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1. Supplementary Figures 

1.1. Supplementary Figure 1 

Supplementary Figure 1. Pf genome coverage compared to measured parasitaemia in whole DNA 
and SWGA sequencing pipelines. 

For each sample (points) sequenced using the Whole DNA pipeline (panel a) or sWGA pipeline (panel 
b), figure shows the average per-base coverage of reads aligned to the Pf3D7 genome (y axis) against 
the P.falciparum parasitaemia (parasitised RBCs / ul blood) measured using blood slide at the time of 
ascertainment (x axis) in each country (colours).  Crosses denote samples that failed QC metrics 
(detailed in Supplementary Methods and Extended Data Figure 1) and were excluded from our 
analysis dataset. Lines show linear regression fit of log!"(coverage) against log!"(parasitaemia), with 
labels indicating the estimated correlation. 
  



1.2. Supplementary Figure 2 
 

Supplementary Figure 2. Quantile-quantile plot for test of association between pairs of human 
and P.falciparum alleles 

Plot shows observed -log10 P-value (y axis) against expection under the null model of no association 
(x axis) for tests of association between human and pf alleles. Tests are conducted using logistic 
regression across 3,346 samples, with the imputed human genotype as predictor and the parasite 
genotype as outcome. An indicator of country (Gambia or Kenya) was included as a covariate. Black 
(respectively red) points reflect quantile-quantile plot for all tests (black) or after excluding 
comparisons with HbS (red points), with the corresponding median lambda values shown in the legend. 
Grey area depicts the 99% confidence interval for the observed value, computed pointwise for each 
black point using the order statistics for a uniform distribution. Only comparisons where the minor 
allele count of the human variant for samples carrying either Pf genotype is at least 20 are shown 
(computed in expectation across the imputed genotype distribution, where relevant). 
  



1.3. Supplementary Figure 3 

Supplementary Figure 3. K-mer sharing between Pf3D7 and P.falciparum genome assemblies 
that carry Pfsa+ alleles. 

For each of a set of genomes of Pf isolates previously assembled from PacBio data 1 (rows), the plot 
shows short DNA sequences of length 50 (50-mers, black points) that are shared between the Pf3D7 
reference genome (x axis) and the specified genome assembly (y axis).  Points on the diagonal of each 
panel indicate similar DNA structure between the two assemblies, while off-diagonal points and breaks 
indicate potential structural variation. The Pf isolates selected are those that carry the Pfsa+ allele at at 
least one of the three lead HbS-associated SNPs in Pfsa regions.  Pfsa genotypes were determined by 
aligning a 101-bp segment centred on each SNP in Pf3D7 to the corresponding assembly, and 
inspecting the relevant assembly base.  In the notation of Figure 2 the combined genotypes are: CD01 
(Congo) : + + +; GA01 (Gabon): + - +; SN01 (Senegal): - - +; ML01 (Mali): - - +.  Flanking sequence 
to the chr 11 locus aligned to two contigs in the ML01 assembly and both of these contigs are shown.  
ML01 was previously identified as containing a mixed infection1.  Detail of the top-right panel can be 
seen in Extended Data Figure 9. 
  



1.4. Supplementary Figure 4 

Supplementary Figure 4. Illustration of association test power and probability of association.  

Plot shows approximate association test power (dashed lines) and probability of association (solid 
lines) for a range of P-value thresholds (x axis) under a range of scenarios (panels and line colours / 
point shapes).  We assume a sample size of 3,346 to match our discovery analysis.  The panels vary by 
prior probability of association (rows) and by the human and parasite variant frequencies (columns), 
while the line colour and point shape denotes the assumed association effect size as shown in the 
legend. The probability of association is computed as 𝑃(association|𝑝 < 𝑇); the power is defined as as 
𝑃(𝑝 < 𝑇|association), where T is the given threshold.  Results are computed using an approximation 
to the association test standard error as described in Supplementary Methods. 
 
  



1.5. Supplementary Figure 5 

Supplementary Figure 5. Analysis of sequence read coverage at the Pfsa sites.  

Panels shows sample counts (y axis) against normalised read coverage (x axis) at each of the Pfsa1 
(chr2:631,190), Pfsa2 (chr2: 814,288) and Pfsa3 (chr11:1,058,035) lead variants (rows), for both 
SWGA and whole DNA-sequenced samples (columns).  For each sample the site read coverage was 
normalised by computing the rank of the per-site coverage among all biallelic sites called in our data.  
Results are separated by the allele carried at the focus SNP (black, reference allele; red, non-reference 
allele; grey, mixed genotype call).  Vertical dashed lines show the mean and quantiles of the 
distribution of ranks as shown in the legend. 
 
  



1.6. Supplementary Figure 6 

 
Supplementary Figure 6. Examples of EBA175 ‘F’ segment calling. 

