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Referee #1 (Remarks to the Author): 

This paper describes a thorough and systematic analysis of mutation rates in a model system 

Arabidopsis thaliana with the goal of examining what genomic and organismal features correlate 

with mutation rate. Using mutation accumulation lines, the authors are able to show that mutation 

rates are dependent on several factors that may result in bias. 

These results are very significant as they could have profound evolutionary implications. The fact 

that there is mutation bias is not surprising. What is important in their results is that the bias in 

mutation rates can have adaptive consequences – for example, if certain types of exons are more 

subject to mutation. Of even more significant interest is that mutation rates appear to be biased 

biased based on histone modifications and chromatin accessibility. Since these two features are 

connected to gene function (in a general way), these would lead to a bias in mutation rats that are 

correlated with a functional feature – which in turn would lead to evolutionary bias. This is in 

contradiction to the Darwinian paradigm of random mutation independent of function (although 

this does not invalidate Darwinian evolution, but adds a wrinkle to the process). 

The only issue I would like to raise is the mutation calling based on their sequencing. In a sense 

everything rests on their ability to identify mutations above the inevitable noise level that arises in 

sequencing. Although I do not think this is an issue given that such noise would be expected to 

result in random distributions of mutations (and their results emphatically say they do not) it 

would still be nice to have a little more detail in the main text on how they filter out possible 

errors. In the current version they just say in the main text “Strict filtering was used to eliminate 

false positives – fewer than 10% of all called variants were included in the final high confidence set 

of de novo mutations.” It would I think improve the paper for readers if they expand a little more 

on this in the main text. 

Referee #2 (Remarks to the Author): 

Monroe et al. study gene-level variation of de novo mutations in advanced generation A. thaliana 

MA lines. They find that local mutation rates vary within genes (+/- some upstream region) and 

that this variation can be predicted from local sequence and epigenomic features. They further 

show that genic mutation patterns in the MA lines correlate with polymorphism patterns in natural 

populations, suggesting that patterns of natural genetic variation are to some extent the result of 

“mutational variation” rather than of selection. Finally, the authors show that evolutionary 

constrained genes display lower mutation rates. They use this latter observation to suggest that 

these lower rates are a way to avoid putative deleterious mutations in those constraint genes and 

therefore constitute what they call “adaptive mutation bias”. 

I think that the model predictions are very interesting and do advance our understanding of the 

molecular determinants of local mutation rate, although many of the associations between 

predictors and local rates confirm what has been found in previous studies (as they also point out). 

I also think their work provide new insights into the mechanisms that generate natural genetic 

variation over evolutionary time-scales. 



However, I do not think that the study makes a very strong case for what the authors call 

“adaptive mutation bias”, which – in my view - undermines the key message and novelty of their 

paper (see below points). Only because a rate reduction in evolutionary constrained genes may 

lead to decreased probabilities of deleterious mutations, does not immediately imply that 

mutations in hypermutable regions (e.g. at 5’ and 3’ ends of genes) are adaptive in anyway. There 

is no direct demonstration of this. That mutation rates (or substitution rates) are locus-specific is 

already routinely used in phylogenetic inference methods; and does not in itself present something 

substantially novel. 

Below I am listing several specific concerns: 

1. The authors re-analyze de novo mutations (SNV and indels) in 107 advanced generation 

Mutation Accumulation (MA) lines. Using a new filtering approach, which also includes the 

detection of somatic mutations, they obtain about 4 times more mutations than previously 

reported. It is unclear how/if this boost in detected de novo mutations translates to estimates of 

genome-wide mutation rates. Fig. 2D (y-axis) seems to indicate that the predicted rate in genes is 

in the range of 10^-5 which would be four orders of magnitude higher than previous estimates of 

the global rate in A. thaliana. Similarly predicted rates in TEs in their re-analysis of the epiRIL 

panel seem to be in the order of 10^-5. Although the authors claim that false positive calls had 

been controlled, it is useful to compare the rates obtained with their new calling approach with 

previous reports (even if the primary interest of the paper is on relative rates along the genome). 

2. To predict gene-level mutation rates the authors employ a multiple regression approach were 

the detected de novo mutation rate per base pair is used as the response variable and local 

sequence and epigenomic features as predictors. Very little information is given in the main text 

and methods section as to how this model is actually set up (e.g. what is the distribution of the 

response variable, what is the link-function of the generalized linear model). It is for example also 

not unclear how the response variable (i.e. the rate) is actually calculated. From my understanding 

the authors do the following: For a given target sequence, say a 5’ UTR in a given gene, they 

count up the detected de novo mutations among the 107 lines at the last sampled generation and 

divide that number by the total number of bases in that UTR. If I understand that correctly, we 

would be looking for mutation events in a space of 107*length of UTR*#generation to get a rate 

estimate per base-pair/per generation in that UTR. My intuition tells me that with the a mutation 

rate of 10^-9 (if this rate is still accurate in that study, see comment above) it is very unlikely to 

see any event in a space given by 107*length of UTR*#generation. This in turn would mean that 

the response variable probably look like a zero inflated random variable with a long right tail. The 

distribution of that variable will determine what link function to use, or what transformation, if 

any. More information should be provided. 

3. The authors implement a stepwise model selection procedure to arrive at a sparse predictor set. 

Models are selected based on their AIC values, which includes a penalty proportional to the 

number of parameters. The authors claim that “to avoid over fitting caused by correlated predictor 

variables, we selected models (separately for SNVs and InDels) with the lowest Akaike information 

criterion (AIC) value.” However, this statement is not quite correct. The stepwise approach guards 

neither against overfitting nor against multicolinearity. In fact, both can be a major issue in that 

procedure, and there is extensive literature on this. Since epigenomic modifications and sequence 

features often correlate strongly across the genome, because of their combinatorial occurrence, 

multicollinearity is most likely an issue in model fitting. One approach is to assess multicolinearity 

by inspecting the Variance Inflaction Factors (VIF) of the predictors and removing those with VIF > 

3. A complimentary option is to perform model selection on a subset of the data and to assess the 

predictive ability of the model in another set of the data. I am raising these points because the 

primary aim of their study is to not only obtain a predictive model but also to obtain accurate 

estimates of the contributions of the individual predictors, as they reveal important biological 

insights about mutation rate control. With multicolinearity it is known that predictor estimates can 

be highly biased. In fact, predictors can be selected into the model without having any significant 



marginal effect on the response variable. These points should be carefully explored. 

4. One of their genetic mutation rate predictors is local cytosine methylation. One mechanism 

through which this can occur is through spontaneous cytosine deamination. To support this point 

the authors re-analyzed sequencing data from ddm1-derived A. thaliana epiRILs, which segregate 

methylated (wt-derived) and unmethylated (ddm1-derived) genomic segments.. They show that 

transposable elementns (TEs) in wt-inherited genomic segments have higher mutation rates than 

TEs in ddm1-derived genomic segments. However, extended Figure 5 seems to suggest that all 

rates are generally higher in wt-inherited regions, not just C→T mutation rates. In other words, 

the deamination argument does not seem to be supported. Additionally, the conclusions from their 

re-analysis conflict the results of Lauss et al. (2018). That latter study also estimated mutation 

rates in wt versus ddm1 regions (not just in TEs but anywhere) and found a trend toward 

increased rates in ddm1-derived regions which they attributed to a loss of heterochromatin (and 

thus an increase in accessible regions). 

This discrepancy may be related to one important technical consideration in estimating rates in 

those epiRILs: The wt segments that segregate in the epiRILs are derived from a different wt plant 

than the one that was used to generate the ddm1 mutant. The ddm1 mutation (in the Col-0 

background) has been maintained by repeated backcrossing for many generations. The wt parent 

that was used to initiate the epiRILs was not immediately related to the ddm1 parental plant. This 

means the Col-0 sequence backgrounds of these two parents are very different with respect to the 

Col-0 reference sequences. Mutations called with respect to the Col-0 reference may thus depend 

on the on very different laboratory histories of the Col-0 sequence of the wt plant and the ddm1 

parental plant (i.e. the wt parental plant could different at many more sites from the Col-0 ref 

sequence, which could explain the increased rate for the wt segments). One way to bypass this is 

to focus on non-shared mutations, which are those that arose during inbreeding (in fact this is 

what Lauss et al. had done). 

Finally, it is also not clear why the authors test their hypothesis about the effect of their predictor 

in TE sequences on not genetic sequences (ddm1-loss also effects genic sequences). Their model 

predictors were trained on genes. It is unclear how the authors expect that the relationship 

between cytosine methylation and mutation rates to also hold for TEs. In fact, patterns of C→ T 

demination are much different in genes compared to TEs pointing toward a different predictor 

effect in these two vary different genomic elements. 

5. In Fig. 2E, the authors show that the distribution of natural polymorphisms are positively 

correlated with predicted mutation rates, which is consistent with natural variation in genic regions 

being substantially due to mutation bias rather than primarily due to the selection after random 

mutation. However, later they find that “in genes where mutation rate is predicted to be low, the 

observed number of polymorphisms tends to be even lower than that predicted by mutation rate 

alone, which is consistent with the action of purifying selection on natural polymorphisms rather 

than on de novo mutations. Similarly, coding regions have significantly negative residuals 

compared to other genic regions, supporting the action of purifying selection after mutation.” This 

means that – after all – the genic patterns are shaped by a mixture of mutation bias and selection, 

but it remains unclear how strong the role of selection is. The authors offer no way to quantify the 

contribution of selection on the polymoprhisms patterns. Perhaps this could achieved through a 

SFS analysis of different genic sectors. The question here would be if the selection coefficients also 

very across the sectors in the manner that is consistent with the polymorphism patterns. 

6. Fig. 3g., decreased rates in genes with higher number of introns, seems to partly conflict the 

prediction that lower rates are detected in evolutionary conserved genes, insofar that evolutionary 

conserved genes (at least those marked by gbM) are higher in exon content compared to other 

genes. The authors should explore this/comment on this. 

7. The authors’ main support for their “adaptive mutation biased” hypothesis is summarized in Fig. 



4. There they show some evidence that “Functionally constrained genes have lower predicted 

mutation rates”. They do this by correlating predicted mutation rates in coding regions (CDS) with 

various intra- and inter-specific measures of genetic variation (PS, PN, DS, DN, neutrality index, 

delta), and intra-specific variation in gene expression. These correlations are generally low, 

ranging from weak (r=0.03) to moderate (r=0.26); thus not lending much support to the 

“adaptive mutation bias” hypothesis. In addition, the way the data is presented is very misleading, 

in my view. The authors show plots where the mean of the above intra- and inter-specific 

measures of genetic variation is plotted for different deciles of predicted CDS mutation rates. 

These plots give the impression of a strong relationship. A fairer presentation would be to show a 

scatterplot of the two quantitative variables with the fitted regression line. Another option is to plot 

the 95% CI around the means (y-axis variable) for each deciles (x-axis variable). Either way will 

provide a visual presentation that is more consistent with the low/moderate correlation values. 

8. In that same figure, the relationship between predicted CDS rate and the coefficients of 

variation in gene expression indicates that predicted hyperrmutable CDS (thus, more polymorphic 

CDS in natural opulations) have a higher expression range. This relationship could simply be the 

consequences that these polymoprhisms lead to expression variation via cis-acting eQTL, rather 

than hypermutability being the result of gene expression states. The authors should comment on 

this. 

9. In that same figure, correlations are very similar beween CDS and PS and PN (or DS and DN) 

suggesting that mutations of functionally neutral and putatively non-neutral mutations are nearly 

equally effected. This is consistent with previous observation that constraint loci tend to evolved 

more slowly in general. In fact the DN/DS ratio correlation is much lower suggesting again that 

correlation with measures of constrained evolution are weak. 

Referee #3 (Remarks to the Author): 

In this provocative manuscript, Monroe et al. argue that in Arabidopsis thaliana, local mutation 

rates have been selectively optimized such that they are lower in genes where mutations are more 

likely to be deleterious. If true, this finding would have very broad implications for evolutionary 

biology. Their observations are intriguing, but the analyses are somewhat convoluted, making it 

difficult to assess the strength of their conclusion. Their proposed mechanism of selection through 

genome-wide epigenetic marks is tantalizing but has some problems. It is difficult to prove that 

their observation results from selective optimization of mutation rates. My detailed comments 

follow. 

Major comments 

1. My main concern of the data analysis part is the use of predicted instead of actually observed 

mutation rates. They provide no evidence how good the prediction is. In fact, all of their analysis 

can use actual mutation rates, and it is unclear to me why they did not do that. For instance, a 

supergene analysis should be able to generate Fig. 2d and Fig. 3. Fig. 4 can be generated by 

considering 10 supergenes for the 10 deciles. I understand the purpose of showing the correlation 

between epigenetic marks and mutation rates, but this is about the potential selection mechanism, 

which is not needed for comparing trends of mutations and trends of polymorphisms/evolution. 

Their comparison between mutation and polymorphism/evolution patterns would be much more 

straightforward and convincing if they had used the actual mutations. 

2. They interpreted their observation of correlations between predicted mutation rates and several 

gene expression or evolutionary constraint measures by selective optimization of mutation rates. I 

am not fully convinced by this interpretation and believe there are other possibilities. 

(1) The formula in line 223 works only in the absence of recombination (e.g., see Kimura 1967 

Genet. Res. or Lynch 2011 Genome Biol. Evol.). Because A. thaliana is selfing, it effectively has no 

recombination. So, one could argue that the formula works here. But this unusual reproductive 

mode evolved within the last million years in A. thaliana. For the above argument to work, one 



must assume that all the optimizations of mutation rates occurred within the last million years in 

A. thaliana. If so, how do we explain the Populus results, as Populus is outcrossing and should not 

have the type of selective optimization of mutation rates? 

(2) Another point about the formula in line 223 is that, under the assumption that there is a global 

mutation rate modifier, the drift barrier is determined by this formula when L_segment is the 

length of the whole genome (or functional genome) (Lynch 2011 Genome Biol. Res.). In other 

words, delta U and U are tiny at the drift barrier. So, when L_segment is say 1% of the functional 

genome for a particular epigenetic feature, delta U must be much bigger for selection to work. 

Given that U is already very low, it is impossible for delta U to be large (you cannot reduce 

mutation rate to negative values). Thus, the authors’ model is actually incompatible with the drift 

barrier hypothesis. I am not saying that their model is wrong because it is incompatible with the 

drift barrier hypothesis, as the drift barrier hypothesis could be wrong. But my reading is that the 

authors seem to be saying that their model is compatible with the drift barrier hypothesis. This 

needs to be clarified. 

