

G250C/E555C non-reducing 3/5 biological replicates (total: 3/5 biological replicates)

G252C/G553C non-reducing 3/4 biological replicates (total: 3/4 biological replicates)

Gel i tim	#22 PK ne (min)	+	+ 2	+ 4	+ 8	+ 16	+ 32	_ 32	G252C/G553C mutant, +DTT condition annotated below	
250— 150—	F									
100— 75—	-+-			-						FimD
50—	101							-		Δ
37—										C
25—	÷			_	_		_	_		

Gel #20 - (raw image file for Fig. 2e, G252C/G553C non-reducing)	tin	PK ne (min)	G252C/G non annot	553C n -reduci ated ab	nutar ng bove	nt,	+ 0	+ 2	+ 4	+ 8	+ 16	+ 32	_ 32	
H	150-	Ĥ												
+	100– 75–	+				-		-	-				-	—FimD
×4	50-	×							_	_	-	-	-	—A
D X	37-	* 423		erre erre	81-10 (2012)			ene:			-			-C

Gel #21

ti	PK ime (min)	G250C/E5 +DTT annota	555C mu conditio ited abo	+ 0	+ 2	+ 4	+ 8	+ 16	+ 32	_ 32		
250- 150-	- H											
100-									_		-	—FimD
75–	+			_							-	
	- E											
50–				-					_			—A
												–C
37–	×											
25–	-					-	-	-	_	_	-	

Gel #22															
tim	PK e (min)	G250 + ar	DC/E DTT nnota	nt,	+ 0	+ 2	+ 4	+ 8	+ 16	+ 32	_ 32				
250— 150—	F														
100— 75—		-										-			—FimD
50							-								
50— 27_						-						-			—A —C
25_															
25	~~ F			and the second s		-			-		-]

Single timepoints (+PK samples and -PK samples) 1/3 biological replicates (total: 1/3 biological replicates)

All strains contain pKS02 (fimD expression vector)

- w = wildtype with pACYCDuet-1 (base expression vector)
- $\Delta = \Delta tamA$ with pACYCDuet-1 (base expression vector)
- $n = \Delta tamA$ with pCJS69 (tamA expression vector)
- A1 = $\Delta tamA$ with pCJS69 (tamA-G250C expression vector)
- A3 = $\Delta tamA$ with pCJS69 (tamA-G252C expression vector)
- A8 = $\Delta tamA$ with pCJS69 (tamA-G553C expression vector)
- B2 = $\Delta tamA$ with pCJS69 (*tamA*-E555C expression vector)
- $D1 = \Delta tamA$ with pCJS69 (tamA-G250C-E555C expression vector)
- $D3 = \Delta tamA$ with pCJS69 (tamA-G252C-G553C expression vector)

Unless otherwise indicated (by "DTT" or "CuS"), samples were subjected to normal pulse chase

DTT = samples were supplemented with 5 mM DTT

CuS = samples were supplemented with 100 μ M CuSO₄

Single timepoints (+PK samples and -PK samples) 1/3 biological replicates (total: 2/3 biological replicates)

All strains contain pKS02 (fimD expression vector)

- w = wildtype with pACYCDuet-1 (base expression vector)
- $\Delta = \Delta tamA$ with pACYCDuet-1 (base expression vector)
- $n = \Delta tamA$ with pCJS69 (tamA expression vector)
- A1 = $\Delta tamA$ with pCJS69 (tamA-G250C expression vector)
- A3 = $\Delta tamA$ with pCJS69 (*tamA*-G252C expression vector)
- A8 = $\Delta tamA$ with pCJS69 (tamA-G553C expression vector)
- B2 = $\Delta tamA$ with pCJS69 (*tamA*-E555C expression vector)
- $D1 = \Delta tamA$ with pCJS69 (tamA-G250C-E555C expression vector)
- $D3 = \Delta tamA$ with pCJS69 (tamA-G252C-G553C expression vector)

Unless otherwise indicated (by "DTT" or "CuS"), samples were subjected to normal pulse chase

DTT = samples were supplemented with 5 mM DTT

CuS = samples were supplemented with 100 μ M CuSO₄

Single timepoints (+PK samples and -PK samples) 1/3 biological replicates (total: 3/3 biological replicates)

All strains contain pKS02 (fimD expression vector)

- w = wildtype with pACYCDuet-1 (base expression vector)
- $\Delta = \Delta tamA$ with pACYCDuet-1 (base expression vector)
- $n = \Delta tamA$ with pCJS69 (tamA expression vector)
- A1 = $\Delta tamA$ with pCJS69 (*tamA*-G250C expression vector)
- A3 = $\Delta tamA$ with pCJS69 (tamA-G252C expression vector)
- A8 = $\Delta tamA$ with pCJS69 (tamA-G553C expression vector)
- B2 = $\Delta tamA$ with pCJS69 (tamA-E555C expression vector)
- D1 = $\Delta tamA$ with pCJS69 (tamA-G250C-E555C expression vector)
- $D3 = \Delta tamA$ with pCJS69 (tamA-G252C-G553C expression vector)

Unless otherwise indicated (by "DTT" or "CuS"), samples were subjected to normal pulse chase DTT = samples were supplemented with 5 mM DTT CuS = samples were supplemented with 100 µM CuSO₄