θL,X)}

π(θL,X)
, 0

)
.

The class

F =

{
m(θQ(τ),θL), τ × θL × θQ ∈ T ×∆×Ψ

}
is clearly a VC class with a squared integrable envelope function XX>. Thus, F is a Donsker
class. Define

Gn(θQ(τ),θL) =
√
n
{
Mn(θQ(τ),θL)−M(θQ(τ),θL)

}
,

The fact that F is a Donsker class and both θ̂
Q

n (τ) and θ̂
L

n are consistent implies that

Gn(θ̂
Q

n (τ), θ̂
L

n) = Gn(θQ(τ),θL) + op(1),

which implies

√
nMn(θ̂

Q

n (τ)) =
√
nMn(θQ(τ)) +∇M (θQ(τ))

√
n (α̂n(τ)−α(τ)) + op(1), (4)

where,

−∇M(θQ(τ)) =

 E
{
fi(X̃

>
i θ

Q(τ)) Z̃iZ̃
>
i

}
E
{
fi(X̃

>
i θ

Q(τ)) Z̃iC̃
>
i

}
E
{
fi(X̃

>
i θ

Q(τ)) C̃iZ̃
>
i

}
E
{
fi(X̃

>
i θ

Q(τ)) C̃iC̃
>
i

}  = b

(
A B
B> D

)
,

with the last equality by Assumption 4.
Plugging (4) into (2) and (3) to get

√
nMn,α(θQ(τ))− bA

√
n(α̂n(τ)−α(τ)) = op(1), (5)

√
nMn,β(θQ(τ))− bB>

√
n(α̂n(τ)−α(τ)) +

√
nλ̂n = op(1). (6)
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Multiply (5) by −B>A−1 from left and add it to (6), then rearrange terms to yield

√
nλ̂n =

√
n
{
B>A−1Mn,α(θQ(τ))−Mn,β(θQ(τ))

}
+ op(1)

=
(
B>A−1,−I

)√
n

(
Mn,α(θQ(τ))
Mn,β(θQ(τ))

)
+ op(1)

d→
(
B>A−1,−I

)
·N
{

0, τ(1− τ)

(
A B
B> D

)}
= N

(
0, τ(1− τ)(D−B>A−1B)

)
.

Then, by (3),

S̃Qn,τ (α̂n(τ)) =
√
nMn,β(θ̂

Q

n (τ)) = −
√
nλ̂n

d→ N
(

0, τ(1− τ)(D−B>A−1B)
)
,

as claimed.

A.2 Proof of Theorem 1 (b) and (c)

Proof. Replace C̃i by Či = C̃i − E(C̃i|Z̃i) to obtain ŠQn,τ (α̂n(τ)), and repeat the same
argument as Section A.1, then

ŠQn,τ (α̂n(τ))
d→ N(0, τ(1− τ)Σ0),

where

Σ0 = E
(
ČiČ

>
i

)
− E

(
ČiZ̃

>
i

)
E
(
Z̃iZ̃

>
i

)−1
E
(
Z̃iČ

>
i

)
.

By definition, E(ČiZ̃
>
i ) = 0. Hence, Σ0 = E(ČiČ

>
i ).

Now we need to prove SQn,τ (α̂n(τ))
d→ N(0, τ(1− τ)Σ0), which is equivalent to prove

SQn,τ (α̂n(τ))− ŠQn,τ (α̂n(τ)) = op(1).

Consider the working model
C̃i = ξ>Z̃i + δi,

where δi are i.i.d. random vectors with zero mean and positive definite variance. Then,

C̃∗i − Či = −(ξ̂n − ξ)>Z̃i,

where ξ̂n is the least square estimator of ξ. By the consistency of ξ̂n, which is implied by
Assumption 3, and the asymptotic tightness of

√
nMn,α(θQ(τ)) established in Section A.1,

we have

SQn,τ (α̂n(τ))− ŠQn,τ (α̂n(τ)) = −(ξ̂n − ξ)>
{√

nMn,α(θQ(τ))
}

= op(1)Op(1) = op(1),

which completes the proof.
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The asymptotic properties of SQn = (SQn,τ1 , · · · ,S
Q
n,τK

)> can be derived as an extension of
the result on a fixed quantile. As shown in Koenker (2005), the between-quantile correlation
is

min{τi, τj} − τiτj.