(3) If the observations in Fig. 4 are genuine, I wonder if they could be produced by non-adaptive 

processes. One possibility is that the correlations are intrinsic. For instance, methylated Cs have 

elevated mutation rates for chemical reasons. If somehow there is a correlation between the 

abundance of methylated Cs and gene expression purely for mechanistic reasons of gene 

expression, one may see a correlation between gene expression level and mutation rate that is not 

a result of selective optimization. Because dn/ds is strongly correlated with gene expression level 

in a wide variety of species including A. thaliana (Zhang and Yang 2015 Nat. Rev. Genet.), one 

would also see a correlation between dn/ds and mutation rate. 

(4) Related to the above point, for the authors’ model (i.e., selection acting on epigenetic marks) 

to work, there must be a significant correlation between epigenetic marks and gene 

expression/selective constraint, which the authors have not shown. If they can confirm this 

correlation, the non-adaptive process outlined above would easily work because all one need is an 

intrinsic relationship between epigenetic marks and mutation rate, which has been reported and 

cited in the manuscript. Thus, it seems that the condition necessary for the selective optimization 

hypothesis to work also makes the intrinsic property hypothesis work. In other words, the 

conclusion of adaptive mutation rate optimization cannot be proven. 

(5) A related comment is on the interpretation of the negative correlation between mutation rate 

and UTR/intron length. Again, this negative correlation could be intrinsic instead of a result of 

selection. 

3. Fig. 4, I did not find the GO analysis informative. Which function can be said to be unimportant? 

All functions are important, and designation of important/unimportant function is quite arbitrary. 

One less arbitrary index that the authors are encouraged to use is gene essentiality based on 

knock-down/out phenotypes, and there is such data for A. thaliana at the genomic scale. A key 

advantage of using gene essentiality is that it is an objective measure of functional importance yet 

it is not likely to be strongly correlated with gene expression level. This potentially allows one to 

distinguish the intrinsic property hypothesis from the adaptive optimization hypothesis. 

Minor comments 

1. Fig. 1b is large but contains little discernable information, so should be removed. 

2. Fig. 1c. If my reading is correct, it shows that gene-poor regions (white parts in chromosomes) 

have lower mutation rates than gene-rich regions, directly contrasting the main conclusion of the 

paper. Please clarify. 

3. Fig. 1d, it is difficult to sense the ratio after the log-transformation. While it is OK to use the 

log-scale, I suggest that they present untransformed values on the Y-axis for easy reading. My 

back-of-the-envelope calculation based on the numbers provided in the manuscript shows that the 

difference between “de novo” and “null” bars of non-syn/syn is significant instead of NS. Please 

check the statistics or provide the raw numbers used in the test. 

4. Fig. 4a, how different is the mutation rate (in absolute terms) among the 10 deciles? Please 

provide the information in the figure. Because the theoretical model involves delta U, it is critical 

to know how large the delta U is. 

5. Extended Data Fig. 6b. Negative values are interpreted as purifying selection. How about 



positive values? Do they mean balancing selection? How likely is it that introns are subject to 

strong balancing selection? 

Referee #4 (Remarks to the Author): 

In their manuscript entitled "Adatptive mutation bias in Arabidopsis thaliana" by Grey Monroeet al 

have studied the determinant of mutation rate in a mutation accumulation experiment from 

Arabidopsis thaliana. They found some fluctuations of mutation rate along the genome and 

suggest that genes with higher level of constraints have lower mutation rate. This proposed 

reduced selection for mutation rate is supposed to be drivent by genome wide factors that may 

generate a large enough benefit to select for a lower mutation rate. 

My major concern with the present data is the number of cellular generation involved in the 

experimental design. One complexity of mutation accumulation is to ensure that no selection is 

occurring in the process. In bacterial experimental evolution, one simple tool is Ka/Ks ratio that 

can be used to investigate the lack of selection. We can push things even further with looking at 

predicted mutation effects using Direct Coupling Analysis as we did in Couce et al PNAS 2017 

(https://doi.org/10.1073/pnas.1705887114). In these experiments a Ka/Ks equal to one is a 

simple proof that there is no selection detectable at the genome scale. Here the data are going in 

the good direction with a reduced selection, but without any more details on the null model used 

and the formula used to compute these ratios it is hard to be sure. 

Indeed, a large fraction of the genome may show no Ka/Ks deviation as it is unconstrained, but 

the rest of the genome may leading to the absence of signal at that level despite a true selection 

that may later on affect the detection. In that respect the different formulation of the null model 

taking into account mutation biases has to be explicitly given as it may have a strong impact. 

In that respect it would be worth doing simulations to see how much selection in selectively 

important genes in the MA process would be needed to lead to A) lead to a significant deviation in 

the overall KA/Ks, B) to generate the signature of selection detected. 

An alternative could also to take the genes ranked by their mutation rate as done in the last figure 

and to plot this time their Ka/Ks ratio for each of the deciles to se if there is a consistant 

association between low mutation rate and a signature of selection in the MA. 

I am not sure about the meaning of the scaled values presented in figure 2. Indeed, throughout 

the text, the amplitude of the signals should be more precisely delineated. P values are not a proof 

of large effect. Are we talking about 10 fold differences? In Couce et al we use log-odd ratio for 

discrete traits and interquartile odds ratios for continuous ones. This is interesting but giving more 

explicitly the range of the observed signal as in figure 3 would be nice. 

If there are enough synonymous mutations, analysis could be done using just these, or adding 

synonymous state to the model. 

Experiments with bacteria revealed that a major driver of mutation rate is the bases before and 

after the focal base as well as the specificity of the base 

(https://doi.org/10.1093/molbev/msv055,https://doi.org/10.1073/pnas.1705887114) . Here it 

seems that all these effects have been ignored. But how much of the signal could be due to these 

local sequence composition effects. As sequence specificities may varie from coding to non coding 

this can also explain some of the variability observed. 

The p values between the changes in mutation and the mean per decile are meaningless. P values 

of any level can be obtained when performed on mean binned data. The rough p values and 

correlation should be given, even if the plot is made with the deciles for clarity and communication 

purposes. Again, how much siganture of selection in the MA would be needed to explain some of 

these signals. 



Besides these technical comments, the analysis performed are really interesting. 

Is there any hypothesis on why mutation rate may be larger at TSS and TTSs sites precisely? 

Secondary structure have been shown to affect mutation rate (Barbara Wright work 

(https://doi.org/10.1099/mic.0.2007/005470-0) on bacteria that we followed in Hoede et al Plos 

Genetics 2006). Could that be involved at these sites? 

For all the histone methylation marks, is there a synthetic way to present their various 

contribution: the ones linked to expression, the ones linked to deletion to acessibility... Appart 

from one or two mentioned in the text, the others are just left to specialists for interpretation. So a 

synthetic figure giving some insights would be great. 

Olivier Tenaillon (I always sign my reviews)
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Synopsis 
 
We thank the reviewers for their very helpful feedback and recommendations - addressing these has led 
to new discoveries and substantially improved our work. We apologize for the length of the rebuttal, but 
given the extensive, thoughtful and detailed comments of the reviewers, we felt that an equally detailed 
and well considered set of responses is called for. We hope the reviewers agree. 

To reviewer #1 and others, we are particularly grateful for the enthusiasm expressed for the 
transformative value of this set of discoveries. To further strengthen our manuscript, we have added new 
results from an as of yet unpublished dataset comprising the largest mutation accumulation experiment 
conducted to date in Arabidopsis. We use this new data to validate predictions made in our original 
submission and confirm that our model has excellent power to explain the distribution of new mutations 
in multiple independent datasets. 

To reviewer #2, we are particularly grateful for the suggestion to investigate site frequency spectrum 
statistics in natural populations to tease apart the role of selection and mutation bias in driving the patterns 
we observe in levels of natural variation in wild populations. The revised manuscript now prominently 
includes multiple results coming directly from this recommendation - most strikingly, we found that 
Tajima’s D is significantly higher in gene bodies and in internal exons, supporting the interpretation that 
reduced mutation bias, rather than negative selection alone, is largely responsible for observed lower 
levels of natural polymorphism in gene bodies.  

To reviewer #3, we are particularly grateful for the suggested analyses to examine functionally explicit 
groups of genes, determined empirically through knockout lines, rather than GO analysis alone. This new 
line of investigation has shed light on the mechanistic link between gene function, mutation rate, and 
signatures of selection. Importantly, these new analyses confirm that epigenomic states are distributed 
non-randomly among genes (eg., lethal-effects vs non-lethal-effects of mutations in them) in a way that 
points to selection acting on interactions with DNA protection/repair, rather than these biases being an 
intrinsic property of transcription or cytosine methylation. With the new mutation datasets we also confirm 
that the predicted patterns can be directly observed in raw data. 

To reviewer #4, we are particularly grateful for the suggested analyses to demonstrate that unexpected 
selection has no major effect on the distribution of detected de novo mutations. We have added new 
analyses and several simulations supporting the expectation that the observed mutations with which we 
train our model did not experience detectable selection. For example, we compared Ka/Ks in predicted 
mutation-sensitive vs -insensitive genes and show that they are the same despite sensitive genes having 
significantly lower raw mutation rates. We have also added simulations showing that the mutation biases 
we observe cannot reasonably be explained by purifying selection on coding region variants.  

We hope that the reviewers will find these and other major changes in the revised manuscript as 
exciting as we do and that they satisfactorily address all major concerns. 
 
 

Author Rebuttals to Initial Comments: 
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Summary of major revisions (primary pertinent reviews indicated as R1, R2, R3, R4) 
 
● (R1,R2,R3,R4) Validation of model for mutation probabilities based on epigenetic features by  

○ adding unpublished data from the largest mutation accumulation experiment conducted to date in 
Arabidopsis; used these also to show that results are robust to genetic backgrounds (this resulted 
in five additional authors) 

○ adding analysis of data from a somatic mutation experiment; used these to validate model 
predictions 

○ adding reanalysis of data from germline mutations detected in a bottlenecked Arabidopsis 
population and used it to validate our model predictions 

●  (R2) Analyzed SFS statistics, Tajima’s D and minor allele frequency in natural populations and now 
show that these support mutation bias as the likely explanation for patterns of gene evolution: 
○ Tajima's D is more negative in upstream and downstream regions compared to gene bodies, 

mirroring differences in Mutation Probability Score 
○ Tajima’s D is more negative in peripheral exons, also mirroring differences in Mutation Probability 

Score 
 

● (R3) Compiled functional categories of genes from published knockout experiments and added 
analyses of their epigenomic states emergent mutation probabilities: 
○ Essential/lethal genes are enriched for features associated with low mutation probability, including 

H3K36me3 and H3K4me1  
○ Essential genes are enriched for GC methylation, which indicates our results are not an intrinsic 

property related to high mutability of methylated cytosines in non-essential genes 
○ Essential genes do not have higher mean expression, indicating that our results are not an 

intrinsic property related exclusively to transcription-coupled repair 
○ Genes expressed in many tissues are enriched for features associated with low mutation 

probability, consistent with DNA repair being more likely to be targeted to epigenomic states 
associated with housekeeping genes 

 
● (R4) Confirmed that results are not caused by selection having skewed detected mutations in the 

training set of the original data: 
○ Comparison of nonsynonymous/synonymous ratios among different classes of genes indicates 

that potential selection on de novo mutations did not skew our results 
○ Simulations show that our observed de novo mutation training dataset has 70% fewer 

synonymous mutations compared to random expectations 
○ Simulations of dominant lethal mutations in coding regions show that our observed bias cannot 

be reasonably explained by unexpected selection on the de novo mutation dataset 
 

● (R1,R2, R3,R4) Updated the manuscript to clarify the units of the predicted mutation variation around 
the genome, introducing a “Mutation Probability Score”, to highlight that this is a measure of 
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epigenetic features that predict mutation probability and that what we present is different from 
“mutation (per generation) rate” as it integrates information from both germline and somatic mutations 

 
● (R2) Explored models dropping predictors based on variance inflation factor (VIF) and found that 

results were effectively unchanged, indicating our conclusions can not be explained by covariance 
between predictors 

 
● (R3) Reframed our discussion of the relationship between our results and existing theory, 

emphasizing the importance of our findings on Lsegment, rather than dU, as the most important 
parameter of the drift-barrier hypothesis for our results 

 
● (R4) Added a conceptual figure that summarizes the model of mutation bias revealed by our results 

 
● Finally, changed the title to provide a less ambiguous synopsis of our discovery 
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Referee #1 (Remarks to the Author): 
This paper describes a thorough and systematic analysis of mutation rates in a model system Arabidopsis 
thaliana with the goal of examining what genomic and organismal features correlate with mutation rate. 
Using mutation accumulation lines, the authors are able to show that mutation rates are dependent on 
several factors that may result in bias. 

These results are very significant as they could have profound evolutionary implications. The fact that 
there is mutation bias is not surprising. What is important in their results is that the bias in mutation rates 
can have adaptive consequences – for example, if certain types of exons are more subject to mutation. 
Of even more significant interest is that mutation rates appear to be biased biased based on histone 
modifications and chromatin accessibility. Since these two features are connected to gene function (in a 
general way), these would lead to a bias in mutation rats that are correlated with a functional feature – 
which in turn would lead to evolutionary bias. This is in contradiction to the Darwinian paradigm of random 
mutation independent of function (although this does not invalidate Darwinian evolution, but adds a 
wrinkle to the process). 

The only issue I would like to raise is the mutation calling based on their sequencing. In a sense 
everything rests on their ability to identify mutations above the inevitable noise level that arises in 
sequencing. Although I do not think this is an issue given that such noise would be expected to result in 
random distributions of mutations (and their results emphatically say they do not) it would still be nice to 
have a little more detail in the main text on how they filter out possible errors. In the current version they 
just say in the main text “Strict filtering was used to eliminate false positives – fewer than 10% of all called 
variants were included in the final high confidence set of de novo mutations.” It would I think improve the 
paper for readers if they expand a little more on this in the main text. 
Thank you for the helpful recommendation - we agree the variant calling is quite important here. We have 
added more details to the main text to help readers understand what we mean by filtering without 
necessitating a detailed look at the methods and extended data. We hope that this helps the flow and 
clarity of the revised manuscript. 
 
 
Referee #2 (Remarks to the Author): 
Monroe et al. study gene-level variation of de novo mutations in advanced generation A. thaliana MA 
lines. They find that local mutation rates vary within genes (+/- some upstream region) and that this 
variation can be predicted from local sequence and epigenomic features. They further show that genic 
mutation patterns in the MA lines correlate with polymorphism patterns in natural populations, suggesting 
that patterns of natural genetic variation are to some extent the result of “mutational variation” rather than 
of selection. Finally, the authors show that evolutionary constrained genes display lower mutation rates. 
They use this latter observation to suggest that these lower rates are a way to avoid putative deleterious 
mutations in those constraint genes and therefore constitute what they call “adaptive mutation bias”.  

