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This section presents the necessary calculations, proofs and the rate laws used for simula-
tion studies.

1 Two-node networks
Considering the inability of a single protein network to provide adaptation, we now turn
to a two-protein network. The network comprises two proteins C and A, which are
connected; A is further connected to the external source of disturbance (input D), and the
concentration of C is considered as the “output species”. Let us denote the concentration
of A, C and the disturbance species D by x1(t), x2(t),and d(t) respectively. The resultant
linearized state space representation is:

ẋ = Ax + Bd (1)

ẋ =

[
a11 a12
a21 a22

] [
x1
x2

]
+

[
α1
0

]
d (2)

According to the previously derived conditions for adaptation (Eq.5 and Eq. 9 of the
paper), the output state x2 has to be controllable by the applied input. This demands a
non-zero value for a21, i. e. there should exist an edge from A to C. As per the second
condition for adaptation, the final value of the linearized output state x2 should be zero,
and the system matrix A should be Hurwitz.
Denote the steady-state value as x∗ =

[
x∗1 x∗2

]T . Then, at steady state,[
0
0

]
=

[
a11 a12
a21 a22

] [
x∗1
x∗2

]
+

[
α1
0

]
d (3)

For any vector of the form
[
x∗1 0

]T to be a solution to the above system of equations
requires a21 to be zero. This is a violation of the controllability condition. Therefore,
it can be concluded that a two-node network with different input–output nodes cannot
provide adaptation.
To examine an alternate possibility, let us now consider the input node A itself as the
output node as well. Note that the state x1 is always controllable by the disturbance ∀α1 ̸=
0. Also, if a22 is made zero possibly with a positive self loop on C, then, the final steady-
state value of x1 can be zero, irrespective of x2. In this case, for A to be a stable, a21a12 has
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to be negative. This condition maps to a negative feedback between A and C (as shown in
Fig 3 of the main text). Taken together, the admissible topology must have

1. a22 = 0, =⇒ possible positive self loop on C

2. a21a12 < 0 =⇒ negative feedback between A and C .

1.1 Toilet Flush Phenomenon
To demonstrate further, let us consider a network of three proteins, X1, X2, and X3,
where X1 is connected with X2, X2 is connected with X3, and X3 is connected with X1.
Let the output node, X1, be perturbed with an input, u. If we adopt mass-action kinetics
and assume the total mass to be conserved, i. e. [X1] + [X2] + [X3] = 1, thereby leaving two
independent states, the state equation can be written as

˙[X1] = k1u(1 − [X1] − [X2]) − k2[X1]

˙[X2] = k2[X1] − k3[X2]

For the case of zero input, the steady-state values are [X1]
∗ = [X2]

∗ = 0. It can be shown
by our method that, for adaptation, k3 has to be zero, but after a single step, the steady-
state values of the states become [0, 1], thereby rendering the system linearized around the
new steady-state uncontrollable. Hence the voltage gated Na+ channel responds only to
the first step change in the environment.

C

A

Output

Disturbance

Fig S1. Admissible two-node topologies. The normal (blue) arrowheads signify
activation, while the bar-headed (red) arrows signify repression.

2 Equivalence between conditions between adaptation
It was shown in the previous literature that the condition for adaptation is 1) one of the
zeros in the transfer function to be placed in the origin. 2) In this work, we have shown
for a system (A, B, C, D) to provide adaptation the necessary condition is CA−1B = 0.
We argue that these two claims are equivalent. To prove this claim, we first establish
1 → 2.
Proof A proper and stable transfer function H(s) which provides adaptation can be ex-
pressed as

H(s) =
Nn−1s

n−1 +Nn−2s
n−2 + · · ·+N1s

αn−1sn + αn−1sn−1 + · · ·+ α1s+ α0
(4)

The corresponding state space representation (A, B, C, D) can be written assuming zero
pole zero cancellation (full controllbility) can be obtained as

A =


0 1 · · · 0
0 0 1 · · · 0
...

...
...

...
−α0 −α1 −α2 · · · −αn−1

, C =
[
0 N1 N2 · · · Nn−1

]
, B =


0
0
...
1

, and D = 0
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With the structure of (A, B, C, D) it can be seen that CA−1B = 0 which proves the forward asser-
tion.
Subsequently, it is to be proved that the zero at origo condition amounts to the condition derived in
the main script.
Proof : For a given state space structure (A, B, C, D) the transfer function can be written as

H(s) = C(sI − A)−1B

. The zero at the origo means zero final value of the step response (Y(s)) of the system.

Y(s) =
H(s)

s
(5)

lim
t→∞y(t) = lim

s→0
sY(s) (6)

lim
t→∞y(t) = lim

s→0
H(s)) (7)

lim
t→∞y(t) = lim

s→0
(C(sI − A)−1B) (8)

=⇒ C(A)−1B = 0 (9)

So, it can be seen that both the assertion and its converse are true so the condition for adaptation
derived in this work is equivalent to the standard condition of zero at the origo.