Panels show depth of reads aligned to the Pf3D7 genome at each site across the region of PfEBA175, 
for selected samples.  The location of the ‘F’ segment (Pf3D7_07_v3:360,400-1,360,800) is shown 
between red vertical lines.  The genotype called by our calling process (detailed in Supplementary 
Methods) is indicated in the panel label. 
  



2. Supplementary Methods 

2.1. Building a combined dataset of human and P.falciparum genotypes in severe cases 

2.1.1. Overview 

The following sections describe the sequencing and curation of a dataset of genome-wide P.falciparum 
(Pf) genetic variation and human genotypes from severe malaria cases collected in The Gambia and 
Kenya.  A diagram of this process is presented in Extended Data Figure 1. 
 
2.1.2. Parasitaemia measurements 

Parasitaemia measurements were obtained for all case samples based on thin or thick blood slides at the 
time of sample ascertainment.  Data were curated to produce a single parasitaemia measurement per 
individual, the count of red blood cells containing P.falciparum parasites per microlitre of blood 
(pRBCs/ul).  Observed parasitaemia rates varied from very low (reported as < 10) to over 106 
pRBCs/ul. which represents extremely high parasitaemia (hyperparasitaemia) given typical RBC blood 
count of 5x106 RBCs/ul.   
 
Subsequent to selection of samples for whole DNA sequencing described below, we further linked 
Kenyan data to an updated set of parasitamia values re-curated from source measurements 2. We use 
these values in Supplementary Figure 1. 
 
2.1.3. Sequencing using whole DNA samples from high-parasitaemia infections 

We assessed the scope for generating coverage of the P.falciparum genome from sequencing whole 
DNA as follows.  We assumed an average quantity of 40 nanograms (ng) human DNA per ul blood 
(based on ~5,000 white cells / ul) and that a single parasite genome weighs on the order of 25x10-6 ng.  
A parasitaemia rate of 𝑚× 10# pRBCs/ul thus corresponds to 25𝑚 ng/ul.  This suggests sequencing 
whole DNA would yield a fraction of  $%&

$%&'("
 reads originating from the Pf genome.  For parasitaemias 

on the order of 104 – 106 pRBCs/ul we would therefore expect approximately 0.6% – 40% of reads 
would arise from the Pf genome.  For approximately 100Gbp sequencing yield and a 23Mbp genome, 
this suggests between 25 to over 1,000-fold Pf genome coverage might be realizable using this method, 
depending on parasitaemia levels, although in practice we might expect this to reduce somewhat due to 
various forms of attrition. 
 
Motivated by this calculation we selected a subset of case samples in each population from among 
those having the highest measured parasitaemia, targeting those having >105 pRBCs/ul.  The Kenyan 
dataset sequenced also included a number of additional samples with lower parasitaemia 
measurements; these were selected based on their genotype at the human chromosome 4 glycophorin 
locus.  All samples were sequenced on the Illumina XTEN platform at the Wellcome Sanger Institute. 
In total we obtained data for N=1,071 cases including 483 Gambians and 588 Kenyans. We aligned all 
reads to a combined human/parasite genome, obtained by concatenating the GRCh37 human genome 
reference assembly and version 3 of the Pf3D7 reference sequence 3 using BWA mem.  Duplicate reads 
were marked with Picard MarkDuplicates and we extracted reads aligning to the Pf genome for 
downstream analysis. 
 
To assess Pf sequencing performance we plotted coverage of the Pf genome from sequencing of whole 
DNA against measured parasitaemia (Supplementary Figure 1).  Although coverage was strongly 
correlated with measured parasitaemia, this correspondence was incomplete, and we noted 2 Gambian 
case samples with estimated zero coverage, and a larger set of 66 Gambian and 118 Kenyan cases with 
< 10-fold coverage.  Many of these samples had relatively high measured parasitaemia and substantial 
coverage of the human genome (e.g. 133 with measured pRBC/ul > 10,000 and estimated > 20-fold 
coverage of the human genome as assessed across a region of chromosome 4).  We interpret this 
discrepancy as resulting from a combination of noise in parasitaemia measurements as well as in 
possible limits to the accuracy of the curation of parasitaemia measurement data. 
 
2.1.4. Sequencing using Selective Whole Genome Amplification (SWGA) 

To capture plasmodium genomes from lower-parasitaemia samples, we used Selective Whole Genome 
Amplification 4 (SWGA) to amplify Pf DNA from all cases included in our study (N=5,128 cases).  



SWGA was performed as previously described4 except that we added a higher quantity (40ng) of 
gDNA into the reaction to allow for the mixture of parasite and human DNA.  The resulting libraries 
were sequenced across multiple lanes on the Illumina XTEN platform at the Wellcome Sanger 
Institute.  Reads aligning to the human reference were removed, and remaining reads from multiple 
lanes were merged to create sample-level read files.  Remaining reads were aligned to version 3 of the 
Pf3D7 reference sequence using BWA mem.  Duplicate reads were marked with Picard 
MarkDuplicates. 
 