I think that the model predictions are very interesting and do advance our understanding of the 
molecular determinants of local mutation rate, although many of the associations between predictors and 
local rates confirm what has been found in previous studies (as they also point out). I also think their work 
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provide new insights into the mechanisms that generate natural genetic variation over evolutionary time-
scales.  

However, I do not think that the study makes a very strong case for what the authors call “adaptive 
mutation bias”, which – in my view - undermines the key message and novelty of their paper (see below 
points). Only because a rate reduction in evolutionary constrained genes may lead to decreased 
probabilities of deleterious mutations, does not immediately imply that mutations in hypermutable regions 
(e.g. at 5’ and 3’ ends of genes) are adaptive in anyway. There is no direct demonstration of this. That 
mutation rates (or substitution rates) are locus-specific is already routinely used in phylogenetic inference 
methods; and does not in itself present something substantially novel. 
Thank you for raising this issue. We believe that our results do demonstrate that the bias in mutation we 
observe has the potential to be adaptive in that this bias would increase fitness because it reduces the 
frequency of deleterious mutation, as in adaptive Mutation Bias. This is a different phenomenon than 
Adaptive Mutation bias. The latter reading could be interpreted as a claim that bias exists to target 
mutations to regions where variation is particularly advantageous (for example, immunity genes), or 
targeted in a way that is responsive to the environment. We have not made such an assertion for our 
system, but rather use a definition of adaptive mutation bias as the adaptive (evolutionarily advantageous) 
reduction in deleterious mutations through genome-wide mechanisms that reduce mutation probability at 
evolutionarily constrained loci.  

We have realized that this subtle but critical distinction could be confusing to readers and have 
therefore decided to change the title of the paper accordingly. While the novelty of our discovery is the 
same - in contrast to traditional assumptions, mutation bias appears to be adaptive in that it reduces the 
frequency of deleterious variants - we hope this new title provides a less ambiguous description of our 
discovery. In summary, while we do propose that the bias we observe is adaptive, we can see how placing 
the words “adaptive” and “mutation” next to each other in the title might be unclear as to the precise 
meaning. Therefore, we have changed it to “Mutation bias reflects natural selection in Arabidopsis 
thaliana”. 

We are open to suggestions for alternative titles. As you might imagine, the title has been a topic of 
much discussion among the authors. We know this paper may be received as provocative so we seek a 
title that best captures the weight of the results in a way consistent with the interpretation. Again: 
Suggestions are more than welcome! 
 
Below I am listing several specific concerns: 
1. The authors re-analyze de novo mutations (SNV and indels) in 107 advanced generation Mutation 
Accumulation (MA) lines. Using a new filtering approach, which also includes the detection of somatic 
mutations, they obtain about 4 times more mutations than previously reported. It is unclear how/if this 
boost in detected de novo mutations translates to estimates of genome-wide mutation rates. Fig. 2D (y-
axis) seems to indicate that the predicted rate in genes is in the range of 10^-5 which would be four orders 
of magnitude higher than previous estimates of the global rate in A. thaliana. Similarly predicted rates in 
TEs in their re-analysis of the epiRIL panel seem to be in the order of 10^-5. Although the authors claim 
that false positive calls had been controlled, it is useful to compare the rates obtained with their new 



Monroe et al.  Response to Reviewers 

6 

calling approach with previous reports (even if the primary interest of the paper is on relative rates along 
the genome).  
 
Thank you for the thoughtful comments. We have updated the revised manuscript to more clearly 
describe the units in our results. These numbers indicate the predicted mutation probability (rather than 
rate with generation in the denominator). This is why the values are different than typical per-generation 
mutation rates. These higher values reflect that we used somatic mutations for higher power in our 
dataset to study the distribution of mutation across the genome. Importantly, as you point out, our aim is 
to study the relative, not the absolute differences in mutation probability throughout the genome. In the 
revised manuscript we have added new datasets to show that the relative differences in mutation 
probability in functionally distinct regions of the genome predict observed differences in additional de 
novo mutation datasets, including ones that include only germline or somatic mutations.  
 
2. To predict gene-level mutation rates the authors employ a multiple regression approach were the 
detected de novo mutation rate per base pair is used as the response variable and local sequence and 
epigenomic features as predictors. Very little information is given in the main text and methods section 
as to how this model is actually set up (e.g. what is the distribution of the response variable, what is the 
link-function of the generalized linear model). It is for example also not unclear how the response variable 
(i.e. the rate) is actually calculated. From my understanding the authors do the following: For a given 
target sequence, say a 5’ UTR in a given gene, they count up the detected de novo mutations among the 
107 lines at the last sampled generation and divide that number by the total number of bases in that UTR. 
If I understand that correctly, we would be looking for mutation events in a space of 107*length of 
UTR*#generation to get a rate estimate per base-pair/per 

generation in that UTR. My intuition tells me that with the a mutation rate of 10^-9 (if this rate is still 
accurate in that study, see comment above) it is very unlikely to see any event in a space given by 
107*length of UTR*#generation. This in turn would mean that the response variable probably look like a 
zero inflated random variable with a long right tail. The distribution of that variable will determine what 
link function to use, or what transformation, if any. More information should be provided.  
Thank you for the comments. We agree and have updated the revised manuscript to more thoroughly 
describe our model, which as you accurately point out, is a simple multiple linear regression. We also 
present results from untransformed data. As we show with multiple cross validation efforts using new, 
independent mutation accumulation datasets and polymorphism in natural populations, the resulting 
model has remarkable power to predict the distribution of new mutations in functionally distinct regions 
(i.e., gene bodies vs. promoters).  
 
3. The authors implement a stepwise model selection procedure to arrive at a sparse predictor set. 
Models are selected based on their AIC values, which includes a penalty proportional to the number of 
parameters. The authors claim that “to avoid over fitting caused by correlated predictor variables, we 
selected models (separately for SNVs and InDels) with the lowest Akaike information criterion (AIC) 
value.” However, this statement is not quite correct. The stepwise approach guards neither against 
overfitting nor against multicolinearity. In fact, both can be a major issue in that procedure, and there is 
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extensive literature on this. Since epigenomic modifications and sequence features often correlate 
strongly across the genome, because of their combinatorial occurrence, multicollinearity is most likely an 
issue in model fitting. One approach is to assess multicolinearity by inspecting the Variance Inflaction 
Factors (VIF) of the predictors and removing those with VIF > 3. A complimentary option is to perform 
model selection on a subset of the data and to assess the predictive ability of the model in another set of 
the data. I am raising these points because the primary aim of their study is to not only obtain a predictive 
model but also to obtain accurate estimates of the contributions of the individual predictors, as they reveal 
important biological insights about mutation rate control. With multicolinearity it is known that predictor 
estimates can be highly biased. In fact, predictors can be selected into the model without having any 
significant marginal effect on the response variable. These points should be carefully explored. 
Thank you for the helpful comments and recommendations. To more convincingly demonstrate the 
effectiveness of our model, we have validated it by comparing its predictions with the functional 
distribution of mutations in multiple new datasets. These include an as of yet unpublished dataset that 
comprises the largest mutation accumulation experiment in A. thaliana carried out to date: 

 
 
We further show that the predictions from our model extends to somatic mutations in a new analysis of a 
published dataset composed of deeply sequenced leaf tissue (Wang et al 2019): 

 
Finally, we confirm that the bias we infer is also observed in a natural mutation accumulation experiment, 
in a recently bottlenecked lineage of A. thaliana found in North America (Exposito-Alonso et al 2018): 
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These new results complement our other analyses inspired by your suggestions. We updated the revised 
manuscript to reflect the points you have raised. For example, we no longer state that we used AIC to 
reduce correlated predictor variables. We also explored models where we manually removed predictors 
with VIF > 3; we found that our results were essentially unchanged (few variables changed and genic 
predicted mutation rates were correlated with the original analysis at r=0.95). 
 
4. One of their genetic mutation rate predictors is local cytosine methylation. One mechanism through 
which this can occur is through spontaneous cytosine deamination. To support this point the authors re-
analyzed sequencing data from ddm1-derived A. thaliana epiRILs, which segregate methylated (wt-
derived) and unmethylated (ddm1-derived) genomic segments.. They show that transposable elementns 
(TEs) in wt-inherited genomic segments have higher mutation rates than TEs in ddm1-derived genomic 
segments. However, extended Figure 5 seems to suggest that all rates are generally higher in wt-
inherited regions, not just C→T mutation rates. In other words, the deamination argument does not seem 
to be supported. Additionally, the conclusions from their re-analysis conflict the results of Lauss et al. 
(2018). That latter study also estimated mutation rates in wt versus ddm1 regions (not just in TEs but 
anywhere) and found a trend toward increased rates in ddm1-derived regions which they attributed to a 
loss of heterochromatin (and thus an increase in accessible regions). 

This discrepancy may be related to one important technical consideration in estimating rates in those 
epiRILs: The wt segments that segregate in the epiRILs are derived from a different wt plant than the one 
that was used to generate the ddm1 mutant. The ddm1 mutation (in the Col-0 background) has been 
maintained by repeated backcrossing for many generations. The wt parent that was used to initiate the 
epiRILs was not immediately related to the ddm1 parental plant. This means the Col-0 sequence 
backgrounds of these two parents are very different with respect to the Col-0 reference sequences. 
Mutations called with respect to the Col-0 reference may thus depend on the on very different laboratory 
histories of the Col-0 sequence of the wt plant and the ddm1 parental plant (i.e. the wt parental plant 
could different at many more sites from the Col-0 ref sequence, which could explain the increased rate 
for the wt segments). One way to bypass this is to focus on non-shared mutations, which are those that 
arose during inbreeding (in fact this is what Lauss et al. had done).  

Finally, it is also not clear why the authors test their hypothesis about the effect of their predictor in TE 
sequences on not genetic sequences (ddm1-loss also effects genic sequences). Their model predictors 
were trained on genes. It is unclear how the authors expect that the relationship between cytosine 
methylation and mutation rates to also hold for TEs. In fact, patterns of C→ T demination are much 
different in genes compared to TEs pointing toward a different predictor effect in these two vary different 
genomic elements. 
Thank you for raising these points. Because this result is not directly pertinent to the main conclusions of 
our paper, as the effects of cytosine methylation on mutation via deamination have been previously 
described, we have removed this extended data figure in order to make room for the new results we have 
added. 
 
5. In Fig. 2E, the authors show that the distribution of natural polymorphisms are positively correlated 
with predicted mutation rates, which is consistent with natural variation in genic regions being 
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substantially due to mutation bias rather than primarily due to the selection after random mutation. 
However, later they find that “in genes where mutation rate is predicted to be low, the observed number 
of polymorphisms tends to be even lower than that predicted by mutation rate alone, which is consistent 
with the action of purifying selection on natural polymorphisms rather than on de novo mutations. 
Similarly, coding regions have significantly negative residuals compared to other genic regions, 
supporting the action of purifying selection after mutation.” This means that – after all – the genic patterns 
are shaped by a mixture of mutation bias and selection, but it remains unclear how strong the role of 
selection is. The authors offer no way to quantify the contribution of selection on the polymoprhisms 
patterns. Perhaps this could achieved through a SFS analysis of different genic sectors. The question 
here would be if the selection coefficients also very across the sectors in the manner that is consistent 
with the polymorphism patterns. 
Thank you for this suggestion. We agree that it will be exciting to more fully quantify the proportion of 
variation that is explained by mutation bias versus that explained by selection after mutation, especially 
given the covariance we uncovered between these two phenomena. 

We have taken your advice and performed multiple SFS 
analyses. This has revealed striking patterns suggesting 
that the bias we see in rates of polymorphism is driven 
largely by mutation bias. We find that polymorphisms 
upstream of transcription start sites and downstream of 
transcription termination sites have significantly lower 
minor allele frequencies and more negative Tajima’s D 
compared to ones within gene bodies (panels on right). We 
should expect the effect of selection within gene bodies to 
reduce allele frequencies on average, suggesting that the 
variance (lower polymorphism in gene bodies) we have 
discovered in these regions is indeed predominated by 
lower mutation probability in gene bodies. 

 
We followed this analysis by measuring Tajima’s D across coding exons to assess if the increased 

polymorphism could be explained by relaxed selection 
rather than mutation bias. This analysis revealed that 
peripheral exons have significantly lower Tajima’s D, 
which is consistent with the elevated polymorphism in 
these regions being due to increased mutation rate as 
predicted, rather than a lack of negative selection after 
unbiased (random) mutation (panels on the right and next 
page). 
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6. Fig. 3g., decreased rates in genes with higher number of introns, seems to partly conflict the prediction 
that lower rates are detected in evolutionary conserved genes, insofar that evolutionary conserved genes 
(at least those marked by gbM) are higher in exon content compared to other genes. The authors should 
explore this/comment on this. 
We may not have presented the data in the clearest manner. We believe our results are actually 
consistent with your interpretation because they confirm that genes with many exons have lower mutation 
probability. We presented the results in terms of the number of introns, which equals number of exons 
minus one. Thus, the relationship we discovered between intron number and mutation probability is 
consistent with genes with many exons having lower mutation probability. 
 
7. The authors’ main support for their “adaptive mutation biased” hypothesis is summarized in Fig. 4. 
There they show some evidence that “Functionally constrained genes have lower predicted mutation 
rates”. They do this by correlating predicted mutation rates in coding regions (CDS) with various intra- 
and inter-specific measures of genetic variation (PS, PN, DS, DN, neutrality index, delta), and intra-
specific variation in gene expression. These correlations are generally low, ranging from weak (r=0.03) 
to moderate (r=0.26); thus not lending much support to the “adaptive mutation bias” hypothesis. In 
addition, the way the data is presented is very misleading, in my view. The authors show plots where the 
mean of the above intra- and inter-specific measures of genetic variation is plotted for different deciles of 
predicted CDS mutation rates. These plots give the impression of a strong relationship. A fairer 
presentation would be to show a scatterplot of the two quantitative variables with the fitted regression 
line. Another option is to plot the 95% CI around the means (y-axis variable) for each deciles (x-axis 
variable). Either way will provide a visual presentation that is more consistent with the low/moderate 
correlation values. 
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Thank you for the suggestion. We have added 2 * standard error intervals around the means for each 
decile in every plot. We agree that understanding the effect sizes is an exciting area for future work. 
Importantly, we would like to emphasize that the significance of our discovery does not derive primarily 
from the effect size of the observed mutation bias (though some of the new analyses suggest that it might 
be at least comparable to other non-random evolutionary processes), but rather because it challenges 
prevailing assumptions about mutations occurring randomly with respect to fitness consequences. We 
agree that future research is warranted to more fully understand the limits and magnitude of the reported 
mutation bias.  