2.1 Derivation of Eq 34 from Eq 9 of the paper
: In this subsection, we argue that the infinite precision condition derived in equation Eq 9 is a more
general than the one derived in Eq 34. The infinite precision condition is obtained as

CA−1B = 0 (10)

For the specific case of Eq 34, the input disturbance is applied on the first node and the output is
considered as the concentration of the kth node. Therefore the B ∈ RN and C ∈ R1×N matrix
are of the form βe1 and ζeT

k respectively where ej ∈ RN are unit vectors across the jth axis and
β, ζ are nonzero scalars. It is to be noted that since A is Hurwitz as per the stability condition the
determinant is non-zero and will be the denominator in the expression of CA−1B. According to
the very definition of matrix inverse we know that the (i, j)th element of det(A)A−1 refers to the
minor of the (j, i)th component of A. Due to the specific structure of B, A−1B will be a scaled
version of the first column of A−1. Similarly with the given structure of C the expression CA−1B
returns a scaled version of the (k, 1)th element of det(A)A−1 which in turn is the minor of the
(1,k)th component of the A matrix.

3 Generalization
This section deals with the necessary results and demonstrations that act as the stepping stones for
the results shown in the main text.

Theorem 1. An N-node controllable network with multiple loops and no common nodes cannot provide
adaptation if the effective signs of all the loops are positive.

Proof. Let Q be the set of all the controllable candidate motifs containing multiple loops with no
common nodes but edges connecting each loop. Further, it is evident from the statement of the
theorem that every node is involved in exactly one loop. Suppose, an element P in Q consists of
Lp number of loops. It is evident that for P to be controllable, it has to contain at least N edges.
Therefore, the controllability condition requires P to have N+ Lp − 1 edges. In this present context,
the minimal motifs can be thought of as the elements in Q which has N+ Lp − 1 number of edges
and Lp number of loops. Define the set Φ ⊂ Q consisting of all possible minimal motifs in Q.
In order for a minimal motif in Φ to provide adaptation, it must satisfy the adaptation condition
Eq 34. This can be achieved if and only if at least one of the diagonal elements of the A matrix is
zero (refer to SI). Let us assume, that the Dth

z row of the A matrix contains the zero diagonal. Since
none of the loops share any common node, the Dth

z node must be associated with only one loop
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denoted by Lz. Suppose Lz involves Nz number of nodes. The set Q contains all the elements in A
matrix that correspond the loop Lz. Suppose Az ∈ RNz×Nz be the sub matrix of A that captures the
connection patterns of all the Nz nodes involved in Lz. Since each node is involved in only one loop
the structure of the associated A matrix can be written as

A =

Au 0 0
Q1 AZ 0
Q2 Q3 ANz

 (11)

where, Au ∈ RNu×Nu is the sub matrix that captures the upstream loops to Lz and ANz ∈
R(N−Nz)×(N−Nz) involves all the loops except the upstream loops and Lz. The sub matrix Qi cap-
tures the downward edges joining the loops. If the spectrum of Az, and ANz are νAz and νANz

respectively then the spectrum of A (νA) can be expressed as

νA = νAu

⋃
νAz

⋃
νANz

(12)

It is evident from equation (12) that for A to be Hurwitz, Az has to be Hurwitz. Imposing the
stability criterion as defined in the equation Eq 26 on Az,

sign(|Az|) = (−1)Nz (13)

Since one of the diagonal components of Az is zero, the determinant in this case is the product of all
the elements mapping to all the edges involved in the Lz. From combinatorial matrix theory [1], the
sign assigned to a loop with Nz number of nodes in the determinant of a matrix can be written as
(−1)(Nz)−1.

|Az| = (−1)(Nz−1)
Nz∏
i=1

αi, αi ∈ Q (14)

Therefore, using equation (13) we can say for A to be Hurwitz the following condition should hold

sign(|Az|) = sign((−1)(Nz−1))sign

( Nz∏
i=1

αi

)
(15)

(−1)Nz = sign((−1)(Nz−1))sign

( Nz∏
i=1

αi

)
(16)

=⇒ sign

( Nz∏
i=1

αi

)
= −1 (17)

From (17), it is clear that, if the cumulative signs for all the loops of any candidate motif in Φ are
positive then the resultant A becomes unstable, failing to provide adaptation.

Theorem 2. An N− node network containing multiple loops with no common species and no edge connecting
the loops cannot provide adaptation.

Proof. As established in the methodology section, the underlying linearized dynamical system has
to be controllable by the external disturbance input to perform adaptation. Now, for an N-edge
network with Lm loops with no common nodes between them, the associated system matrix A can
be written as

A =

[
S 0
0 T

]
(18)

where, s consists of the loop element involving the input node x1 and T comprises elements repre-
senting all the remaining Lm − 1 loops. To avoid the trivial scenario, we consider that the output
node is not involved in any loop with the input network. Let the loop involving the input node
x1 involves n1 number of nodes then S ∈ RN1×N1 and T ∈ R(N−N1)×(N−N1). It is to be noted
that if the output node is involved in a loop with the input node, then the effective network order
reduces to N1. In order to avoid such trivial cases, we assume that the output is involved in any of
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the remaining Lm − 1 loops. Given B =
[
β 0...