We plotted coverage of the Pf genome from SWGA sequencing against measured parasitaemia 
(Supplementary Figure 1).  We observed relatively high coverage of the Pf3D7 genome across all 
reported parasitaemia levels.  Sequence coverage was however variable with e.g. approximately 5% of 
samples having especially low coverage (258 of 5190 samples with < 10-fold coverage). 
 
2.1.5. P.falciparum genotype calling 

To produce a robust set of parasite genotype calls we used an established pipeline that has previously 
been used to survey P.falciparum populations 5.  This pipeline uses GATK 4.0 HaplotypeCaller to 
identify genetic variants and to call genotypes jointly across all sequenced samples.  Briefly, we first 
ran GATK HaplotypeCaller for each sample to generate a per-sample gVCF file, which represents a 
compressed view of the sequencing reads relevant for variant calling across all sites in the reference 
genome.  We then used CombineGVCFs and GenotypeGVCFs to generate genotype calls across all 
samples.  We specified a maximum of six alternate alleles in this process. SNPs and INDELs were then 
annotated using GATK’s Variant Quality Score Recalibration (VQSR) based on a set of validated 
variants from crosses between P. falciparum laboratory strains 6 and based on genomic location.   
 
Plasmodium parasites in humans have haploid genomes, but infections may consist of a mixture of 
parasite types due to co- or superinfection.  The GATK pipeline described above calls variants as if 
genotypes were diploid.  Heterozygous calls thus indicate regions for which reads containing both 
reference and non-reference alleles in substantial numbers are present (we refer to these as ‘mixed’ 
genotype calls), and homozygous calls represent variants for which the sample is largely unmixed.  
Although not perfect, this approach has been used previously as a practical way to handle genotype 
calls in mixed infections, and we adopted it here.  Specifically, we treated mixed genotype calls as 
missing data in all analyses (except where noted), and treat the remaining homozygous calls as 
reflecting the true haploid genotype. 
 
2.1.6. P.falciparum variant filtering 

To pick a robust set of variants for analysis, we focussed on variants marked ‘PASS’ (i.e. with 
VQSLOD score > 0 and lying in the core genome which has been shown to be accessible to 
sequencing6).  Inspection of remaining variants suggested the presence of many apparent multiallelic 
variants involving AT-rich sequence in the callset.  Many of these are likely to reflect sequencing or 
calling errors, and we also excluded multiallelic variants from downstream analysis.  In total, GATK 
called 4,974,562 variants across chromosomes 1-14, the apicoplast and mitochondrion, of which 
2,793,802 were PASS and a subset of 1,716,459 were biallelic. 
 
In addition to the variants above, we specifically included in our analysis variants in the region of 
PfEBL1, which is annotated as a pseudogene and lies in a subtelomeric region, but putatively encodes 
an erythrocyte invasion ligand in some P.falciparum species 7.  In total there were 1,339 biallelic 
variants with VQSLOD > 0 within the region Pf3D7_13_v3: 2,809,706-2,822,270.  
 

2.1.7. Generating PfEBA175 ‘F’ segment calls 

In addition to the GATK-called variants described above, we also called a known deletion variant in 
PfEBA175, which encodes an invasion ligand that binds human Glycophorin A during merozoite 
invasion of erythrocytes7.  PfEBA175 is found in two forms, the 'F' type and 'C' types, which are 
distinguished by the presence of one of two non-overlapping ~400 bp DNA segments.  The Pf3D7 
reference genome carries the F segment located between positions 1,360,400 and 1,360,800 on 
chromosome 7.  To identify the F segment in short-read sequence data, we computed sequence 
coverage across each base in these segments. We considered the F segment to be present if at least 350 
of the 400 sites had a coverage >=5.   We considered F absent if there was evidence for unusually low 
coverage across this region, defined as more than 350 of the 400 sites having coverage more than 2 



standard deviations below the mean, as computed at nearby single-copy sequence.  If both conditions 
were true, a mixed genotype call was assigned, and if neither were true a missing genotype was 
assigned.  We note that this method directly assesses the presence of the F segment, but not of the C 
segment which is not present in the Pf3D7 reference; however, these segments are thought to rarely if 
ever cooccur8. 
 