We have also added a number of new analyses that support the finding that mutation probabilities are 
lower in constrained genes, measured by empirically determined phenotypic effects. Specifically, in the 
revised manuscript we now compare genes with experimentally validated lethal vs. non-lethal effects of 
knockout mutations, as well as being annotated with essential, morphological, cellular/biochemical, and 
environmentally conditional effects. These analyses confirm our results regarding the relationship 
between mutation probability and evolutionarily informed estimates of functional constraint - essential 
genes are enriched for epigenomic features associated with low mutation probability.  
 
8. In that same figure, the relationship between predicted CDS rate and the coefficients of variation in 
gene expression indicates that predicted hyperrmutable CDS (thus, more polymorphic CDS in natural 
opulations) have a higher expression range. This relationship could simply be the consequences that 
these polymoprhisms lead to expression variation via cis-acting eQTL, rather than hypermutability being 
the result of gene expression states. The authors should comment on this.  
Thank you, we agree that this is a reasonable and interesting hypothesis, reflecting the circularity that 
emerges from covariance between selective constraint and mutation probability. We hope the revised 
manuscript more clearly articulates our assertion that an increase in gene expression variation reflects 
expression variation in such genes being often tolerated by evolution.  
 
9. In that same figure, correlations are very similar beween CDS and PS and PN (or DS and DN) 
suggesting that mutations of functionally neutral and putatively non-neutral mutations are nearly equally 
effected. This is consistent with previous observation that constraint loci tend to evolved more slowly in 
general. In fact the DN/DS ratio correlation is much lower suggesting again that correlation with measures 
of constrained evolution are weak. 
Thank you for raising this important point. As you point out, the effect of the mutation probabilities we 
have found is confirmed in the relationship with Pn, Ps, Dn, and Ds when comparing predicted mutation 
probability and patterns of natural variation in genes. However, as you also thoughtfully point out, the 
signal is stronger with nonsynonymous variants, which cannot be easily explained by mutation bias 
preferentially reducing nonsynonymous changes in genes under purifying selection (there is no plausible 
mechanism for this). Rather, the most likely explanation is differential levels of selection among genes in 
natural populations, with genes having the lowest mutation probabilities being subject to stronger 
negative selection. Given the significance of this finding as a major deviation from the traditional 
assumptions that mutation probabilities are independent of fitness consequences, we are hesitant to 
include in the scope of this particular paper a deep investigation into the strength of this effect (i.e., strong 
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vs. weak correlations). We anticipate considerable work to fully quantify this in Arabidopsis and other 
species into the future. 
 
 
Referee #3 (Remarks to the Author): 
In this provocative manuscript, Monroe et al. argue that in Arabidopsis thaliana, local mutation rates have 
been selectively optimized such that they are lower in genes where mutations are more likely to be 
deleterious. If true, this finding would have very broad implications for evolutionary biology. Their 
observations are intriguing, but the analyses are somewhat convoluted, making it difficult to assess the 
strength of their conclusion. Their proposed mechanism of selection through genome-wide epigenetic 
marks is tantalizing but has some problems. It is difficult to prove that their observation results from 
selective optimization of mutation rates. My detailed comments follow. 
Major comments 
1. My main concern of the data analysis part is the use of predicted instead of actually observed mutation 
rates. They provide no evidence how good the prediction is. In fact, all of their analysis can use actual 
mutation rates, and it is unclear to me why they did not do that. For instance, a supergene analysis should 
be able to generate Fig. 2d and Fig. 3. Fig. 4 can be generated by considering 10 supergenes for the 10 
deciles. I understand the purpose of showing the correlation between epigenetic marks and mutation 
rates, but this is about the potential selection mechanism, which is not needed for comparing trends of 
mutations and trends of polymorphisms/evolution. Their comparison between mutation and 
polymorphism/evolution patterns would be much more straightforward and convincing if they had used 
the actual mutations. 
Thank you for an excellent suggestion! We have added several analyses of actual observed mutation 
data to the revised manuscript. For example, simulations reveal a 70% reduction in the expected number 
of synonymous mutations in coding regions in our actual data, 
which is consistent with reduced mutation probability in gene 
bodies. We also show that genes in which mutations are predicted 
to have deleterious effects (high lethality index predicted from 
phenotypes in knockout lines) are significantly depleted in the set 
of observed de novo mutations (first panel on the right). That there 
is no difference in nonsynonymous/synonymous ratios (second 
panel on the right) confirms that this difference is unlikely to be 
due to selection having affected our de novo mutation dataset. 

For the majority of results, we used predicted values, what we call mutation probabilities, which can 
be thought of as an integrated index of epigenetic features associated with mutations in our empirical 
data set. We did this for several reasons: 1) We could experiment with removing coding regions from the 
training set when building the predictive model. This allowed us to show that the results cannot be readily 
explained by negative selection on coding sequences in our de novo mutation data set. 2) Relatively few 
mutations can be directly observed in gene bodies ; after all, there is a ~70% reduction in synonymous 
variants compared to the genome-wide background. There is thus relatively limited power to study 
differences between classes genes. 3) Most importantly, by using a predictive model, we are able to test 
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the power of that model on new datasets: We have added three new datasets to the revised manuscript 
to demonstrate this. First, we have added unpublished results from the largest mutation accumulation 
experiment performed to date in A. thaliana, which involved 400 lines from 8 founder genotypes 
propagated by single seed descent for 8-10 generations. By sequencing these lines we could describe 
mutational patterns across the genome in a similar fashion to our original mutation accumulation 
experiment. We show that our predictive model has remarkable power to explain the functional 
distribution of these new mutations, a result which is now prominent in the revised manuscript. The figure 
below shows the distribution of predicted mutation probabilities and observed de novo mutations around 
transcription start sites and transcription termination sites: 

 
In addition, we called de novo somatic mutations in a previous data set from 64 individual leaves from 

two A. thaliana plants that had been deeply sequenced (Wang et al 2019). These data confirm again that 
our predictive model has outstanding power to predict the distribution of de novo variants: 

 
Finally, we validated the predictive power of our model with an analysis of mutations in an isogenic 

North American A. thaliana lineage that experienced a recent severe genetic bottleneck. Again we see 
that the distribution of new mutations is remarkably similar to our predictive model trained on the original 
empirical set of de novo mutations: 

 
We found additional evidence that the observed distribution of new mutations is driven to a large extent 

by mutation bias, rather than by selection alone, by quantifying the average minor allele frequency around 
transcription start and termination sites in 1,135 A. thaliana accessions. These data show that minor allele 
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frequencies are higher in gene bodies (which is not expected if the observed reduction in the number of 
polymorphisms in gene bodies is driven entirely by strong negative selection). We also calculated 
Tajima’s D values in these same windows, and they further support the interpretation that the pattern 
observed in natural populations is driven to a large extent by mutation bias: 

 
We then ran a series of simulations to test whether these results could be plausibly explained by 

extremely strong purifying selection. We were unable to find support for this hypothesis. Even if we 
assume that 30% of coding sequence variants are dominant lethal (which is unrealistically high), we find 
the distribution of variants only weakly related to the patterns we observe independently in our datasets. 
These results can be found in the extended data, along with previous results showing that the distribution 
of mutations we observe cannot be explained by mapping depth, mappability, or the distribution of false 
positive variant calls: 

 
 
2. They interpreted their observation of correlations between predicted mutation rates and several gene 
expression or evolutionary constraint measures by selective optimization of mutation rates. I am not fully 
convinced by this interpretation and believe there are other possibilities.  
(1) The formula in line 223 works only in the absence of recombination (e.g., see Kimura 1967 Genet. 
Res. or Lynch 2011 Genome Biol. Evol.). Because A. thaliana is selfing, it effectively has no 
recombination. So, one could argue that the formula works here. But this unusual reproductive mode 
evolved within the last million years in A. thaliana. For the above argument to work, one must assume 
that all the optimizations of mutation rates occurred within the last million years in A. thaliana. If so, how 
do we explain the Populus results, as Populus is outcrossing and should not have the type of selective 
optimization of mutation rates?  
(2) Another point about the formula in line 223 is that, under the assumption that there is a global mutation 
rate modifier, the drift barrier is determined by this formula when L_segment is the length of the whole 
genome (or functional genome) (Lynch 2011 Genome Biol. Res.). In other words, delta U and U are tiny 
at the drift barrier. So, when L_segment is say 1% of the functional genome for a particular epigenetic 
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feature, delta U must be much bigger for selection to work. Given that U is already very low, it is 
impossible for delta U to be large (you cannot reduce mutation rate to negative values). Thus, the authors’ 
model is actually incompatible with the drift barrier hypothesis. I am not saying that their model is wrong 
because it is incompatible with the drift barrier hypothesis, as the drift barrier hypothesis could be wrong. 
But my reading is that the authors seem to be saying that their model is compatible with the drift barrier 
hypothesis. This needs to be clarified. 
Thank you for the thoughtful comments. We agree that this section previously did not clearly articulate 
our interpretation of the results and we changed this in the revised manuscript. We have removed the 
statement that our data suggest a high ΔU, which, as you accurately point out, is confusing, as the existing 
mutation rate sets a clear limit to how much this can change. We have therefore simplified our discussion 
around these equations, focusing on how the mechanistic model presented indicates that a large Lsegment 
is being affected, due to the genome-wide distribution of the features that are plausibly linked to mutation 
probability through DNA protection/repair mechanisms. We hope that this more concise explanation of 
the relationship between our results and previous theory (i.e., drift-barrier hypothesis) is now clearer. 
 
(3) If the observations in Fig. 4 are genuine, I wonder if they could be produced by non-adaptive 
processes. One possibility is that the correlations are intrinsic. For instance, methylated Cs have elevated 
mutation rates for chemical reasons. If somehow there is a correlation between the abundance of 
methylated Cs and gene expression purely for mechanistic reasons of gene expression, one may see a 
correlation between gene expression level and mutation rate that is not a result of selective optimization. 
Because dn/ds is strongly correlated with gene expression level in a wide variety of species including A. 
thaliana (Zhang and Yang 2015 Nat. Rev. Genet.), one would also see a correlation between dn/ds and 
mutation rate.  
(4) Related to the above point, for the authors’ model (i.e., selection acting on epigenetic marks) to work, 
there must be a significant correlation between epigenetic marks and gene expression/selective 
constraint, which the authors have not shown. If they can confirm this correlation, the non-adaptive 
process outlined above would easily work because all one need is an intrinsic relationship between 
epigenetic marks and mutation rate, which has been reported and cited in the manuscript. Thus, it seems 
that the condition necessary for the selective optimization hypothesis to work also makes the intrinsic 
property hypothesis work. In other words, the conclusion of adaptive mutation rate optimization cannot 
be proven.  
 
These points are spot on. The revised manuscript 
confirms the difference in epigenomic states between 
essential and non-essential genes (panels on the 
right). These differences include significant differences 
in histone modifications, which are associated with 
lower mutation probability. Importantly, we also show 
that lethal-effect genes have significantly higher 
cytosine methylation, which is inconsistent with 
mutation bias being a coincidence due to intrinsic 



Monroe et al.  Response to Reviewers 

16 

properties of the epigenetic machinery. Although methylated cytosines are intrinsically more mutation 
prone because of spontaneous deamination frequently leading to C>T substitutions, this effect is 
apparently overcome by the mechanisms underlying the mutation bias we have discovered. Similarly, we 
find no difference in mean expression between lethal-effect and non-lethal-effect genes (t.test, p=0.57; 
result, but not a separate figure, included in revised manuscript because of space constraints), indicating 
that intrinsic effects of transcription-coupled repair cannot explain our results. 

Because the observed patterns look so much like the outcome of natural selection, we are somewhat 
hesitant to discuss non-evolutionary forces (while hypothetically plausible) without some clear supporting 
evidence to the relationship we observe between mutation probability and adaptive constraint on genes 
and functionally distinct regions. Specifically, we are concerned that an interpretation of apparently 
adaptive bias in mutation - specifically reducing deleterious mutations - as an intrinsic property of the 
genome would be received as even more controversial than the interpretation that we put forth (and even 
be potentially abused by non-scientists with ulterior motives to undermine evolutionary biology generally). 
Thus, while we expect these results still likely to be viewed as provocative, we believe our interpretation 
of the results in a manner that is intentionally consistent with the action of evolutionary processes rather 
than a purely emergent phenomenon is more conservative and parsimonious in light of standard 
Darwinian theory. 
 
(5) A related comment is on the interpretation of the negative correlation between mutation rate and 
UTR/intron length. Again, this negative correlation could be intrinsic instead of a result of selection.  
This is an interesting idea as well. We agree, as with mutation bias in general, the relationship could 
potentially be explained as an emergent phenomenon. In either case, the pattern does seem to provide 
an adaptive benefit that mirrors selection: greater intron number in A. thaliana facilitates lower mutation 
probability in coding sequences, which are more susceptible to deleterious mutation, by distancing these 
from elevated mutation probability at the periphery of transcribed regions. 
 
3. Fig. 4, I did not find the GO analysis informative. Which function can be said to be unimportant? All 
functions are important, and designation of important/unimportant function is quite arbitrary. One less 
arbitrary index that the authors are encouraged to use is gene essentiality based on knock-down/out 
phenotypes, and there is such data for A. thaliana at the genomic scale. A key advantage of using gene 
essentiality is that it is an objective measure of functional importance yet it is not likely to be strongly 
correlated with gene expression level. This potentially allows one to distinguish the intrinsic property 
hypothesis from the adaptive optimization hypothesis.  
Thank you for this excellent suggestion. We are very excited by the results that have emerged from 
performing these recommended analyses. First, we analyzed genes classified as lethal-effect and non-
lethal-effect based on phenotypes observed in knockout lines. We discovered that lethal-effect genes are 
enriched for features predicted to reduce mutation probability such as H3K4me1. This is important, 
because it provides a plausible mechanistic explanation for selection to act on interactions between DNA 
repair/protection processes to become preferentially targeted to specific epigenomic features. We then 
show that this difference in epigenomic states is manifest as differences in mutation probability between 
lethal-effect and non-lethal-effect genes.  
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Second we analyzed genes classified as essential or having morphological defects, 
cellular/biochemical defects, or defects in specific environmental conditions when knocked out. This 
revealed similar results, demonstrating that essential genes are enriched for features associated with low 
mutation probability. In contrast, genes with other phenotypic consequences when mutated (especially 
ones whose effects are environmentally conditional) have lower levels of these features and thus higher 
mutation probability. We finally added another analysis showing that genes that are consistently 
expressed in all tissues are enriched for features associated with low mutation probability.  