]T
=

[
Bs1×n1 01×(n−n1)

]T associated Kalman
controllability matrix (K) for the pair (A, B) can be evaluated as

K =

[
Bs

T SBs
T S2Bs

T · · · S(N−1)Bs
T

0 0 0 · · · 0

]
(19)

=⇒ dim(Im(K)) ⩽ dim(Im(S)) < N (20)

where, Im(·) denotes the column space of a matrix, and dim(·) calculates the dimension of a given
vector space. From (20), it is clear that the Kalman rank condition is not satisfied in this case, leading
to failure in achieving adaptation.

Therefore, the problem of uncontrollability discussed in Theorem 2 can be circumvented by plac-
ing at least one connecting edge between each loop with no common nodes. In that case, the ques-
tion of stability has to be taken into consideration.

3.1 Two principal means of achieving infinite precision
: The infinite precision equation represented in Eq 34 involves computation of the minor of the
term that maps back to an edge from the output to the input node. In an N−node network (x1,X−
2, · · · , xN as the concentration of the 1st, 2nd, · · · , Nth node respectively), if the concentration of
the input node is considered as the first node (concentration x1) and the kth node as output with the
respective concentration expressed as xk, then according to Eq 34, the

Ã := minor(A1k) = minor

(
∂ẋ1

∂xk

)∣∣∣∣
x∗

= 0

. For the system matrix A ∈ RN×N there are N! number of terms present in the determinant
expression in which A1kÃ involves (N − 1)! number of terms. From combinatorial matrix theory,
it is well known that ( [1]) each term in the determinant expression of any diagraph matrix can be
expressed as the product of the diagonal entries and loops with no mutual nodes. Following this,
it can be said that each term of Ã contains exactly one forward path from the input to the output
node. It is to be noted that each of the (N− 1)! terms in the expression of Ã contains N− 1 elements.
In terms which refer to the forward paths with less than N−1 number of edges, the remaining entries
are composed of the diagonal and the loop elements. It is obvious that there are two ways in which
all the terms of Ã sum up to zero

1. All the terms are zero individually.

2. There exist terms with equal and opposing actions.

As discussed earlier Ã contains (N− 1)! terms. Each term contains exactly one forward path from the
input to the output node. One option can be to have a network without any forward path but this
leads to uncontrollability of the output node. So the only other option is to make all the forward
paths with N− 1 edges absent along with at least one of of the diagonal elements to be zero such that
all the terms are individually zero. This is exactly what is referred as the opposer module in [2]
In the second case, the non-zero terms can be grouped in to three classes. In this context, let us
define certain notations and functions that shall be helpful in putting things in perspectives. Suppose
set NPL contains all the forward paths and loops of the network, set V contains all the nodes. Also,
N : NPL → D ⊂ V returns all the nodes involved in a given forward path P ∈ N. Then, cardinality
of the set N(P) provides the number of nodes involved in the forward path P. AP∈S refers to the
component of the A matrix that represents P. Since, A acts as the diagraph matrix this is a ono-to-
one mapping. Therefore, P and AP shall be used interchangeably to reduce the abundant notations.
i) Let us consider two forward paths F1 ∈ NPL with f1 nodes, F2 ∈ NPL with f2 nodes and a loop
L involving p nodes such that N(L ∩ (F1 ∪ F2)) = Φ. Σf1 is the permutation set of all diagonals
(N− f1 −p− 1) except the ones situated in N(L)∪N(F1) similar notations are also invoked for F2. For
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this case, the expression of Ã concerning the aforementioned loops. forward paths can be written as

Ã = (−1)f1+p−1
∑
Σf1

F1LDσN+f1−p−1

+ (−1)f2+p−1
∑
Σf2

F2LDσN+f2−p−1

+ (−1)f1−1
∑
Σf1D

F1LDσN−f1−1

+ (−1)f2−1
∑
Σf2D

F1LDσN+f2−p−1

=⇒ (−1)N−2L

(∑
Σf1

F1|DσN+f1−p−1 |+
∑
Σf2

F2|DσN+f2−p−1 |

)

+ (−1)N−1
( ∑

Σf1D

F1|DσN−f1−1 |+
∑
Σf2D

F1|DσN+f2−p−1 |

)