2.1.8. P.falciparum sample filtering 

To pick a robust set of samples for analysis, we filtered based on several criteria as follows.  First, for 
samples multiply sequenced using the whole DNA and SWGA methods, we looked for discordance in 
genotype calls that would indicate sample mislabelling.  No pair had > 2.5% discordance and we 
interpreted this as indicating that reads from corresponding SWGA and WGS read files represent the 
same DNA samples.  Next, for whole DNA-sequenced samples with human genotyping available on 
the Illumina Omni 2.5M platform 9, we used VerifyBamId to confirm the identity of samples based on 
the human-aligned reads.  We identified 25 samples with CHIPMIX > 2%, indicating sample 
contamination or sample mislabelling, and we excluded these samples (and corresponding SWGA 
samples) for downstream analysis.  Third, we filtered samples based on the GATK v3.8.0 CallableLoci 
metric (defined as the proportion of reference bases where a sample has at least 5x coverage and such 
that at least 90% of covering reads have mapping quality >= 10, a criterion which is correlated with 
sequencing depth but is more directly relevant to variant calling).  We excluded 758 samples where < 
50% of reference bases were identified as callable by this metric, and a further 340 samples that had > 
5% genotype missingness from downstream analysis.  This process resulted in 4,440 samples from case 
individuals that passed filters. 
 

2.1.9. Curation of joint human-Pf analysis datasets 

For our main analysis we further restricted attention to two smaller sets of data based on the 
availability of human genotype data as follows.  First, we formed a dataset consisting of the subset of 
3,346 samples for which imputed human genotypes were previously analysed9 (“the imputed dataset”).  
This contains 2,045 cases from The Gambia and 1,301 from Kenya, and contains no close relationships 
between human samples.  We also formed a second dataset containing samples for which Sequenom 
MassARRAY genotyping was previously analysed9 (“the sequenom dataset”).  This set contains 4,083 
samples (2,189 from The Gambia and 1,889 from Kenya) identified as not closely related based on the 
available genotypes9 (although we note this determination is less certain than when using genome-wide 
genotype data).  In total 3,246 samples were in both sets, leaving 825 with direct typing but no 
genome-wide data available. 
 
 



2.2. Modelling association of host and infection genotypes 

2.2.1. Basic association model 

In Methods we interpret the odds ratio computed in severe malaria cases in terms of a simplified 
model of infection.  Here we further describe this and extend to allow for the case where parasite 
genotypes might evolve through the course of an infection. 
 
As in Methods we let A denote a population of susceptible individuals.  We assume that we are 
interested in a specified set of parasite variants such that parasites have one of J+1 possible combined 
genotypes, denoted 𝑗 = 0,⋯ , 𝐽.  For a given individual we write I = x or more briefly Ix to denote that 
the individual was bitten and infected with genotype x; more generally x might denote a mixture of 
parasite genotypes.  For clarity, we define “infected” here to mean that parasites are injected into the 
bloodstream during a bite by an infected mosquito; infections might or might not successfully further 
invade host cells and continue to grow. Separately, we write 𝐺 = 𝑦  to denote that the infection 
genotype at the time of measurement (i.e. sample ascertainment in our study) was y.   
 
In principle, the infection-time (I) and ascertainment-time (G) genotypes might differ.  This could 
happen if the initial infection is mixed and genetic drift or selection acts on parasites within-host, or if 
parasites mutate during the course of infection. 
 
We write D to denote “individual has severe disease”, and write Dy  for “individual has severe disease 
with parasite genotype y” (i.e. 𝐷) = (𝐷,	𝐺 = 𝑦)).  Lastly, E=e denotes a particular level of a host 
genotype. The following table summarises this notation. 
 

Model notation 
A Study population 
D Individual has severe malaria 
Dy  Individual has severe malaria with parasite genotype y 
I = x or Ix Individual was infected with parasite genotype x 
G = y Denotes parasite genotype at time of sampling 
E = e Individual has host genotype e 

 
All the probabilities we discuss are conditional on the assumed population A, which we drop from the 
notation where convenient.  The odds ratio for a particular genotype 𝐺 = 𝑦 and host genotype E = e 
computed in severe malaria cases, relative to baseline genotypes, can now be written as 
 

 
𝑂𝑅*+),-+. =

𝑃(𝐷), 𝐸 = 𝑒|𝐷)
𝑃(𝐷", 𝐸 = 𝑒|𝐷) /

𝑃(𝐷), 𝐸 = 0|𝐷)
𝑃(𝐷", 𝐸 = 0|𝐷) 

(S1) 

 
The observed parasite genotype depends on the infection genotype, which is unobserved, so we must 
sum over it: 
 

  𝑃E𝐷), 𝐸 = 𝑒|𝐷F =G𝑃(𝐷), 𝐼/ , 𝐸 = 𝑒|𝐷)
/

 

=
1

𝑃(𝐷|𝐴) ⋅G𝑃E𝐷)|𝐼/ , 𝐸 = 𝑒F𝑃(𝐼/ , 𝐸 = 𝑒)
/

 
(S2) 

 
The first term in (S2) is independent of the genotypes and cancels out when forming the ratio (S1).  
Thus (S1) expands to 
 

 