Combined with results from the GO analysis (which we agree do not provide a complete picture 
on their own), these new findings yield compelling evidence for a simple model for the evolution of 
beneficial mutation bias: constitutively expressed essential genes are enriched for epigenomic features 
that have become associated with a reduction of mutation probability in these genes, resulting in reduced 
deleterious mutation load. One can think of two alternative scenarios: (1) These genes happened to be 
enriched for specific epigenomic features and the DNA repair machinery subsequently evolved to be 
preferentially targeted to these features. (2) The DNA repair machinery was more likely to be targeted to 
specific epigenomic features to begin with, and these genes subsequently evolved to be decorated with 
such features. While this will be ultimately difficult to prove conclusively, the first scenario appears to be 
the much more likely scenario:  

 
Minor comments 
1. Fig. 1b is large but contains little discernable information, so should be removed. 
Thank you for the suggestion. We agree - and to make room for the results we have added to the revision, 
we have moved this to the extended data. 
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2. Fig. 1c. If my reading is correct, it shows that gene-poor regions (white parts in chromosomes) have 
lower mutation rates than gene-rich regions, directly contrasting the main conclusion of the paper. Please 
clarify.  
This figure shows the mutations used to inform our predictive model, which is focused on genic regions. 
We have clarified this in the figure legend. 
 
3. Fig. 1d, it is difficult to sense the ratio after the log-transformation. While it is OK to use the log-scale, 
I suggest that they present untransformed values on the Y-axis for easy reading. My back-of-the-envelope 
calculation based on the numbers provided in the manuscript shows that the difference between “de 
novo” and “null” bars of non-syn/syn is significant instead of NS. Please check the statistics or provide 
the raw numbers used in the test.  
Thank you for the suggestion. We have added untransformed values to the y axis for clarity. 
 
4. Fig. 4a, how different is the mutation rate (in absolute terms) among the 10 deciles? Please provide 
the information in the figure. Because the theoretical model involves delta U, it is critical to know how 
large the delta U is. 
In light of the previous comments, we have removed our discussion of ΔU. 
 
5. Extended Data Fig. 6b. Negative values are interpreted as purifying selection. How about positive 
values? Do they mean balancing selection? How likely is it that introns are subject to strong balancing 
selection?  
We are hesitant to interpret the positive residuals as evidence of balancing selection in introns. We 
speculate that this is simply a function of introns being the gene features with the greatest disconnect 
between strength of selection and mutation rate: introns are predicted to experience fewer mutations but 
weak selection. In other words, introns enjoy a low mutation probability due to their position within gene 
bodies, but mutations are also more often maintained via drift, so the number of observed polymorphisms 
is higher than predicted from mutations alone (when considered in relation to UTRs which may also have 
lower constraint but a correspondingly high mutation probability, thus being closer to the fitted model). 
 
 
Referee #4 (Remarks to the Author): 
In their manuscript entitled "Adatptive mutation bias in Arabidopsis thaliana" by Grey Monroeet al have 
studied the determinant of mutation rate in a mutation accumulation experiment from Arabidopsis 
thaliana. They found some fluctuations of mutation rate along the genome and suggest that genes with 
higher level of constraints have lower mutation rate. This proposed reduced selection for mutation rate is 
supposed to be drivent by genome wide factors that may generate a large enough benefit to select for a 
lower mutation rate.  

My major concern with the present data is the number of cellular generation involved in the 
experimental design. One complexity of mutation accumulation is to ensure that no selection is occurring 
in the process. In bacterial experimental evolution, one simple tool is Ka/Ks ratio that can be used to 
investigate the lack of selection. We can push things even further with looking at predicted mutation 
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effects using Direct Coupling Analysis as we did in Couce et al PNAS 2017 
(https://doi.org/10.1073/pnas.1705887114). In these experiments a Ka/Ks equal to one is a simple proof 
that there is no selection detectable at the genome scale. Here the data are going in the good direction 
with a reduced selection, but without any more details on the null model used and the formula used to 
compute these ratios it is hard to be sure.  

Indeed, a large fraction of the genome may show no Ka/Ks deviation as it is unconstrained, but the 
rest of the genome may leading to the absence of signal at that level despite a true selection that may 
later on affect the detection. In that respect the different formulation of the null model taking into account 
mutation biases has to be explicitly given as it may have a strong impact.  

In that respect it would be worth doing simulations to see how much selection in selectively important 
genes in the MA process would be needed to lead to A) lead to a significant deviation in the overall KA/Ks, 
B) to generate the signature of selection detected.  

An alternative could also to take the genes ranked by their mutation rate as done in the last figure and 
to plot this time their Ka/Ks ratio for each of the deciles to se if there is a consistant association between 
low mutation rate and a signature of selection in the MA.  
Thank you for the excellent suggestions. Given the nature of our findings that mutations occur less 
frequently in constrained loci, the possibility that this was due to unexpected selection in the experiment 
has been a constant concern. With the experimental design (single seed descent, where a single seedling 
is arbitrarily chosen for propagation, regardless of its phenotype), we expect selection to be at an absolute 
minimum in the germline, as long as the mutations do not kill the seedling or extraordinarily delay its 
germination. In the soma, where mutations remain heterozygous, selection has anyway been shown to 
be minimal to the point of being undetectable (Wang et al 2019). Nevertheless we have sought to ensure 
that our results cannot be explained by selection on the de novo mutations used in our training data. For 
example, by building a predictive model of mutation probability rather than relying on raw mutations for 
downstream analysis, we were able to construct a model in which coding regions are excluded from the 
training set. The predictions for coding regions were nevertheless very similar to the full model that used 
raw mutations from inside and outside coding regions. We also found that low mutation probability genes 
have lower than expected (fitted values) levels of natural polymorphism, which suggests that they are 
subject to purifying selection in the wild rather than in our data. As you point out, we also observed that 
our set of de novo mutations was statistically similar to a null expectation in terms of rates of 
nonsynonymous and synonymous variants, which we have explained in further detail in the manuscript. 
Specifically, we clarify that the null expectation was built from the known codon use of A. thaliana and 
the molecular spectrum of coding sequence mutations. 

We have added an analysis comparing nonsynonymous to synonymous variants in genes 
distinguished by their estimated degree of lethal effect determined 
from empirical measurements of knockout lines (panel on the right). 
We found that the rate of non-synonymous mutation relative to 
synonymous mutation is the same for genes that are highly mutation 
sensitive (“lethal effect”) vs. less sensitive (“non-lethal effect”), 
despite these groups of genes showing significantly different rates 
of de novo mutation in our data. This result supports the 
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interpretation that lower mutation rates observed in our data are indeed the result of mutation bias rather 
than strong purifying selection removing functionally impactful mutations from coding regions of essential 
genes in the set of de novo mutations. 

We also calculated nonsynonymous and synonymous ratios in genes grouped by their mutation 
probabilities, as you suggested. This confirmed that genes with low vs high mutation rates do not vary in 
terms of nonsynonymous and synonymous ratio in a predictable manner: 

 
We have also added several simulations demonstrating that selection 

cannot reasonably explain our data. First, we simulated random 
mutations across coding regions of the genome (1,000 iterations) and 
calculated the expected nonsynonymous/synonymous ratios. The 
distribution is shown below with our data marked with the vertical red line 
in the panel on the right. This result confirmed that our data are consistent 
with neutral rates of variation. 

We also simulated selection in coding regions across the genome at 
varying strengths of purifying selection. In these simulations we created 
10,000 random mutations across the genome and selected against coding sequence mutations at s = 
0.01 (1% of coding region mutations dominant lethal), s = 0.1 (10% of coding region mutations dominant 
lethal), and s = 0.3 (30% of coding region mutations dominant lethal). Even at this extremely high degree 
of simulated purifying selection (0.3) we did not observe the amount of bias that we find in our de novo 
mutation dataset (although we do see a slight reduction of variation in gene bodies). 
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In summary, with these new results generated based on your suggestions along with our previous 
results, we were unable to detect evidence that unexpected selection on our de novo mutation dataset is 
a likely explanation for our results. 
 
I am not sure about the meaning of the scaled values presented in figure 2. Indeed, throughout the text, 
the amplitude of the signals should be more precisely delineated. P values are not a proof of large effect. 
Are we talking about 10 fold differences? In Couce et al we use log-odd ratio for discrete traits and 
interquartile odds ratios for continuous ones. This is interesting but giving more explicitly the range of the 
observed signal as in figure 3 would be nice.  
Apologies for the confusion - we have updated the figures to more precisely denote the relevant units. 
Specifically, we have defined a simple Mutation Probability Score, which is the indel + SNP mutation 
probability predicted by the model built from our set of observed de novo mutations. 
 
If there are enough synonymous mutations, analysis could be done using just these, or adding 
synonymous state to the model.  
Thanks for the suggestion. We have added an additional simulation of the expected number of 
synonymous mutations we would observe if mutations occurred randomly across the genome. From this 
simulation we found that there is a 70% reduction in synonymous variants among the observed set of de 
novo mutations relative to expectations under random mutation, and have added this result to the paper. 
This result provides additional support that the pattern we see is not due to selection but rather to mutation 
bias. 
 
Experiments with bacteria revealed that a major driver of mutation rate is the bases before and after the 
focal base as well as the specificity of the base 
(https://doi.org/10.1093/molbev/msv055,https://doi.org/10.1073/pnas.1705887114) . Here it seems that 
all these effects have been ignored. But how much of the signal could be due to these local sequence 
composition effects. As sequence specificities may varie from coding to non coding this can also explain 
some of the variability observed.  
Thank you, this is also a very interesting point. Local sequence context might well play a role, and it might 
indeed contribute to differences in epigenetic marks and DNA repair. Such a scenario would, however, 
not invalidate any of our assertions about mutation bias along genic sequences. 
 
The p values between the changes in mutation and the mean per decile are meaningless. P values of 
any level can be obtained when performed on mean binned data. The rough p values and correlation 
should be given, even if the plot is made with the deciles for clarity and communication purposes. Again, 
how much siganture of selection in the MA would be needed to explain some of these signals.  
Thank you for raising this. We have clarified in the revised manuscript that these p-values do not reflect 
the binned values but rather rough correlations and p-values. The binned data are used only for 
visualization purposes to capture non-linearities and deviations from the relationship. We have also 
added error bars.  
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Besides these technical comments, the analysis performed are really interesting.  
Is there any hypothesis on why mutation rate may be larger at TSS and TTSs sites precisely? Secondary 
structure have been shown to affect mutation rate (Barbara Wright work 
(https://doi.org/10.1099/mic.0.2007/005470-0) on bacteria that we followed in Hoede et al Plos Genetics 
2006). Could that be involved at these sites? 
Thank you! Our model suggests that mutation probabilities are higher upstream of TSS and downstream 
of TTS because the chromatin is more accessible, to provide access for regulatory transcription factors 
and the transcription machinery. In addition, recombination, which is known to be mutagenic (Halldorsson 
et al 2019), might contribute to these patterns, because they are similar to patterns of SPO11-generated 
double strand breaks (DSBs) (Choi et al 2018). Also, these regions are depleted for features that mark 
internal gene bodies, and thus may simply lack the signals that recruit DNA repair.  
 
For all the histone methylation marks, is there a synthetic way to present their various contribution: the 
ones linked to expression, the ones linked to deletion to accessibility... Apart from one or two mentioned 
in the text, the others are just left to specialists for interpretation. So a synthetic figure giving some insights 
would be great.  
If the reviewer feels strongly about this, we could add a table regarding the effects of the different 
epigenomic features. We have shied away from doing this, because they are not always unambiguous. 
For example, cytosine methylation in the context of so-called gene body methylation is associated with 
higher levels of gene expression, but in the context of so-called TE-type methylation, it is associated with 
reduced levels of gene expression. 

We have nevertheless added a summary figure to the manuscript that partially goes in this direction. 
While perhaps different than what was suggested, this figure provides a conceptualization of the general 
model of mutation bias that we observe - mutation bias is linked to epigenomic features which themselves 
are linked to differences in functional constraint across the genome. Though we do detect strong 
associations between specific genomic and epigenomic features and mutation probability, we were 
hesitant to include individual associations in our conceptual model as future functional work will likely be 
needed to fully dissect the causal relationships with specific features, potential interactions, and more 
precise molecular mechanisms underlying the associations that we have uncovered.  

 
Olivier Tenaillon (I always sign my reviews) 
 
 



Reviewer Reports on the First Revision: 

Referee #1 (Remarks to the Author): 

The authors have dealt with the one general issue I raised in the first review. I remain enthusiastic 

about this study given its possible impact on evolutionary thinking. 

Referee #2 (Remarks to the Author): 

Grey et al present a revised version of their now entitled paper “Mutation bias reflects natural 

selection in Arabidopsis thaliana”. The authors made substantial efforts trying to address the many 

technical and conceptual concerns raised by the four reviewers. I continue to think that it is an 

interesting paper, but I just don’t think it is quite enough to be published in Nature. Building on 

my previous comments, my major concern is the lack of sufficient quantification of their predictive 

model. In my view this is the heart of the paper, and drives all downstream 

conclusions/interpretations. Most of the results/conclusions currently rely too much on visual 

comparisons between predicted and observed patterns, rather than on quantitative measures such 

as “variance explained by the model”. Such model performance statistics should be provided. 

Without them, it is remains impossible for me to judge the relevance/impact of their paper. Here 

are my major concerns. These lean on some of my previous points, but also include additional 

questions in light of the revised version, the comments of the other reviewers, and me having had 

a bit more time to think about this. 

1. 

The section “Predicting mutation probability across the genome” introduces their predictive model. 

The variance in observed mutation frequency by their final selected model is nowhere reported. 

Only the final predictor set along with the associated t-values of the coefficients are shown in Fig. 

1. The t values are relatively large and should be highly significant. But as with anything in 

genomics, the input sample sizes are also large (all the genes), which renders standard errors of 

the coefficients small. A more meaningful quantity to report is something like the R2 value, which 

tells us how much of the variance in the mutation frequency patterns is explained by the model. 

Also, standard statistical output such as values of the coefficients, t values and associated degrees 

of freedom, a plot of the distribution of the response variable(s) and perhaps residual diagnostic 

would be good to see (e.g. residuals versus fits plots). Again, it is still not clear to me how they set 

up their “generalized linear model”. Do they assume their response variable is normally 

distributed? Or drawn from another distribution. Making model choices solely based on visual 

inspection of the predicted mutation probably along genes is not sufficient for me. 

In one of their replies, the authors state “Importantly, we would like to emphasize that the 

significance of our discovery does not derive primarily from the effect size of the observed 

mutation bias (though some of the new analyses suggest that it might be at least comparable to 

other non-random evolutionary processes), but rather because it challenges prevailing 

assumptions about mutations occurring randomly with respect to fitness consequences. We agree 

that future research is warranted to more fully understand the limits and magnitude of the 

reported mutation bias”. I strongly disagree with this perspective. The authors have all the 

results/model fits, etc. at hand. Why not just show the results to allow for a more fair assessment 

of their finding. Are we talking about predicted mutation biases that are relatively trivial relative to 

other evolutionary processes shaping natural variation, or are we looking at major effects that 

would fundamentally require us to reevaluate previous conclusions about genomic patterns of 

selection. To me, this difference determines if this ms is published in a high impact journal like 

Nature, or somewhere else. 