Now, the only way to achieve Ã = 0 while ensuring stability ((12)) is to have sign(F1) = (−1)sign(F2)
ii) Let us consider two forward paths F1 ∈ NPL with f1 nodes, F2 ∈ NPL with f2 nodes and two
loops L1, L2 involving p1 and p2 nodes such that N(L1) ∩ N(F2) = Nj , N(L2) ∩ N(F1) = Nk and
N(L1) ∩ N(L2) = Nl. It is to be noted that in this case, apart from F1 and F2 there exist two other
forward paths 1) From the input node (denote as node 1) to the Nth

k node via F1, then from Nth
k to

the Nth
l node via L2 and lastly from Nth

l to the Nth
j via L1 and from Nth

j to output node (denote as
kth node) via F2. Let us call this as F12 2) From the input node (denote as node 1) to the Nth

j node
via F2, then from Nth

j to the Nth
l node via L1 and lastly from Nth

l to the Nth
k via L2 and from Nth

k

to output node via F1. Let us denote this as F21 In this case as well the terms in the expression of
Ã shall be similar to the previous case except an addition of two forward paths F1 and F2. Now,
the only way to mutually cancel the terms in Ã concerning the forward path F1 and F2, assuming
F1 and F2 are of the same sign is to have sgn(L1) = (−1)sgn(L2) in that case it can be seen that
sgn(F12F21) = sgn(L1L2) = −1. This means the forward paths F12 and F21 are of the opposite sign.
iii) Let us consider two forward paths F1 ∈ NPL with f1 nodes, F2 ∈ NPL with f2 nodes and two
loops L1, L2 involving p1 and p2 nodes such that N(L1) ∩ N(F2) = Nj , N(L2) ∩ N(F1) = Nk and
N(L1) ∩ N(L2) = Φ. The corresponding expression for Ã can be written as

Ã = (−1)f1+p1−1F1LDσN−f1−p1−1

+ (−1)f1−1F1DσN−f1−1

+ (−1)f2+p2−1F2LDσN−f2−p2−1

+ (−1)f2−1F1DσN+f2−1

=⇒ (−1)f1F1DσN−f1−p1−1

(
(−1)p1−1L1 + F1Dσp1

)
︸ ︷︷ ︸

DL1

+ (−1)f2F2DσN−f2−p2−1

(
(−1)p2−1 + F1Dσp2

)
︸ ︷︷ ︸

DL1

=⇒ (−1)p1F1|DσN−f1−p1−1 |DL1

+ (−1)p2F2|DσN−f2−p2−1 |DL1

Assume F1 and F2 are of the same sign then

=⇒ (−1)p1DL1 + (−1)p2DL1 = 0 (21)
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Again, for stability, we know

sgn

(
DN−p1−p2DL1DL2

)
= (−1)N (22)

sgn

(
DL1DL2

)
= (−1)p1+p2 (23)

The only way to satisfy (21) sign
(
DL1

)
= (−1)p1+2m+1, sign

(
DL2

)
= (−1)p2+2m or sign

(
DL1

)
=

(−1)p1+2m, sign
(
DL2

)
= (−1)p2+2m+1 where, m ∈ I+. In both the cases sign

(
DL2DL1

)
=

(−1)p1+p2+2m+1 =⇒ (−1)p1+p2+1

This again is the violation of the stability condition depicted in (23). Therefore the only way to
drive Ã to zero is to have incoherrent feedforward paths considering all the diagonal elements are
non-zero and negative.
It has already been established in the main text that in order for the network to be able to provide
adaptation, it has to be controllable with respect to the external disturbance. In the following theo-
rem, we argue that there exists at least one forward path from the input to the output node for the
system to be controllable.

Theorem 3. For an N−node network with different input and output nodes, considering the states as the
concentration of the proteins the resultant state space system is output controllable if there exists at least one
forward path from the input to the output node.

Proof. In order to prove the above theorem, we have to show that the system is not output control-
lable if there exists no forward path from the input node to the output node.
Without any loss of generality, let us denote the input node as the first node with concentration x1
and the same for the kth node (xk) is considered as the output. Assume, there are p nodes which
are connected with the input node in such a way that there exists at least one forward path from
the input node to all of the P nodes. None of the remaining N − P nodes can be reached from the
input node. Using the property that the system matrix A for the linearised state space system acts as
a digraph matrix for the network,

A =

[
A1 A12
A21 A2

]
(24)

where, A1 ∈ RP×P captures the inter connections among the P nodes reachable from the input
node, A12 ∈ RP×N−P contains the connections from the N − P nodes to the first P nodes, A12 ∈
RN−p×P contains the connections from the first P nodes to the remaining N − P nodes, and A2 ∈
RN−P×N−P reflects the interconnections among the last N− P nodes. Since there exists no froward
path from the input node to any of the N− P nodes A21 is a zero matrix. The actuator matrix B can
be written as

B =
[
β 0 · · · 0

]T
=

[
B1 0

]T (25)

where, B1 ∈ R1×P is an elementary vector with the first element being non-zero (β) as the input
node is considered as the first node. Given the pair (A, B) the controllability matrix (Γc) can be
written as

A =

[
A1 A12
A21 A2

]
, B =

[
B1 0

]T (26)

Γc =

[
BT

1 A1BT
1 · · · AN−1

1 BT
1

0 0 · · · 0

]
(27)

=⇒ dim(Im(Γc)) ⩽ dim(Im(A1)) < N (28)

where Im(.) denotes the column space of a matrix and dim(.) calculates the dimension of a given
vector space. From (28) it is clear that the Kalman rank condition can not be achieved in this case.
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3.2 Necessary results for Theorem 5 of the paper
In this section, we shall delve into the necessary details that are instrumental to the proof of theorem
Theorem 5 in the main manuscript. We first present a constructive method to demonstrate the
number of exchanges of indices required for any loop with k nodes is k − 1 thereby making the
associated prefix sign to be (−1)k−1. Subsequently, we derive a number of important results that
enables the application of mathematical induction technique adopted for the proof of theorem.