𝑂𝑅*+),-+. =
K
∑ 𝑃E𝐷)M𝐼/ , 𝐸 = 𝑒F𝑃(𝐼/ , 𝐸 = 𝑒)/
∑ 𝑃(𝐷"|𝐼/ , 𝐸 = 𝑒)𝑃(𝐼/ , 𝐸 = 𝑒)/

N

K
∑ 𝑃E𝐷)M𝐼/ , 𝐸 = 0F𝑃(𝐼/ , 𝐸 = 0)/
∑ 𝑃(𝐷"|𝐼/ , 𝐸 = 0)𝑃(𝐼/ , 𝐸 = 0)/

N
 (S3) 

 



2.2.2. Interpretation when there is no within-host evolution 

In Methods we make the simplifying assumption that y = x, that is, that genotypes do not change 
during the course of an infection.  This is likely to be a broadly appropriate assumption for infections 
that are not initially mixed at the set of parasite variants of interest, since within-host mutation of 
specific bases is likely to be relatively rare 10 (at least until parasitaemia levels become high).  In this 
case (S3) simplifies to 
 

 
𝑂𝑅*+),-+. = K

𝑃E𝐷M𝐼), 𝐸 = 𝑒F
𝑃(𝐷|𝐼", 𝐸 = 𝑒) /

𝑃E𝐷M𝐼), 𝐸 = 0F
𝑃(𝐷|𝐼", 𝐸 = 0)N × 𝑂𝑅

biting (S4) 

 
where 
 

 
𝑂𝑅biting =

𝑃(𝐼), 𝐸 = 𝑒)
𝑃(𝐼", 𝐸 = 𝑒) /

𝑃(𝐼), 𝐸 = 0)
𝑃(𝐼", 𝐸 = 0) 

(S5) 

 
Equation (S4) is equivalent to expression (2) described in Methods. Since y=x is the genotype at time 
of initial infection,  𝑂𝑅biting = 1 (for all genotypes e and y) is equivalent to statistical independence of 
host and parasite genotype at the time of infection.  Further, if 𝑂𝑅biting ≡ 1, it can be shown that the 
first term in (S4) is one (for all genotypes e and y) if and only if host and parasite genotypes contribute 
multiplicatively to disease risk, 
 

 
𝑃E𝐷M𝐼), 𝐸 = 𝑒F = 𝜇 ×

𝑃(𝐷|𝐼))
𝑃(𝐷|𝐼")

×
𝑃(𝐷|𝐸 = 𝑒)
𝑃(𝐷|𝐸 = 0) 

(S6) 

 
where 𝜇 = 𝑃(𝐷|𝐼", 𝐸 = 0) is the risk given baseline genotypes.  Hence, 𝑂𝑅*+),-+. ≠ 1 implies either 
nonindependence of host and parasite genotypes at infection time or that host and parasite genotypes 
do not contribute multiplicatively to disease risk. 
 
2.2.3. Interpretation of the general model 

The general form of (S3) allows for within-host evolution and is more complex, but we show that the 
analogous behaviour holds: namely, 𝑂𝑅*+),-+. ≠ 1 implies either nonindependence between host and 
infection-time genotypes, or that host and parasite genotypes do not contribute multiplicatively to 
disease risk, in the sense that 
 

 
𝑃E𝐷)M𝐼/ , 𝐸 = 𝑒F = 𝜇 ×

𝑃(𝐷)|𝐼/)
𝑃(𝐷)|𝐼")

×
𝑃(𝐷)|𝐸 = 𝑒)
𝑃(𝐷)|𝐸 = 0) (S7) 

 
does not hold, where the expressions are now extended to express the risk of disease with a specific 
parasite genotype y given host and (possibly different) infection genotypes.  To see this, note that 
neither 𝜇, 𝑃E𝐷)M𝐼"F,	nor the last ratio in (S7) depend on the infection genotype x.  If (S7) holds they 
therefore cancel out of expression (S3).  If host and parasite genotypes are independent at the time of 
biting then also 𝑃(𝐼/ , 𝐸 = 𝑒) = 𝑃(𝐼/)𝑃(𝐸 = 𝑒), leading to additional cancellation, so that 
 

 

𝑂𝑅*+),-+. =

∑ 𝑃E𝐷)M𝐼/F𝑃(𝐼/)/
∑ 𝑃(𝐷"|𝐼/)𝑃(𝐼/)/

∑ 𝑃E𝐷)M𝐼/F𝑃(𝐼/)/
∑ 𝑃(𝐷"|𝐼/)𝑃(𝐼/)/

= 1  

Thus, if we rule out nonindependence at time of biting, 𝑂𝑅*+),-+. ≠ 1 implies deviation from the 
multiplicative model (S7). 
 