2. 



Related to this, all the plots in Fig. 2 showing the observed and predicted mutation frequency are 

represented in terms of mean values (calculated from all the genes), but show no information 

about the variance (i.e. variation around the mean pattern). A similar concern lingers for me in 

Fig. 3. My previous comments and those of another reviewer were critical of the decile plots shown 

in that figure. These plots convey a strong relationship between predicted mutation probability and 

various measures of evolutionary constraint. But looking at the correlation values (r) given in that 

figures, the relationship is actually very weak. In fact, the R2 (correlation coefficient squared) 

would even be smaller. I had asked for an alternative representation that plots quantitative values 

of predicted mutation probability versus constraint measures. This would be a fairer representation 

and more consistent with the low correlation values. As an alternative I mentioned plotting 95% CI 

around the decile means. The authors did the latter. I now realized that the large sample sizes per 

decile would still lead to relatively small CI. So, after all, I think a quantitative bivariate plot with a 

regression fit is the fairest way to present the data (bivariate densities could be indicated via color 

code). 

3. 

It also occurred to me that the final selected predictor set for SNV and INDELs is very different, 

which raises the question if this relates to different biology and/or the fact that INDELs tend to 

occur in different parts of genes than SNVs so that they relate to different epigenomic features. I 

don’t see any plots to show the observed mutation frequency distribution contrasting SNVs and 

INDELs. The authors also don’t comment on this. 

4. 

The authors now included new PC analysis of the epigenetic marks they obtained from the PCSD. 

It remains unclear why they do this and not just plot the distribution individual marks along the 

gene (see Fig. 2A), or the chromatin states given in the PDSC database. If the authors think the 

PC dimensions are important, why don’t they use the PC loadings as predictors in the model. The 

fact that various epigenetic modifications load onto the PC means that they are correlated. This 

brings me back to the variance inflation factors. The authors have performed VIF analysis (by the 

way I would not mention this in the main text as it is trivial and not a main result) and found little 

evidence for this. Why not show the VIFs for each predictor in a SI table so we can see more 

clearly. 

5. 

The authors bypassed my concern about their epiRIL data analysis by stating that “ Because this 

result is not directly pertinent to the main conclusions of our paper, as the effects of cytosine 

methylation on mutation via deamination have been previously described, we have removed this 

extended data figure in order to make room for the new results we have added”. Since the main 

conclusion of their revised paper is the same as their original submission, I do not see how the 

epiRIL analysis was pertain before but is no longer. Space limitation in SI should not be an issue. 

The authors don’t comment at all on whether I was wrong. I am happy to be proved wrong, but 

felt that the removal of their analysis bypasses potential issues in their original interpretation. 

6. 

Finally, I appreciate that the authors clarified the differences between “adaptive Mutation Bias” and 

“Adaptive Mutation bias”. In their formulation, the patterns of reduced mutation probabilities in 

constraint genes increases fitness by avoiding deleterious mutations. In this sense they are 

“adaptive”. Because this mutation bias increases fitness, this bias itself must be an evolving trait 

(and the authors also mention this in their discussion).There were a few comments from the 

reviewers how this bias could evolve. I acknowledge this this a deep and difficult question. But, the 

possibility that it can evolve (or that it is postulated to evolve) would require that this bias is 

variable in natural populations, as surely the predictor set the authors used will show variation 

among accessions (e.g. mCG is highly variable among natural accessions). The authors have now 

included additional MA lines that were established in different genetic background (i.e. derived 

from different founder accessions). This new data provides an opportunity to examine the range of 



natural variation in mutation bias. In fact, going one step further: this new data would also allow 

the authors to assess a causal link to their predictor set by profiling the founder accessions for at 

least some of their strongest predictors. Such an analysis would provide some empirical hints as to 

how this bias does/can evolve, and would thus mitigate any potential philosophic debates and 

controversies that arises from their conclusions. 

Referee #3 (Remarks to the Author): 

I thank the authors for addressing my previous comments and for including many new analyses in 

this version. The manuscript has been strengthened through the revision. However, key issues 

remain unresolved. 

Major comments: 

1. Related to previous major comment 1. 

(i) I asked the authors to use raw mutation numbers instead of predicted mutation probabilities to 

study mutation rates in different genes or genomic regions and to compare mutation with 

polymorphism. They used raw mutations in only one plot (lethal vs. non-lethal genes; Extended 

data Fig. 2c). But in all other plots, they still used predicted mutational probabilities. It appears 

that there are sufficient mutations in the data to allow using raw mutations. For instance, in 10 

bins in Fig. 3, each bin would have hundreds of mutations. In Fig. 2b, for a 100-bp window, there 

should be >200 mutations. They now acquired a new mutation accumulation dataset (Fig. 2cd) 

that is larger than the primary dataset used (the exact mutation number in the new dataset is not 

provided in the manuscript). They could combine the two datasets to get even more mutations. 

(ii) I complained that they did not tell us how well the model fit the data, and they still do not 

provide such statistics. It is interesting to note from the raw mutation numbers in Fig. 1d that SNV 

rate is not lower in coding regions than non-coding regions. Even for indels, the mutation rate is 

only slightly lower in coding regions than non-coding regions (Fig. 1d). This pattern, based on raw 

mutation numbers, gives a very different picture than the one based on predicted mutation 

probabilities (Fig. 2b). That is why it is important to use raw mutation numbers. 

(iii) Regarding the model, the Methods section states that “The response variable was the 

untransformed (to avoid risk of increased false positives caused by transformation) detected 

mutation rate across every genic feature (upstream, UTR, coding, intron, downstream).” Does this 

mean that they used different models for different genic features (upstream, UTR, coding, etc)? 

What is the rationale of such modeling? Do they assume that the same epigenetic marker has 

different effects in different genic features and why? What result will they get if they use the same 

model for all genic features? 

2. Related to previous major comment 2. 

(i) Regarding the interpretation of their observation, authors state that their adaptive model is 

compatible with population genetic theory if L_segment is large, but do not provide concrete 

evidence that L_segment is indeed larger than that required by the theory. I suggest that they 

calculate, based on mutation rate and other parameters, the theoretically minimal L_segment for 

the adaptive hypothesis to work, and compare it with the true L_segment. Although the true value 

of L_segment is probably unknown, I believe one can estimate its order of magnitude. 

(ii) Authors seem to agree that they cannot reject the intrinsic property hypothesis but is reluctant 

to discuss it because they felt that it would be “even more controversial” than the adaptive 

hypothesis and may be misused by non-scientists. In my view, drawing conclusions without 

considering/discussing alternative explanations is more dangerous. 

3. This is a new major comment arising from their new analyses. 



I am very confused by their new results on Tajima’s D and minor allele frequencies. As far as I 

know, a change in minor allele frequencies does not indicate a change in mutation rate but a 

change in selection. So, the finding that genic regions have higher minor allele frequencies than 

non-genic regions does not tell us anything about mutation rate difference between these regions, 

but suggests that coding regions are subject to weaker purifying selection than non-coding 

regions, which is unexpected and deserves an explanation. Is this result consistent with previous 

population genomic analysis of the species? Is the same result obtained when raw mutations are 

used? Similarly, a less negative Tajima’s D of genic regions than non-genic regions suggests a 

weaker purifying selection acting on genic than non-genic regions. 

4. This is a new major comment arising from their newly presented results. 

Because there is no variation in SNV mutation rate among genic features (Fig. 1d), are all the 

mutation rate differences in Figs. 2, 3, and 4 actually due entirely to indel mutations? If so, this 

should definitely be stressed because indel and point mutations are likely caused by different 

molecular mechanisms. Do polymorphisms in Figs. 2, 3, and 4 include both SNPs and indels? Also, 

at the end of page 3 and beginning of page 4, authors discussed that their results from modelling 

are consistent with previous findings. Are they consistent with previous findings on both SNVs and 

indels? If I am not mistaken, previous findings are almost exclusively on SNVs. Please clarify. 

Minor comments 

1. Previous minor comment 2. The pattern is still opposite to what was claimed in the manuscript. 

It shows that gene-poor regions (white parts in chromosomes) have lower mutation rates than 

gene-rich regions (black parts in chromosomes). 

2. Previous minor comment 4. Authors did not answer how different the 10 deciles in Fig. 3 are in 

mutation rate (in absolute terms). 

3. New minor comment. “We found a 70% reduction in synonymous variants in the raw de novo 

mutation dataset relative to random expectations”. This sentence on page 4 appears contradictory 

to Fig. 1d, which shows virtually equal SNV mutation rates across genic features. Is the lowered 

synonymous rate compensated by an elevated nonsynonymous rate? 

Referee #4 (Remarks to the Author): 

In this revised version of the manuscript, the authors have made a lot of efforts to answer my 

comments and I greatly appreciated the effort and the positive tone of the answer. 

I was nevertheless not fully satisfied with one part of the extra data presnted in the extedned 

material: the simulations made to look at the effect of deleterious mutations. THe model was too 

simple and assume very large effect filtered at once. Because strong bottlenecks are imposed, 

what matters here is more the potential within host selection from gamete to gamete. 

Let us assume that mutations within a given gene occur at rate µ and have a deleterious effect at 

the heterozygous state such that they hamper the reproduction rate of the affected cells through 

the development process by (1-s). If there are N cellular generations within a plant generation, we 

have µ+µ(1-s)+µ(1-s)^2+.. +µ(1-s)^(N-1) mutated cells because some cells have mutated at the 

last division and have not been counter selected, some have mutated at the generation before and 

have a 1-s probability of being a gamete, some two generations before and therefore have been 

counter selected for two cycles (1-s)^2 and so on. This gives µ(1-(1-s)^N)/s and if we compare to 

the number of neutral mutations we would expect µN (s=0) the counter selection of mutations 

occurring within the gene that have effect s is (1-(1-s)^N)/(Ns). 

If we assume 30 cellular generations between plant generations and a 1% fitness effect we expect 

a 15% underrepresentation, if the cost is of 2% it is a 25% reduction. 

I have no clear idea of the values of N and s, but I think it is quite important to substantiate the 

modelling part in that respect. The argument that a 30% loss of mutation is unrealistic, is not that 

much unrealistic if we take into account the cumulative counter selection over the gamete to 



gametes development that can turn a realistic small effect into a quite large counter selection. 

The outcome of this process could appear through the synonymous, non synonymous pattern, but 

may leave a marginal signal in term of significance, that may also be due to partially wrong 

mutational biases and other noise factors. 

Interestingly if N is quite large and some s are important, this cellular process will also lead to a 

decreased mutation rate in important genes from generation to generation, and may also have 

some evolutionary implications that are worth mentionning. 

Olivier Tenaillon
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Summary of revisions 

As requested, the majority of results are now presented more quantitatively and in terms of mutation calls rather than 
probabilities derived from our linear model based on epigenomic features. We show that, as predicted, empirically observed 
de novo mutation rates in the absence of selection are lower in gene bodies (58% reduction), even lower in essential genes 
(a further 37% reduction), and genes subject to stronger purifying selection. We have, of course, also quantified how well 
the original model could predict some of the patterns discovered. For example, we asked, “how much of the pattern of 
mutation rate bias around gene bodies is explained by the epigenome-predicted mutation probabilities?”. We found that our 
model explains over 90% of the variance. We also show that modeling biased mutation rates can explain over 90% of the 
variance in polymorphism rates around genes in natural populations. We have added extensive simulations and a more 
thorough explanation of the results regarding Tajima’s D, which provide population genetic evidence that mutation bias is 
the dominant force shaping genome-wide patterns of sequence evolution around gene bodies. We find that all of the 
conclusions (low mutation rates in gene bodies and essential genes, etc.) are the same if we consider SNVs and InDels 
separately, so we present combined results and make this clearer in the text. We show that the reduction in the mutation 
rate of essential, lethal-effect, and constitutively expressed genes cannot be jointly explained by any hypothesized intrinsic 
mutation bias. We calculate the minimum Lsegment necessary for these adaptive biases to evolve and show that this is much 
smaller than regions enriched for low mutation epigenomic features in essential genes. 

We would like to note that while all of the new experiments, analyses, simulations, and theoretical considerations suggested 
by the reviewers since the original submission have supported the same conclusions - constrained loci experience lower 
mutation rates -, they have made our case even stronger and thus greatly improved the manuscript. This study has produced 
an enormous amount of results and data, and we are grateful to the reviewers for their time.  

These are the highlights of our revision: 

1. New/revised figures: Fig. 1, Fig. 2, Fig. 3, Fig. 4, Ext. Data Fig. 2, Ext. Data Fig. 3, Ext. Data Fig. 4, Ext. Data Fig. 5, 
Ext. Data Fig. 6, Ext. Data Fig. 7, Ext. Data Fig. 8, Ext. Data Fig. 9, Ext. Data Fig. 10. 

2. Added large-scale simulations of population-scale genome evolution using SLiM - analyses of Tajima’s D confirm that 
mutation bias is the dominant force shaping patterns of sequence diversity around gene bodies (Ext. Data Fig. 6). 

3. Added a more thorough explanation of Tajima’s D result to the main text and methods. 

4. Added figure showing the density of gene bodies in relation to transcription start and termination sites of focal genes 
(Fig 1c). 

5. Created a figure of aggregated observed mutation rates across all datasets around gene bodies (Fig. 2b). 

6. Revised figure 1 to show the distribution of gene bodies, mutations and epigenomic features relative to all transcription 
start sites and termination sites more clearly. 

7. Calculated reduction in gene body mutation rates from raw observed mutation data (Ext. Data Fig 4d). 

8. Added scatterplot showing predicted and observed mutation of windows around gene bodies (Ext. Data Fig. 5). 

9. Quantified how epigenome-predicted mutation probabilities compare to observed mutation rates around gene bodies 
(Ext. Data Fig. 5). 

10. Added scatterplot of observed mutation density and polymorphisms of windows around gene bodies (Ext. Data Fig. 5). 

11. Quantified the predictive power of observed mutation rates and observed levels of polymorphisms around gene bodies 
(Ext. Data Fig. 5). 

12. Calculated mutation rate reduction in essential genes from raw mutation data. 

13. Added confidence intervals to TSS/TTS figures (Fig. 2). 

14. Calculated and visualized epigenomic enrichment for all features in essential genes, lethal, genes and constitutively 
expressed genes Fig. 3b, Ext. Data Fig. 8). 

15. Added analysis and figures of raw (observed) mutation rates in essential genes, in introns of essential genes, in lethal- 
vs- non-lethal-effect genes, in introns of lethal- vs. non-lethal-effect genes, in constitutively expressed vs. tissue-
specific genes, in introns of constitutively expressed vs tissue-specific genes (Fig. 3c, Ext. Data Fig. 8). 