3.2.1 Number of exchanges required for a k−node loop

Let us assume a loop Lk engaging nodes xtj , ∀j = 1(i)k such that, the term in the characteristic
polynomial of the associated digraph matrix A that represents Lk can be written as

A(Lk) = Sk × At1 ,t2 At2 ,t3 At3 ,t4 At4 ,t5 · · ·Atk−1,tkAtk ,t1 (29)

where, Sk is the prefix sign which is determined by the number of required manipulations to covert
the loop element to product of k diagonals. Since Lk contains k nodes A(Lk) is composed of k
elements- each from the columns (rows) in the set {ti}k1 .
From (29), the first obvious exchange can be between the column index of At1 ,t2 with the same of
At2 ,t3 leaving the modified first term as At1 ,t3 with a subsequent exchange of the row element of
the first term with At3 ,t4 . Repeating this exercise for k− 2 times we get

Ã(Lk) = Sk ×
k−1∏
j=2

At1 ,tkAtj ,tjAtk ,t1

Therefore, the final exchange between the column index of At1 ,tk and the same for Atk ,t1 results in
product of k diagonals rendering the total number of exchanges to k− 1. Therefore the prefix sign
Sk can be determined as (−1)k−1.

3.2.2 Necessary results for N−node network with no negative feedbacks

The coefficient Ek of sN−k in the characteristic polynomial of A can be expressed as

Ek =

k∑
p=2

∑
L

p
i,j

(
(−1)k+p−1S(k−p)

L
p
i,j

)
+ Rk +

NCk∑
i=1

(−1)kσi
kDiag(A)

(
S(k−p)

L
p
i,j

:=
∑ [

Sk−p

/
D

L
k−p
j

])
(30)

As described in the main text, that each element of the first two terms in (30) contains at least one
loop. In the scenario, k = 1(i)3, each element shall contain exactly one loop. Therefore from Eq 45
of the main text, all the elements are negative for k = 1(i)3.
For k ⩾ 4, the elements of the first two terms in the expression of Ek may contain multiple loop.
We shall first investigate the case of the first term. Let us assume that the element containing
ith term in the set Lp

j is positive for any k ⩾ 4 and greater in absolute value than all the other
elements with negative sign. Since, all the loops are assumed to be of positive sign the sign of
(−1)k+p−1S(k−p)

L
p
j,i

- the term associated with the L
p
j,i in (30) has to be positive. It can be easily ver-

ified that if all the elements in (−1)k+p−1S(k−p)

L
p
j,i

are positive then the corresponding expression

for Ek−p+1 shall be negative. Let us assume there exist a set of Nl of cardinality l containing ele-
ments in (−1)k+p−1S(k−p)

L
p
j,i

that are positive and greater than the rest of negative components in

absolute terms. Further, the expression Ek−p+1 can also be written as the second and the third term
of Ek−p+1 can be combined as

Rk−p+1 +

NCk−p+1∑
i=1

(−1)k−p+1σi
k−p+1Diag(A) =

∑(
(−1)k−p+1S(k−p)

L
p
Qp ,j,l

αl

)
(31)
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where, αl is the sum of the diagonal elements that have no common indices with S(k−p)

L
p
Qp ,j,l

. There-

fore, if we start from the element max
(
S(k−p)

L
p
Qp ,j,l

)
accommodate all the positive elements in decreas-

ing order in (31) followed by the loops which has p − 1 nodes common with all the items in Nl.
It can be seen that if the αl for the lth element in S(k−p)

L
p
Qp ,j,l

has L diagonals then αl for the (l + 1)th

element which has p− 1 common rows and comlumns with the previous entry contains sum of l− 1
recurring diagonals. Therefore, |αl+1| < αl. This implies the overall sign of Ek−p+1 is negative (all
the diagonal elements are negative).
The second term of (31) contains combination of the loops and their associated minors that do not
contain the jth column (or row).For the second term of EK to be positive, at least one element in
Rk has to be positive. Without any loss of generality, let us assume that the ath term is positive and
greater than the other negative terms. Furthermore, it has already been shown in the case for the
first term of Ek that any positive principal minor with p rows and columns can not be greater than
the sum of all the remaining principal minors with same number of rows and columns for then
Ep+1 shall be negative thereby failing to satisfy the stability condition in Eq 26. Therefore, the only
option is ((

Lp
/
L

p
j

)
w
−

∏
Ai,i︸ ︷︷ ︸

i∈node(Lp/Lw
j )

w

)
>

∑
i ̸=w

(
Lp

/
L

p
j

)
i

(
(−1)k+p−1S(k−p)

L
p

i,(Lp/L
p
j )i

)
(32)

Again, through the construction identical to the first case (as shown for the case of the first term of
Ek), we can show that indeed if (32) is satisfied then Ep+1 shall be negative rendering the system
unstable. Therefore, the only amicable conclusion is the second term is also negative.