2.2.4. Possible causes of association 

There are several mechanisms by which statistical nonindependence between host and observed 
parasite genotypes could arise in principle, and these make different predictions that can potentially be 



tested.  To illustrate the distinction between these mechanisms, we consider a simplified model of 
infection that separates out an initial phase of within-host evolution (that produces an observable level 
of parasitaemia and the observable genotype G) and a subsequent phase of infection in which disease 
status is determined (but parasitaemia and genotypes do not change).  As above, an infection may be 
mixed and if so we interpret G to indicate the overall proportions of genotypes making up the infection. 
This model can be summarized in the following diagram which shows possible causal links between 
variables 11: 

 
 
 
For the purposes of this illustration we ignore possible confounding factors not shown in the diagram.  
In this diagram there are several ways in which the odds ratio (S1) might deviate from unity as we 
detail below. 
 

I. Association induced by biting effects. The dashed line in the diagram shows a possible 
influence of host genotype on parasite genotype at the time of infection.  This would only 
seem to be possible if genotypes of possible hosts and mosquito-borne sporozoite 
genotypes can detected by infectious mosquitos (or the parasites they carry).  (However, 
confounding factors, such as host and parasite population structure covariant with 
geography, could conceivably generate association along the same path as I.) 
 

II. Association induced by phenotyping. In the diagram above, the disease status D is a 
collider 11 (i.e. is jointly determined by both host and parasite genotypes), and 
consequently conditioning on D could generate correlation between E and I even in the 
absence of a specific molecular or biological interaction.  A well-known form of this is 
known as Berkson’s paradox12; translating this to our setting, this could occur if the 
clinically determined criteria for severe malaria arise in infections of individuals who do 
not carry protective genotypes, or in infections with pathogenicity-causing alleles, or 
both.  Specifically this leads to association when the contributions of host and parasites 
alleles to disease risk do not follow the multiplicative model (S6). 
 
To assess this in relation to the HbS association described in main text, we investigated 
whether each of the HbS-associated alleles was also associated with other known host 
protective alleles. Specifically we considered the protective homozygous AA genotype at 
rs4951377 13,14; genotypes carrying the G allele at rs186873296 (which tags the Dantu 
blood group variant DUP4) under an additive model 15,16; and O blood group encoded by 
rs817671914.  We observed little evidence for association (P > 0.05 for all nine tests; P-
values were not significantly divergent from a uniform distribution using a Kolmogorov-
Smirnov test) although we noted that all but one estimated effect size was positive. The 
strongest estimated association was for rs186873296 and Pf chr11:1,058,035 (OR = 1.38; 
95% CI 0.99-1.94); this estimate reduced somewhat after additionally including HbS as a 
predictor. 
 
We also noted that the HbS-associated alleles are observed at higher frequency in 
community samples 5 than in the severe cases studied here (with one exception for the 



chr2:814,288 T allele in Gambia, which is not present in the community-sampled data but 
is at ~1.5% frequency in our sample of severe cases; Figure 3). These data do not support 
a formal statistical comparison due to differences in sampling, but do not appear to 
indicate a strong overall pathogenicity effect of the three HbS-associated alleles. Thus, 
although out data do not formally rule this out, neither of these comparisons appears to 
support a nonspecific effect in which host protective alleles and parasite pathogenicity 
alleles become correlated purely due to the definition of severe disease. 

 
III. Host genotype effects on within-host parasite genotypes. The most plausible explanation 

for association between host and parasite genotypes may be that host genotypes affect the 
within-host fitness of parasites, in a way that varies with parasite genotype.  For the HbS 
effect described in main text, this would occur if parasites with the Pfsa+ alleles are 
better adapted than other parasites to growing and infecting erythrocytes of individuals 
with HbS genotype, compatible with the counts observed in Figure 2.  In the simplified 
model above this would lead to systematic association of host and parasite genotypes in 
all infections (regardless of symptom severity), but we note that in real settings this would 
depend on the strength and timing of selection within the course of disease.  The 
appearance of association in uncomplicated cases from Mali (Supplementary Table 2) 
may support this interpretation.  Within-host selection of this type would likely also lead 
to effects on transmission of parasite genotype, and thus potentially place selection 
pressure on parasite populations. 
 

IV. Interactions determining disease tolerance. In principle another possibility (separate in 
the above simplified model) is that host and parasite genotypes jointly determine host 
tolerance to infection, without otherwise affecting parasite development.  Host and 
parasite genotypes would then appear associated in a sample of severe cases.  In the 
simplified model above, an effect of this type would be unobservable in asymptomatic 
cases since the effect is specific to severe disease phenotype. 