Details of this proof are omitted.
Next, since C̃∗i = Či − (ξ̂n − ξ)>Z̃i, we have

C̃∗>C̃∗

n
=

Č>Č

n
− 2(ξ̂n − ξ)>

Z̃>Č

n
+ (ξ̂n − ξ)>

Z̃>Z̃

n
(ξ̂n − ξ)

= E(ČiČ
>
i )− 2op(1)E(Z̃iČ

>
i ) + op(1)E(Z̃iZ̃

>
i )

= E(ČiČ
>
i ) + op(1),

which implies that
n−1C̃∗>C̃∗

p→ E(ČiČ
>
i ) = Σ0.

Therefore, by Slusky’s Theorem, given β(τ) = 0,

TQτ = SQ>n,τ V−1n,τ SQn,τ
d→ χ2

q.

Thus, Theorems 1 (b) and (c) are proved.

B Coefficient-based test

We also tried the coefficient-based test in the quantile regression adjusting for individual
zero-inflation. The asymptotic covariance matrix of B̂n = (β̂n(τ1), · · · , β̂n(τK))> can be
estimated by bootstrap. In each round, we resample from the entire sample, and estimate the
set of quantile coefficients, B̂n, based on the positive part of the bootstrapped dataset. Such a
procedure will introduce the zero-positive uncertainty into the estimation, as expected. With
B̂

(b)
n , b = 1, · · · , B, we can compute the estimated covariance matrix Σ̂coef . Note that we use

bootstrap to avoid the computational difficulty in the kernel estimation of the conditional
local density.

By some simulation experiments, we find that it has an even higher power compared
to the ZIQRank test. However it has two drawbacks. (1) The Type I error is sometimes
uncontrolled, while the power is just improved marginally. This is because testing based
on coefficients is generally unstable, especially at extreme quantiles (Chen and Wei 2005).
(2) Also, it is computationally intensive because of the resampling. Therefore, we still
recommend the ZIQRank test for practical use.

C Partial combination procedures

Because of conditional independence, we can first combine the p-values from quantile regres-
sion, and further combine it with the p-value from logistic regression by Fisher’s combined
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probability test. The final test statistic follows a χ2
4 distribution, and it is robust to the

extent of zero-inflation regardless of the combination of the quantile p-values.
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Additional figures
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Figure S1: Comparisons of simulated and reference data on the mean-zeros and mean-
variance relationships. reference: a human embryonic stem cell scRNA-seq data that serves
as the starting data of simulation; raw: the simulated data by scDD package without mod-
ification; unadjusted: the simulated data with 0–25% extra zero-inflation; adjusted: the
simulated data with a continuous confounding covariate and 0–25% extra zero-inflation.
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(a) Description of quantile difference in a simulated dataset for unadjusted analysis.
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(b) Description of quantile difference in a simulated dataset for adjusted analysis.

Figure S2: Summary of quantile difference between cell conditions in simulated datasets,
with median of each statistic marked by dashed red vertical lines.
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(a) PR curves for all methods in unadjusted simulation study.
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(b) PR curves for all methods in adjusted simulation study.

Figure S3: PR curves of ZIQRank and existing methods in simulation studies.
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(a) Raw results about zeros on a simulated dataset for unadjusted analysis.
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(b) Raw results about zeros on a simulated dataset for adjusted analysis.

Figure S4: Summary of zero rates and p-value from logistic tests in simulated datasets, with
median of each statistic marked by dashed red vertical lines.
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(a) Summary of quantile difference, neoplastic vs. non-neoplastic cells, in GSE84465.
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(b) Summary of quantile difference, marker-positive vs. randomly extracted cells, in
GSE62270-GPL17021.

Figure S5: Descriptive statistics about quantile difference between cell conditions in
GSE84465 and GSE62270-GPL17021, with median of each statistic marked by dashed red
vertical lines.
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URLs of data sets

• Simulation starting data, a human embryonic stem cell scRNA-seq data

– scDatEx, embedded in scDD package: https://bioconductor.org/packages/

release/bioc/html/scDD.html

• Real data on conquer (http://imlspenticton.uzh.ch:3838/conquer/)

– GSE84465 (Homo sapiens, glioblastoma tumors, full-length by Smart-Seq2):
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84465,
https://pubmed.ncbi.nlm.nih.gov/29091775/

– GSE62270-GPL17021 (Mus musculus, cells from mouse intestinal organoids, UMI
by CEL-Seq):
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62270,
https://pubmed.ncbi.nlm.nih.gov/26287467/
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