3.3 Hurwitz stability of Negative feedback loops and IFFLP
The Hurwitz condition in systems theory guarantees the exponential asymptotic stability of the
linearised system. Further, the Hartman-Grobman theorem ensures the stability of the correspond-
ing non-linear system if its linearised counter part is exponentially stable. Therefore, to comment
on the stability of the actual non linear system, we first investigate whether the system matrix A of
the linearised system is Hurwitz. For any matrix A ∈ RN×N to be Hurwitz, one of the necessary
conditions is the following

N∑
k=1

Mi
Ak > 0∀i = 1(i)N (33)

where, Mi
Ak is the all possible ith principal minors of A. It is evident from (33), there are N condi-

tions that need to be satisfied for any N×N matrix to be Hurwitz. As established before, the linearised
system matrix A can be considered as the diagraph matrix of the associated network structure. In
this scenario, the sum of all possible ith principal minors can be expressed as all possible i−node
loops present in the network structure, loops with less than i nodes and diagonals. To illustrate fur-
ther, assume the network has two loops L1 and L2 containing N1 and N2 number of nodes. Further,
assume there exists no common nodes in L1 and L2. In that case, the expression for the sum of all ith
(i > N1 +N2) principal minor can be written as

N∑
k=1

Mi
Ak = (−1)i

(∑
σDi

+ (−1)N1−1σD(i−N1)|L1
(34)

+(−1)N1−1σD(i−N2)|L2
+ (−1)N1+N2−2σD(i−N1−N2)|L1,L2

)
(35)

where, σi|t is the permutation operator that chooses k diagonals from the set of N (A is N × N)
diagonal elements, the subscript t means the choice of i diagonal elements should be such that it
does not have any common co-ordinate with the elements in t. For a network with a single loop
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(Lp) of p1 nodes and cumulative sign being negative the sum of all the principal minors of order i
can be written as

N∑
k=1

Mi
Ak =


(−1)i

(∑
σDi

)
i < p1

(−1)i
(
(−1)p1−1σD(i−p1)|Lp

+
∑

σDi

)
i ⩾ p1

It can be seen in both the scenarios (i < p1, i ⩾ p1) the sign of the sum of ith order minor is always
positive given the diagonals and the L1 is of negative sign. Hence presence of negative feedback
loop satisfies the Hurwitz condition for exponential stability.
In the case of feedforward networks without any loop the sum of the ith principal minors shall
always be sum of the combination of i diagonal elements chosen from N diagonals in which case,
the sum of the principal minors shall always be positive ∀i given the diagonal elements are negative.
This also guarantees the Hurwitz property of the networks with only feedforward paths.
For an N × N matrix there are N! number of terms present in the determinant expression. It can
be proved that every term in the expression contains at least one loop except the product term of
the diagonals. The elements which carried a single loop were discussed in the main text and it was
shown that the elementary motif associated with one of these terms need to be of negative feedback
type i,e the loop sign should be negative. The elements containing multiple non-overlapping loops
can not provide adaptation for the associated network becomes uncontrollable. For these networks
it can be shown that if the cumulative sign of all the loops are positive then also it can satisfy the
determinant condition i,e, the sign of the determinant becomes (−1)N. These networks along
with another link/loop (to make the network controllable) leads to Hurwitz instability by making
at least one of eigenvalues positive. Following is an illustration of a four node network. Assume a
five node network which has two loops one involving A, B, C and the other with D and E. The
concentration states of A, B, C, D, E are represented as x1, x2, x3, x4, x5 respectively. Input (I) is
applied on A and the concentration of E is considered as output.

EB

C
D

A
Output

Disturbance

Fig S2. Proposed five node network which can not provide adaptation albeit satisfying
the weaker condition for stability

From the network structure in S2, it can be seen that there are two loops involved in the network.
One is engaging A and B, another with C,D,E nodes. Both the feedback schemes are positive in
nature. From the structure it can be intuitively seen that the network is controllable for any non-
zero strength of the edge from B to C. This can also be proved mathematically by evaluating the
rank of the associated controllability matrix.
For this network to provide adaptation, the corresponding system matrix A after linearisation can
be of the structure

A =


αaa αab 0 0 0
αba αbb 0 0 0

0 0 αcc 0 αce

0 0 αdc αdd 0
αea 0 0 αed αee

 (36)

Note, if there is no edge from A to E, the network would be uncontrollable. The condition to
be met for this five node network to provide adaptation is the following |Ã| = 0, where Ã =
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αba αbb 0 0 0

0 0 αcc 0 αce

0 0 αdc αdd 0
αea 0 0 αed αee

 So, for |Ã| to be zero αcc has to be zero. The next condition is

concerning the stability of A. With αbb = 0 the determinant of A can be written as

|A| = −αabαbaαbbαccαee − αabαbaαceαdcαed (37)