2.3. Estimation of population relative risks using multinomial logistic regression 

2.3.1. Estimation using a case-population sample 

We consider estimating the relative risk for severe disease observed with a particular parasite genotype 
y in population A, 
 

 
𝑅𝑅-+.(𝑦) =

𝑃E𝐷)M𝐸 = 𝑒, 𝐴F
𝑃E𝐷)M𝐸 = 0, 𝐴F

 (S8) 

 
Here, as above E=e denotes a particular host genotype (e.g. HbS genotype in Figure 2) and the relative 
risk is measured with respect to a chosen baseline genotype E=0 (i.e. non-HbS genotypes in Figure 2).  
Application of Bayes’ theorem to (S8) shows that 
 

 
𝑅𝑅-+.(𝑦) =

𝑃E𝐸 = 𝑒M𝐷)F
𝑃E𝐸 = 0M𝐷)F

/
𝑃(𝐸 = 𝑒|𝐴)
𝑃(𝐸 = 0|𝐴) (S9) 

 
Expression (S9) can be recognized as an odds ratio, specifically the odds ratio comparing the frequency 
of the exposure E=e in disease cases with genotype y relative to the general population.   It can 
therefore be estimated from a sample of disease cases and population controls.  More generally, we 
show the following: 
 
Lemma. Suppose a disease with J+1 possible types 𝑦 = 0,⋯ , 𝐽 follows a linear log-risk model in the 
population A, 
 

 
log	𝑃E𝐷)M𝐸 = 𝑒, 𝑍 = 𝑧, 𝐴F = 𝛽𝑒 + 𝑧5𝛾 (S10) 

 
where Z denotes a vector of covariates, and 𝛽 and 𝛾 are log-relative risks for the exposure e and the 
covariates respectively.  Assume for simplicity that Z consists of a single categorical covariate (i.e. z is 



a vector of zeros and ones with exactly one entry equal to 1).  Suppose S is a case-population sample in 
which sampling is independent of host and parasite genotype, given the disease status and covariates.  
Then in the sample the multinomial logistic regression model holds: 
 

 
log

	𝑃E𝐷)M𝐸 = 𝑒, 𝑍 = 𝑧, 𝑆F
𝑃(𝐷6|𝐸 = 𝑒, 𝑍 = 𝑧, 𝑆) = 𝛽𝑒 + 𝑧5𝛾′ (S10) 

 
where D- indicates that an individual was sampled as a population control, and the coefficient 𝛽 of the 
host genotype e is the same as in the full population model. 
 
Note. This lemma is a counterpart of the well-known result that if a logistic regression model holds for 
a disease in the general population, then a transformed logistic regression model holds in a sample of 
disease cases and strict (non-diseased) controls 17.  We apply Lemma 1 in Figure 2 to estimate the 
relative risk conferred by HbS on disease across multiple parasite genotypes. 
 
Proof of lemma. Let Ω be the odds-ratio for disease of genotype y relative to the population, 
 

  
Ω =

𝑃E𝐷)M𝐸 = 𝑒, 𝑍 = 𝑧, 𝑆F
𝑃(𝐷6|𝐸 = 𝑒, 𝑍 = 𝑧, 𝑆) 

 

 
Applying Bayes theorem to numerator and denominator gives  
 

 
Ω =

𝑃(𝐸 = 𝑒|𝐷), 𝑍 = 𝑧, 𝑆)
𝑃(𝐸 = 𝑒|𝐷6, 𝑍 = 𝑧, 𝑆) ⋅ 𝐾)(𝑧) 

(S11) 

 
where 𝐾)(𝑧) =

7(9!|;+<,=)
7(9"|;+<,=)

 is the ratio of cases of type y to controls in the study.  Conditional 
independence of sampling on the genotypes further implies that we may replace S by A in the right 
hand side of (S11), giving 
 

 
Ω =

𝑃(𝐸 = 𝑒|𝐷), 𝑍 = 𝑧, 𝐴)
𝑃(𝐸 = 𝑒|𝑍 = 𝑧, 𝐴) ⋅ 𝐾)(𝑧)  

 
Applying Bayes’ theorem a second time to rewrite in terms of disease risk now gives 
 

 
Ω = 𝑃E𝐷)M𝐸 = 𝑒, 𝑍 = 𝑧, 𝐴F ⋅

𝐾)(𝑧)
𝜅)(𝑧)

  

 
where 𝜅)(𝑧) = 𝑃(𝐷)|𝑍 = 𝑧, 𝐴) is the prevalence of disease type y in the population having the given 
covariate levels x. 
 
By assumption 

 
logΩ = log𝑃E𝐷)M𝐸 = 𝑒, 𝑍 = 𝑧, 𝐴F + log K

𝐾)(𝑧)
𝜅)(𝑧)

N 

= 𝛽𝑒 + 𝑧5𝛾 + logK
𝐾)(𝑧)
𝜅)(𝑧)

N 

= 𝛽𝑒 + 𝑧5𝛾′ 

 

 
for the transformed parameter 𝛾? defined as 
 

 
γ? = 𝛾 + ]

logE𝐾)(𝑧!)/𝜅)(𝑧)F
⋮

logE𝐾)(𝑧@)/𝜅)(𝑧@)F
_  

 
where 𝑧!, ⋯ , 𝑧@ denote the d possible levels of the 0-1 covariate vector z. 
 



2.4. Implementing logistic regression to test for host/parasite association 
In main text and Methods we describe the use of logistic regression to estimate association between 
host genotypes (included as predictor variables) and parasite genotypes (included as outcome 
variables).  Results for our discovery phase are summarized in Figure 1.  
 