16. Added analysis and figures of raw mutations and evolutionary constraints. 

Author Rebuttals to First Revision: 
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17. Quantified genetic diversity for mutation bias in 8 mutation accumulation founders (Fig. 4b). 

18. Rewritten the abstract to convey results more quantitatively. 

19. Added specific quantification of minimum Lsegment necessary for selection to act on mechanisms of hypomutation, and 
compared the minimum length to the length of regions enriched for epigenomic features associated with low mutation 
rates (Ext. Data Fig. 10). 

20. Increased the number of percentiles from 10 to 50 in plots to show relationship between mutation rate and estimates 
of evolutionary constraint in more detail (Fig. 4b,c). 

21. Changed percentile plots to show raw data rather than predicted values (Fig. 4 b,c). 

22. Added a heatmap figure showing associations between epigenomic features and signatures of evolutionary rate and 
constraint (Fig. 4a). 

23. Analyzed SNVs and InDels separately and confirmed that these led to the same conclusions (low mutation rates in 
gene bodies and essential genes).  

24. Provided summary statistics of mutation-epigenome models (Materials and Methods).  
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Referee #1 (Remarks to the Author): 

The authors have dealt with the one general issue I raised in the first review. I remain enthusiastic about this study given its 
possible impact on evolutionary thinking. 

Thank you! 

 

Referee #2 (Remarks to the Author): 

Grey et al present a revised version of their now entitled paper “Mutation bias reflects natural selection in Arabidopsis 
thaliana”. The authors made substantial efforts trying to address the many technical and conceptual concerns raised by the 
four reviewers. I continue to think that it is an interesting paper, but I just don’t think it is quite enough to be published in 
Nature. Building on my previous comments, my major concern is the lack of sufficient quantification of their predictive model. 
In my view this is the heart of the paper, and drives all downstream conclusions/interpretations. Most of the 
results/conclusions currently rely too much on visual comparisons between predicted and observed patterns, rather than on 
quantitative measures such as “variance explained by the model”. Such model performance statistics should be provided. 
Without them, it is remains impossible for me to judge the relevance/impact of their paper.  

We are happy to hear that the reviewer finds our work in principle interesting and appreciates the substantial efforts 
we have made in the first round of revision. We interpret the reviewer’s statement to mean that they agree with us 
that our surprising conclusions – provided that they are sufficiently supported by evidence – should be communicated 
in a venue that reaches the broadest possible audience.   

We have quantified how well the predictions of our model conform to observed de novo mutations: over 90% (r2>0.90) 
of the variance in the genome-wide distribution of observed mutations around gene bodies is explained by 
epigenome-predicted mutation probabilities. Mutation bias, in turn, explains over 90% (r2>0.90) of the variance in 
sequence polymorphism levels around genes. 

Please note that the models merely play a minor role in the revised manuscript, as the majority of results are now 
presented in observed mutations. Please note that we had already substantially increased the number of observed 
mutations in the first revision, which in turn has reduced the need to rely primarily on predictions. That the conclusions 
have remained the same confirms the predictive power of the original model nevertheless. 

The previous version mostly used verbal descriptions of patterns they are so striking (e.g., the distributions of 
predicted and observed mutation around gene bodies are nearly identical). Nevertheless, we agree that quantification 
makes our case even more robust, and we now provide the accompanying supportive statistics (e.g., r2 between 
predicted and observed mutation rates around gene bodies > 0.90). 

Here are my major concerns. These lean on some of my previous points, but also include additional questions in light of the 
revised version, the comments of the other reviewers, and me having had a bit more time to think about this. 

1. The section “Predicting mutation probability across the genome” introduces their predictive model. The variance in 
observed mutation frequency by their final selected model is nowhere reported. Only the final predictor set along with the 
associated t-values of the coefficients are shown in Fig. 1. The t values are relatively large and should be highly significant. 
But as with anything in genomics, the input sample sizes are also large (all the genes), which renders standard errors of 
the coefficients small. A more meaningful quantity to report is something like the R2 value, which tells us how much of the 
variance in the mutation frequency patterns is explained by the model.  

Also, standard statistical output such as values of the coefficients, t values and associated degrees of freedom, a plot of the 
distribution of the response variable(s) and perhaps residual diagnostic would be good to see (e.g. residuals versus fits 
plots). Again, it is still not clear to me how they set up their “generalized linear model”. Do they assume their response 
variable is normally distributed? Or drawn from another distribution. Making model choices solely based on visual inspection 
of the predicted mutation probably along genes is not sufficient for me. 

In one of their replies, the authors state “Importantly, we would like to emphasize that the significance of our discovery does 
not derive primarily from the effect size of the observed mutation bias (though some of the new analyses suggest that it 
might be at least comparable to other non-random evolutionary processes), but rather because it challenges prevailing 
assumptions about mutations occurring randomly with respect to fitness consequences. We agree that future research is 
warranted to more fully understand the limits and magnitude of the reported mutation bias”. I strongly disagree with this 
perspective. The authors have all the results/model fits, etc. at hand. Why not just show the results to allow for a more fair 
assessment of their finding. Are we talking about predicted mutation biases that are relatively trivial relative to other 
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evolutionary processes shaping natural variation, or are we looking at major effects that would fundamentally require us to 
reevaluate previous conclusions about genomic patterns of selection. To me, this difference determines if this ms is 
published in a high impact journal like Nature, or somewhere else. 

Incorporating the reviewer's comments has made the manuscript more impactful, as they have made us also think 
more about our data. Therefore: thank you!  

The models of mutation as a function of epigenomic features are no longer the central result of the manuscript – 
conclusions are now drawn primarily from the empirically observed de novo mutations. Nevertheless, we appreciate 
the reviewer’s suggestions to make these models clearer. We have added additional information to the manuscript 
with more details and summary statistics (e.g., degrees of freedom, r2, p-values for the models). In addition, the 
concerns about the summary statistics of the models from Fig. 1d, while now addressed, are no longer germane in 
light of the finding that our results have confirmed with analyses of empirically observed (rather than predicted) 
mutation rates (e.g., confirmed results shown in Fig. 2, Fig. 3, Fig. 4, Ext. Data. Figs.). 

The effects we discovered are astonishingly large, with mutation bias explaining patterns of sequence evolution 
around genes to an even greater extent than selection does. This is evident by the pattern of natural polymorphism 
and Tajima’s D around gene bodies in wild Arabidopsis accessions. We verify in the revised manuscript with extensive 
forward genome evolution simulations that these results are consistent with mutation bias being the dominant force 
behind patterns of natural variation around genes (Fig. 2, Ext. Data Fig. 5, Ext. Data Fig. 6). The revised manuscript 
also provides a more quantitative assessment of these mutation biases. Epigenome-derived mutation probabilities 
accurately predict mutation rates (r2>0.90) around genes and levels of polymorphism in natural populations (r2>0.90). 
We discover a 58% reduction in the mutation rate of gene bodies (compare this with estimates that only 30% of sites 
in gene bodies are plausibly under selection) and a further 37% reduction in essential genes. Given that a selection 
coefficient of 1% is generally considered large, these mutation bias effects are certainly not trivial.  

In addition, we would like to point out that while the discovered effect sizes are large, even much smaller effect sizes 
would have required a rethinking of current models of the nature of mutation in evolution.  

2. Related to this, all the plots in Fig. 2 showing the observed and predicted mutation frequency are represented in terms of 
mean values (calculated from all the genes), but show no information about the variance (i.e. variation around the mean 
pattern).  A similar concern lingers for me in Fig. 3. My previous comments and those of another reviewer were critical of 
the decile plots shown in that figure. These plots convey a strong relationship between predicted mutation probability and 
various measures of evolutionary constraint. But looking at the correlation values (r) given in that figures, the relationship is 
actually very weak. In fact, the R2 (correlation coefficient squared) would even be smaller.  I had asked for an alternative 
representation that plots quantitative values of predicted mutation probability versus constraint measures. This would be a 
fairer representation and more consistent with the low correlation values. As an alternative I mentioned plotting 95% CI 
around 

the decile means. The authors did the latter. I now realized that the large sample sizes per decile would still lead to relatively 
small CI. So, after all, I think a quantitative bivariate plot with a regression fit is the fairest way to present the data (bivariate 
densities could be indicated via color code). 

The large sample size benefits our analyses, as it provides strong power to test deviations from the null model. Under 
the null hypothesis predicted by the traditional theory, r should be equal to 0. We have discovered that this is not the 
case for any of the relationships we have examined. All analyses show that the empirically observed data significantly 
deviate from null expectations, which would not change if r or r2 were presented. 

Quantile plots are a standard and widely accepted format. For example, recent and prominent papers published in 
Nature use such plots to visualize bivariate relationships (e.g., Karczewski et al. 2020, cited 1,515 times). To provide 
more precision and to mitigate concerns about visualizing non-linearities in the data, we have increased the number 
of quantiles from 10 to 50, to provide a higher resolution visualization of the data. As you will see, all our inferences 
still hold.  

We have updated the figures requested with confidence intervals in the revised manuscript.  

The patterns described since the first submission of this work – lower mutation rates in gene bodies and genes with 
conserved function – have now been confirmed with multiple independent mutation datasets that we have added 
since the original submission. These include: germline and somatic mutations called in the largest mutation 
accumulation experiment ever conducted in Arabidopsis; surveys of somatic mutation in 64 Arabidopsis leaves; and 
germline mutations discovered in bottlenecked Arabidopsis populations. Our new analyses of site frequency spectra 
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further confirm that the predicted effects of adaptive mutation bias are manifest in natural populations, with detectable 
effects on population genetic statistics such as the widely used Tajima’s D.  

3. It also occurred to me that the final selected predictor set for SNV and INDELs is very different, which raises the question 
if this relates to different biology and/or the fact that INDELs tend to occur in different parts of genes than SNVs so that they 
relate to different epigenomic features. I don’t see any plots to show the observed mutation frequency distribution contrasting 
SNVs and INDELs. The authors also don’t comment on this. 

Please see the new comment in the manuscript “...results from all downstream analyses were effectively the same 
when SNVs and InDels were analyzed separately, with (i.e., both being less frequent in gene bodies and essential 
genes). Similarly, separate analyses of either germline or somatic de novo mutation calls led to the same conclusions. 
We thus report combined results.” The inclusion of separate figures for SNV and InDels (eg. Ext. Data Fig. 4e) for all 
results would massively expand all figures and, since the analysis is giving similar results, would not provide new 
information. However, if the editor and reviewer disagree, we would be happy to provide these, as long as greatly 
increasing the number of Extended Data Figures is acceptable. 

4. The authors now included new PC analysis of the epigenetic marks they obtained from the PCSD. It remains unclear why 
they do this and not just plot the distribution individual marks along the gene (see Fig. 2A), or the chromatin states given in 
the PDSC database. If the authors think the PC dimensions are important, why don’t they use the PC loadings as predictors 
in the model. The fact that various epigenetic modifications load onto the PC means that they are correlated. This brings 
me back to the variance inflation factors. The authors have performed VIF analysis (by the way I would not mention this in 
the main text as it is trivial and not a main result) and found little evidence for this. Why not show the VIFs for each predictor 
in a SI table so we can see more clearly. 

We agree that the PC results were confusing as they were added for illustration purposes only (to remind the reader 
that epigenomic marks often differ greatly around TSS and TTS). We have removed the VIF comment from the main 
text as well.  

5. The authors bypassed my concern about their epiRIL data analysis by stating that “Because this result is not directly 
pertinent to the main conclusions of our paper, as the effects of cytosine methylation on mutation via deamination have 
been previously described, we have removed this extended data figure in order to make room for the new results we have 
added”. Since the main conclusion of their revised paper is the same as their original submission, I do not see how the 
epiRIL analysis was pertain before but is no longer. Space limitation in SI should not be an issue. The authors don’t comment 
at all on whether I was wrong. I am happy to be proved wrong, but felt that the removal of their analysis bypasses potential 
issues in their original interpretation. 

We agree with the reviewer that the epiRILs raise an interesting question about the indirect effects of gain/loss of 
cytosine methylation on genome stability. We removed the section, as a large number of new analyses has been 
added, and the greatly expanded set of empirically observed de novo mutations, which now underpin our main 
analyses, no longer require indirect validation of our epigenome-derived predictions. In light of our expanded and 
greatly improved analyses, it has become clear that appropriate treatment of the epiRILs requires its own full study, 
especially to properly incorporate the TE aspects in this population. 

The final version of this paper is a more streamlined and well-focused report, thanks to the comments of all reviewers. 
Over the course of this project, we have generated an enormous amount of data, written over 15,000 lines of code, 
created over 300 figures, and essentially tripled the amount of results included in this paper since our original 
submission.  

6. Finally, I appreciate that the authors clarified the differences between “adaptive Mutation Bias” and “Adaptive Mutation 
bias”. In their formulation, the patterns of reduced mutation probabilities in constraint genes increases fitness by avoiding 
deleterious mutations. In this sense they are “adaptive”. Because this mutation bias increases fitness, this bias itself must 
be an evolving trait (and the authors also mention this in their discussion).There were a few comments from the reviewers 
how this bias could evolve. I acknowledge this this a deep and difficult question. But, the possibility that it can evolve (or 
that it is postulated to evolve) would require that this bias is variable in natural populations, as surely the predictor set the 
authors used will show variation among accessions (e.g. mCG is highly variable among natural accessions). The authors 
have now included additional MA lines that were established in different genetic background (i.e. derived from 

different founder accessions). This new data provides an opportunity to examine the range of natural variation in mutation 
bias. In fact, going one step further: this new data would also allow the authors to assess a causal link to their predictor set 
by profiling the founder accessions for at least some of their strongest predictors. Such an analysis would provide some 
empirical hints as to how this bias does/can evolve, and would thus mitigate any potential philosophic debates and 
controversies that arises from their conclusions. 
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Thank you for this excellent suggestion. We have performed additional analyses, which revealed evidence of heritable 
variation for mutation bias in the mutation accumulation datasets from 8 founders (Ext. Data Fig. 4b). The existence 
of this heritable variation indeed suggests opportunities for selection to act on mutation bias, and thus the potential 
for it to evolve in adaptive directions. 

 

Referee #3 (Remarks to the Author): 

I thank the authors for addressing my previous comments and for including many new analyses in this version. The 
manuscript has been strengthened through the revision. However, key issues remain unresolved.  