Now, for the system to be Hurwitz stable, the determinant of A is necessarily of the sign (−1)5=-
1. This can be achieved in two ways 1) both the terms are negative or 2) Either one of them is
negative with magnitude greater than that of the positive term. The first case leads to at least one
negative feedback, preferably between A and B. In the second case, if both the loops are of positive
feedback and if

|αabαbaαbbαccαee| < αabαbaαceαdcαed

then the necessary condition for the Hurwitz stability of A is satisfied. But on a careful introspec-
tion, it can be seen that at least one of the eigenvalues of A is positive which goes to violate the
Hurwitz stability condition for A thereby leading to instability. So, the above network structure
can be ruled out.
This can be understood from the A matrix for these cases. To make the network controllable and
able to provide adaptation, it is necessary to add an edge from the input to the output node. Al-
though the addition of an element changes the spectrum of the overall matrix, the spectrum of the
block matrices containing the loops other except one will not be changed. If all the loops are pos-
itive at least one of the eigenvalues of the block matrices will be positive leading to instability for
the overall matrix. In the example of S2 the addition of an edge from A to E has changed the spec-

trum of A without changing the spectra of the block matrix
[
α11 α12
α21 α22

]
. With A and B in positive

feedback, one of the eigenvalues can be verified as positive, which leads to the violation of Hurwitz
property of A.

4 Necessary information for simulation
In all of the cases except the Na-gated voltage channel, the network dynamics used for simulation
purpose have been inspired from the Ma et al (2011) wherein a variant of Michaelis Meneten kinet-
ics has been used for the computational study [3]. It has already been proven in subsection 3.1 of the
supplementary text that for a negative feedback module to provide perfect adaptation at least one
diagonal element in any of the columns (rows of A) concerning the loop has to be zero. For this
to happen the dynamics of the node represented by that particular column (containing a zero diag-
onal) has to be independent of the concentration of that node itself. To this purpose, the values of
Michaelis Menten constants have been chosen and the initial conditions are obtained by computing
the initial steady state of the dynamical system.
The dynamics used for Voltage-gated Sodium channel has been inspired from the review paper on
adaptation produced by James J. Ferell (2016). The dynamics is a variant of a simple mass-action
kinetics along with the conservation of total concentration of the biochemical species [4].
We used the DEE toolbox in MATLAB simulink to simulate the models. DEE uses ’ode45s’ as the
default numerical differential equation solver. The necessary MATLAB and simulink files for the
same can be found on https://github.com/RamanLab/SystemsTheoryAdaptation.

Two node network
Two node Enzymatic network; We adopted the Michaelis-Menten kinetics wherein the concen-
tration of the biochemical species A and B in Fig S3 are considered as x1(t) and x2(t) respectively.

ẋ1 = 107I
1 − x1

106 + (1 − x1)
− 12 × 103x2

x1

103 + x1
(38)

ẋ2 = 8x1
1 − x2

10−6 + (1 − x1)
− 2

x2

10−5 + x2
(39)
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N/W Structure A matrix (Given N node n/w B =
[
β ON−1×1

]T ) Condition I Condition II Conclusion

C

A

B

Output

Disturbance

a11(−1) 0 0
a21(+1) a22(−1) 0
a31(+1) a32(−1) a33(−1)

 (||S||0 : S := {a31,a21a32}) ⩾ 1 a31a22 − a21a32 = 0 ✓

C

A

B

Output

Disturbance

a11(−1) 0 0
a21(−1) a22(−1) 0
a31(+1) a32(−1) a33(−1)

 (||S||0 := {a31,a21a32}) ⩾ 1 a31a22 − a21a32 = 0 ✗

EB

C
D

A
Output

Disturbance


a11(−1) a12(+1) 0 0 0
a21(+1) a22(−1) 0 0 0

0 0 a33(−1) 0 a35(−1)
0 0 a43(+1) a44(−1) 0
a51 0 0 a54(−1) a55(−1)

 (||S||0 := {a51}) ̸= 0 a22 = 0, Re(spec(A)) < 0 ✗(Unstable)

EB

C
D

A
Output

Disturbance


a11(−1) a12(−1) 0 0 0
a21(+1) a22(−1) 0 0 0

0 0 a33(−1) 0 a35(+1)
0 0 a43(+1) a44(−1) 0

a51(+1) 0 0 a54(−1) a55(−1)

 (||S||0 := {a51}) ̸= 0 a22 = 0, Re(spec(A)) < 0 ✓

C

A

B

Output

Disturbance

a11(−1) a12(+1) 0
a21(−1) a22(−1) 0
a31(+1) 0 a33(−1)

 (||S||0 : S := {a31}) = 1 a22 = 0,Re(spec(A)) < 0 ✓

Table S1. Demonstration of the algorithm. ||.||0 : S → R refers to the number of non-zero
elements in the set S.

The initial conditions used for this simulation are obtained as
[
0.25
0.75

]

Voltage gated Na ion channel

As it can be seen in figure S4 the species X can stay in three possible states namely, active, inactive
and off state. Since the total concentration is assumed to be constant, the underlying dynamical
system boils down to a second order system. Here, we have considered x1(t) and x2(t) as the con-
centration of Xoff and Xon respectively. As it can be seen that there exist a loss of controllability for
the subsequent step chnges in the disturbance input.

ẋ1 = 1.8I(1 − x1 − x2) − x1 (40)
ẋ2 = x1 (41)

The corresponding initial condition is the origin as it is one of the steady states of the autonomous
system.
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Fig S3. Two node network used for simulation

Xon

Xoff

Xin

Output

Disturbance

Fig S4. Voltage gated channels used for simulation

C

A

B

Output

Disturbance

Fig S5. Architecture of a three-node IFFLP used for simulation

IFFLP

For the network in figure S5, the concentrations of A, B and C are denoted as x1, x2 and x3 respec-
tively.

ẋ1 = 8I
1 − x1

(0.0001 + (1 − x1))
− 6x1 (42)

ẋ2 = 5x1
1 − x2

(0.00001 + (1 − x2))
− 4x2 (43)

ẋ3 = 8x1(1 − x3)/(1.00001 − x3) − 16x2x3 (44)

The initial concentration vector are obtained as

0.4
0.5
0.4
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Fig S6. Architecture of a three-node NFBLB used for simulation

NFBLB

The corresponding dynamics used for the purpose of simulation is given by

ẋ1 = 8I
1 − x1

(10−6 + [1 − x1])
− 6x1 (45)

ẋ2 = 4x3
1 − x1

(10−6 + [1 − x1])
− 2

x2

(10−7 + x2)
(46)

ẋ3 = 16x1(1 − x3) − 10x3x2 (47)

The associated initial condition for the same is

 0.4
0.64
0.5


IFFLP+NF

C

A

B

Output

Disturbance

Fig S7. Architecture of a three-node IFFLP+NF used for simulation

ẋ1 = 8I
1 − x1

(0.0000001 + (1 − x1))
− 14x1x2 (48)

ẋ2 = 10x1
1 − x2

(1.0000001 − x2)
− 4x2 (49)

ẋ3 = 8x1
(1 − x3)

(1.000001 − x3)
− 16x3x2 (50)

The corresponding initial condition used was

0.2619
0.6547
0.2000
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Fig S8. Five node IFFLP for simulation

Five node IFFLP
With the concentration of A, B, C, D, and E represented as x1, x2, x3, x4, and x5 respectively, the
underlying dynamics of the network is given by

ẋ1 = 5I
(1 − x1)

(1.0000001 − x1)
− 8x1 (51)

ẋ2 = 8x1
(1 − x2)

(1.0000005 − x2)
− 6x2 (52)

ẋ3 = 8x2
(1 − x3)

(1.0000005 − x3)
− 4x3 (53)

ẋ4 = 8x3 − 5x4 (54)
ẋ5 = 8x2 − 8x4x5 (55)

(56)

The initial condition used for this simulation is


0.1875
0.250
0.5000
0.8000
0.3125


Five node NFBLB

EB
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Output
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Fig S9. Five node IFFLP for simulation
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The underlying dynamics can be written as

ẋ1 = 4I(1 − x1) − 32x3x1 (57)
ẋ2 = 10x1(1 − x2) − 2x2 (58)

ẋ3 = 20x2 − 6 (59)
ẋ4 = 3x3 − 6x5x4 (60)

ẋ5 = 6x2(1 − x5) − 8x4x5 (61)

The initial condition used for this simulation is


0.0857
0.3000
0.4000
0.4500
0.3333


IFFLP with a downstream

B

A

C

D

Output

Disturbance

Fig S10. Architecture of IFFLP along with a downstream node

The corresponding network dynamics is given by

ẋ1 = 5I− 6x1 (62)
ẋ2 = 10x1 − 4x2 (63)

ẋ3 = 8x1 − 3.2x4x3 − 6x2 (64)
ẋ4 = 6x3(1 − x4) − 0.5 (65)

The initial condition for the same can be written as


0.25
0.625
0.0833

0

 It can be seen that although the

network is able to perform perfect adaptation (for stability is not compromised with the connection
to downstream system) the oscillatory output- concentration of C takes a negative value which does
not carry a practical relevance. This definitely requires further detailed investigation.

NFBLB with downstream system
The concentration profiles of A, B, C, and D are expressed as x1, x2, x3, and x4 respectively. The
corresponding dynamical system can be written as

ẋ1 = 8I− 6x1 (66)

ẋ2 = 4x3
(1 − x2)

(1.0000004 − x2)
− 2 (67)

ẋ3 = 16x1(1 − x3) − 25x3x2 − 2x3x4 (68)
ẋ4 = 8x3(1 − x4) − 3 (69)
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Fig S11. Architecture of NFBLB along with a downstream node

The associated initial condition is given by


0.4000
0.2360
0.5000
0.2500
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