Major comments: 

1. Related to previous major comment 1. 

(i) I asked the authors to use raw mutation numbers instead of predicted mutation probabilities to study mutation rates in 
different genes or genomic regions and to compare mutation with polymorphism. They used raw mutations in only one plot 
(lethal vs. non-lethal genes; Extended data Fig. 2c). But in all other plots, they still used predicted mutational probabilities. 
It appears that there are sufficient mutations in the data to allow using raw mutations. For instance, in 10 bins in Fig. 3, each 
bin would have hundreds of mutations. In Fig. 2b, for a 100-bp window, there should be >200 mutations. They now acquired 
a new mutation accumulation dataset (Fig. 2cd) that is larger than the primary dataset used (the exact mutation number in 
the new dataset is not provided in the manuscript). They could combine the two datasets to get even more mutations. 

All results are now presented in terms of empirically observed de novo mutations.  

(ii) I complained that they did not tell us how well the model fit the data, and they still do not provide such statistics. It is 
interesting to note from the raw mutation numbers in Fig. 1d that SNV rate is not lower in coding regions than non-coding 
regions. Even for indels, the mutation rate is only slightly lower in coding regions than non-coding regions (Fig. 1d). This 
pattern, based on raw mutation numbers, gives a very different picture than the one based on predicted mutation 
probabilities (Fig. 2b). That is why it is important to use raw mutation numbers.  

We have corrected this figure. The bias in both SNVs and InDels is now clear. Both SNVs and InDels are lower in 
gene bodies, essential genes, etc. We show combined results for brevity and clarity of the manuscript.  

(iii) Regarding the model, the Methods section states that “The response variable was the untransformed (to avoid risk of 
increased false positives caused by transformation) detected mutation rate across every genic feature (upstream, UTR, 
coding, intron, downstream).” Does this mean that they used different models for different genic features (upstream, UTR, 
coding, etc)? What is the rationale of such modeling? Do they assume that the same epigenetic marker has different effects 
in different genic features and why? What result will they get if they use the same model for all genic features?  

We agree that this was unclear in the manuscript. “(upstream, UTR, coding, intron, downstream)” simply refers to 
which regions we are considering as genic. We did not use different models for each feature. We have clarified this 
in the text. 

2. Related to previous major comment 2. 

(i) Regarding the interpretation of their observation, authors state that their adaptive model is compatible with population 
genetic theory if L_segment is large, but do not provide concrete evidence that L_segment is indeed larger than that required 
by the theory. I suggest that they calculate, based on mutation rate and other parameters, the theoretically minimal 
L_segment for the adaptive hypothesis to work, and compare it with the true L_segment. Although the true value of 
L_segment is probably unknown, I believe one can estimate its order of magnitude.  

Thank you for this comment, which we believe has considerably strengthened the manuscript. We have added the 
following: 

Selection on intragenomic mutation rate variation will be effective (Lynch 2010; Hodgkinson and Eyre-Walker 2011) 
when 

Ne * u * s * du * pd * Lsegment > 1       eq.1 

where Ne is the effective population size, u is the mutation rate, s is the average selection coefficient on deleterious 
mutations, du is the degree of change in mutation rate, pd is the proportion of sites subject to purifying selection, and 
Lsegment is the region of the genome affected. Assuming an effective population size of ~300,000 (Cao et al. 2011; 
Gossmann et al. 2010; Moore and Purugganan 2003), a mutation rate of ~10-8  (Ossowski et al. 2010), an average 
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selection coefficient of 0.01 (Hodgkinson and Eyre-Walker 2011), an order-of-magnitude reduction in mutation rate 
(Hodgkinson and Eyre-Walker 2011), and functionally constrained regions where 20% of sites are under selection 
(Hodgkinson and Eyre-Walker 2011), the total length of the sequence affected, Lsegment, would have to be at least 
~200 Kb, which (accounting for differences in effective population size) is similar to previous estimates in humans 
(Hodgkinson and Eyre-Walker 2011). For perspective, this minimum Lsegement is considerably less (~1.5%) than the 
sum of coding regions with elevated levels of H3K4me1 (top quartile, ~13 Mb, or 15% of the genome), a feature we 
have shown to be enriched in gene bodies and essential genes and associated with lower mutation rates. Thus 
selection is expected to act with high efficiency on variants that cause DNA repair and protection mechanisms to 
preferentially target such regions. Please see Ext. Data Fig. 10 for more details. 

 (ii) Authors seem to agree that they cannot reject the intrinsic property hypothesis but is reluctant to discuss it because 
they felt that it would be “even more controversial” than the adaptive hypothesis and may be misused by non-scientists. In 
my view, drawing conclusions without considering/discussing alternative explanations is more dangerous.  

We apologize for having not been fully clear on this point. We have considered and discussed among the authors 
such intrinsic properties from the onset of this study. After examining a large body of evidence, we believe that the 
intrinsic property interpretation will be more controversial because there is less evidence for it. Mutation bias, which 
is influenced by natural selection to favor interactions between DNA repair and features enriched in constrained 
regions, provides in our view a more parsimonious and complete explanation of the observed patterns, whereas an 
intrinsic property hypothesis cannot explain the full spectrum of our results (e.g., essential genes do not have higher 
expression, and do have greater gene body methylation). We mention this latter fact in the text. However, if this 
reviewer feels strongly that the alternative hypothesis, even if seems to provide a much less likely explanation for our 
results, must be discussed more extensively, we would of course be happy to add a few more sentences to the final 
paper. 

3. This is a new major comment arising from their new analyses. 

I am very confused by their new results on Tajima’s D and minor allele frequencies. As far as I know, a change in minor 
allele frequencies does not indicate a change in mutation rate but a change in selection. So, the finding that genic regions 
have higher minor allele frequencies than non-genic regions does not tell us anything about mutation rate difference 
between these regions, but suggests that coding regions are subject to weaker purifying selection than non-coding regions, 
which is unexpected and deserves an explanation. Is this result consistent with previous population genomic analysis of the 
species? Is the same result obtained when raw mutations are used? Similarly, a less negative Tajima’s D of genic regions 
than non-genic regions suggests a weaker purifying selection acting on genic than non-genic regions.   

We have improved our explanation (main text, materials and methods, Fig. 2, Ext. Data Fig. 5, 9) of these results in 
the revised manuscript. The effect of mutation rate in non-equilibrium populations on the site frequency spectrum has 
been established in population genetics for at least 30 years (Tajima 1989; Morales-Arce et al. 2020). Sequences 
with high mutation rates are enriched for new and thus rare variants. Therefore regions with high mutation rates have 
many polymorphisms and more negative Tajima’s D (the observed pattern in intergenic space in wild Arabidopsis 
accessions), while regions with low mutation rates have fewer polymorphisms and less negative Tajima’s D (again, 
the observed pattern in gene bodies in wild Arabidopsis accessions). 

We have also added a large set of forward analyses of population-scale genome evolution in SLiM. These confirm 
our theoretical predictions and show that reduced mutation rate in gene bodies fits our data. 

4. This is a new major comment arising from their newly presented results. 

Because there is no variation in SNV mutation rate among genic features (Fig. 1d), are all the mutation rate differences in 
Figs. 2, 3, and 4 actually due entirely to indel mutations? If so, this should definitely be stressed because indel and point 
mutations are likely caused by different molecular mechanisms. Do polymorphisms in Figs. 2, 3, and 4 include both SNPs 
and indels? Also, at the end of page 3 and beginning of page 4, authors discussed that their results from modelling are 
consistent with previous findings. Are they consistent with previous findings on both SNVs and indels? If I am not mistaken, 
previous findings are almost exclusively on SNVs. Please clarify.   

We have corrected this figure. The bias in both SNVs and InDels is now clear. Both SNVs and InDels are lower in 
gene bodies, essential genes, etc. We show combined results for brevity and clarity of the manuscript.  

Minor comments 

1. Previous minor comment 2. The pattern is still opposite to what was claimed in the manuscript. It shows that gene-poor 
regions (white parts in chromosomes) have lower mutation rates than gene-rich regions (black parts in chromosomes). 
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Shown are only the mutations that we consider in our analyses of genic regions (that is, within 1 kb of genes); 
therefore, many observed mutations in gene-poor regions are not shown, because they are not used in our analyses. 
The rationale is that this paper tests hypotheses about the distribution of mutations within, around, and between 
genes. The legend states: “De novo mutations detected in genic regions (genes ± 1,000 bp)”. 

2. Previous minor comment 4. Authors did not answer how different the 10 deciles in Fig. 3 are in mutation rate (in absolute 
terms). 

The absolute numbers are arbitrary because we combine multiple datasets, including somatic and germline 
mutations. This large, combined set of de novo mutations is one of the strengths of the investigation as it allows us 
to characterize mutation distributions at an unprecedented scale.  

3. New minor comment. “We found a 70% reduction in synonymous variants in the raw de novo mutation dataset relative 
to random expectations”. This sentence on page 4 appears contradictory to Fig. 1d, which shows virtually equal SNV 
mutation rates across genic features. Is the lowered synonymous rate compensated by an elevated nonsynonymous rate? 

Please see answer to major comment #3 above. 

 

Referee #4 (Remarks to the Author): 

In this revised version of the manuscript, the authors have made a lot of efforts to answer my comments and I greatly 
appreciated the effort and the positive tone of the answer.  

I was nevertheless not fully satisfied with one part of the extra data presnted in the extedned material: the simulations made 
to look at the effect of deleterious mutations. THe model was too simple and assume very large effect filtered at once. 
Because strong bottlenecks are imposed, what matters here is more the potential within host selection from gamete to 
gamete.  

Let us assume that mutations within a given gene occur at rate µ and have a deleterious effect at the heterozygous state 
such that they hamper the reproduction rate of the affected cells through the development process by (1-s). If there are N 
cellular generations within a plant generation, we have µ+µ(1-s)+µ(1-s)^2+.. +µ(1-s)^(N-1) mutated cells because some 
cells have mutated at the last division and have not been counter selected, some have mutated at the generation before 
and have a 1-s probability of being a gamete, some two generations before and therefore have been counter selected for 
two cycles (1-s)^2 and so on. This gives µ(1-(1-s)^N)/s and if we compare to the number of neutral mutations we would 
expect µN (s=0) the counter selection of mutations occurring within the gene that have effect s is (1-(1-s)^N)/(Ns).  

If we assume 30 cellular generations between plant generations and a 1% fitness effect we expect a 15% 
underrepresentation, if the cost is of 2% it is a 25% reduction.  

I have no clear idea of the values of N and s, but I think it is quite important to substantiate the modelling part in that respect. 
The argument that a 30% loss of mutation is unrealistic, is not that much unrealistic if we take into account the cumulative 
counter selection over the gamete to gametes development that can turn a realistic small effect into a quite large counter 
selection.  

The outcome of this process could appear through the synonymous, non synonymous pattern, but may leave a marginal 
signal in term of significance, that may also be due to partially wrong mutational biases and other noise factors.  

Interestingly if N is quite large and some s are important, this cellular process will also lead to a decreased mutation rate in 
important genes from generation to generation, and may also have some evolutionary implications that are worth 
mentionning. 

Thank you, these are really interesting ideas. We have updated the manuscript to reflect this possibility. We now 
clarify that our simulation examines mutations removed by purifying selection, whether via heterozygous lethality or 
via somatic competition. Our results are thus robust to the possibility of strong somatic selection caused by 
intercellular competition. In our simulated selection, we assess the effects of 30% of gene body variants being lost 
due to purifying selection, which is the approximate upper limit of estimates of the percent of sites in gene bodies 
under any functional constraint (Haudry et al. 2013). The effect is still less than the observed mutation bias we 
discovered, consistent with our quantification of a 58% reduction in gene body mutations.  

Olivier Tenaillon  



Reviewer Reports on the Second Revision: 

Referee #2 (Remarks to the Author): 

The authors have (again) made substantial revisions to their manuscript. I would like to thank 

them for their efforts in responding to my many concerns. They now present more quantitative 

arguments throughout, which I find very convincing (especially since they confirm their initial 

conclusions). 

In my view, the manuscript has improved substantially since the initial submission. The large 

amount of data, the diversity of analyses and data modalities, along with the thought provoking 

insights should make this work attractive to the wider readership of Nature. 

Referee #3 (Remarks to the Author): 

This version represents a significant improvement over the previous one, and I am largely 

satisfied. Below are some minor suggestions mainly about the presentation. 

1. Fig. 1c, top panel: what do different shades of grey mean? 

2. Tajima’s D. Mutation rate is a scaler of Tajima’s D. That is, when D is negative, a higher 

mutation rate makes D more negative, but when D is positive, a higher mutation rate makes D 

more positive. So, a general statement that a higher mutation rate makes D more negative is 

incorrect. Please correct this in main text and Methods. 

3. Extended Data Fig. 10. The response to my comment regarding the new Extended Data Fig. 10 

is good and should be included in either the legend to Extended Data Fig. 10 or Methods; 

otherwise, Extended Data Fig. 10 is hard to understand. 

4. Finally, do the author think that their finding is specific to A. thaliana or is general, and why? 

Referee #4 (Remarks to the Author): 

The authors have responded to my comments appropriately.

Author Rebuttals to Second Revision: 

Referee #3 (Remarks to the Author): 

This version represents a significant improvement over the previous one, and I am largely satisfied. 

Below are some minor suggestions mainly about the presentation. 

Thank you for all of the excellent suggestions and feedback throughout the review process. Your 

input has improved the quality of this work significantly!  

1. Fig. 1c, top panel: what do different shades of grey mean?   

Shading indicates the frequency of genomic regions that are at a specific distance (x-axis) from TSS 

or TTS annotated as inside a gene body. The lighter shaded regions, at TSS+3000 bp, for example, 

reflect that not all genes are >= 3000bp in length. We have added clarification to the figure legend.  

2. Tajima’s D. Mutation rate is a scaler of Tajima’s D. That is, when D is negative, a higher mutation 

rate makes D more negative, but when D is positive, a higher mutation rate makes D more positive. 

So, a general statement that a higher mutation rate makes D more negative is incorrect. Please 

correct this in main text and Methods.  



We have added to the main text and methods statements to this effect, that the mutation rate is a 

scalar of Tajima’s D. 

3. Extended Data Fig. 10. The response to my comment regarding the new Extended Data Fig. 10 is 

good and should be included in either the legend to Extended Data Fig. 10 or Methods; otherwise, 

Extended Data Fig. 10 is hard to understand. 

Thanks! We have added this comment to the legend of Extended Data Fig. 10.  

4. Finally, do the author think that their finding is specific to A. thaliana or is general, and why? 

Great question! The Populus trichocarpa Tajima’s D patterns already suggest yes. We are now 

looking into this more fully, and initial tantalizing observations suggest that it is indeed not limited 

to Arabidopsis, but also that differences between species exist. In the meantime, to acknowledge 

that the current study is largely limited to Arabidopsis we have added "in Arabidopsis" to the 

conclusion of the abstract and "it will be important to test the degree and extent of mutation bias 

beyond Arabidopsis" to the conclusions of the paper.  