Logistic regression is susceptible to finite sample bias that leads to overestimation of effect sizes in a 
way which varies with the frequency of predictor and outcome variables.  Given that comparisons 
between human and parasite variants at widely varying frequencies are being tested, we chose to 
mitigate this by fitting the model after including a regularizing prior distribution. Following previous 
recommendations 18 we chose a log-F(2,2) prior for this. The log-F(2,2) distribution is depicted below 
in comparison to a Gaussian(0, 1.872) distribution (for which 95% of the mass is concentrated on a 
similar interval centred at zero): 

 
The log-F(2,2) distribution is slightly more concentrated near zero than the Gaussian (i.e. it provides 
greater regularization near zero)  but has flatter tails (i.e. provides less regularization for parameter 
estimates that are far from zero).  This captures an intuitive idea that most effects between individual 
host and parasite variants are likely to be small, but some large effects may exist. 
 
The use of a prior enables computation of a Bayes factor for association at each pair of variants; we 
compute this using a Laplace approximation.  A nonstandard calculation is also needed to compute a 
corresponding P-value; we do this by approximating the sampling distribution of the posterior mode as 
described in subsequent sections. 
 
2.4.1. Approximating the sampling distribution of the posterior mode 

We first review a standard approach that is often applied to (unregularized) regression.  As sample 
sizes grow large the likelihood function is assumed to approach a Gaussian distribution near its 
maximum v (up to a scaling constant which does not depend on the parameter and is ignored below), 
 

 
𝑃(data|𝜃) ≈ 𝑁(𝜃|𝑣, 𝑉) (S12) 

 
Here 𝜃 denotes the vector of parameters and V is a variance-covariance matrix expressing how sharply 
peaked the likelihood function is around its maximum. V can be computed as the inverse of minus the 
second derivative of the log-likelihood, evaluated at v.   
 
As a function of the sample, the maximum likelihood estimate itself is assumed to become 
approximately normally distributed around the true parameter value 𝜃" as sample sizes grow, 

 
𝑣	~	𝑁 g𝜃",

𝐼
𝑛i (S13) 

 
Here I is another variance-covariance matrix (the Fisher information) that does not depend on the 
particular dataset being analysed, and n is the sample size.  The factor of n in the covariance captures 
the fact that increasing sample size leads to estimates of increased precision, with standard errors 
approximately scaling as 1/√𝑛.   
 



The standard theory links (S12) and (S13) by showing that (asymptotically as sample sizes grow large) 
the matrix V (which is estimated from the data) becomes approximately equal to A

B
 (which is 

independent of the data) thus providing an effective way to compute P-values.  Specifically, a “Wald 
test” P-value can be computed from the approximation 𝑣	~	𝑁(0, 𝑉) under the null model 𝜃" = 0; for a 
single component 𝑣C of 𝑣 this leads to 

 
P-value ≈ 2 × 𝐹(−|𝑣C|; 0, 𝑉C)	 (S14) 

 
where F is the cumulative distribution function of a Gaussian with the given mean and variance.  (The 
use of −|𝑣C| and the factor of 2 in this expression ensure that this computes a two-tailed P-value, i.e. 
the total mass under both tails of the distribution of parameter values greater or equal in magnitude to 
vi). 
 
We now consider computing P-values under regression regularized by a prior – we first consider a 
Gaussian prior with zero mean, i.e. defined as 𝜃	~	𝑁(0, Σ) for some variance-covariance matrix Σ.  To 
do this, we use the same approximations as above to compute the approximate sampling distribution of 
the posterior mode.  A Gaussian prior is particularly simple to use here because of the following well-
known result which reflects the fact that the product of two gaussian densities is another gaussian 
density: 
 
Lemma. Under the approximation (S12), the posterior distribution is also Gaussian.  Specifically, 
  

 
𝑃(𝜃|data) ≈ 𝑁(𝜃|𝜔, Ω) (S15) 

 
where 𝛺 = (𝑉6! + 𝛴6!)6! and 𝜔 = 𝛺𝑉6!𝑣. Under the approximation (S13), the posterior mode 𝜔 is 
therefore approximately distributed as 

 
𝜔	~	𝑁(Ω𝑉6!𝜃", Ω𝑉6!Ω) (S16) 

 
(The normalizing constant in (S15) can also be computed as another Gaussian function, which leads to 
the well-known computation of the approximate or asymptotic Bayes factor 19.) 
 
It is instructive to consider these formulae in the case of a one-dimensional parameter and assuming 
𝜃" = 0. In this case the matrices 𝑉 and Σ are scalars and we have the simplifications:  

 posterior	mode	𝜔 =
Σ

𝑉 + Σ𝑣 

posterior	variance-covariance	Ω = 𝑉 ⋅ g
Σ

𝑉 + Σi 

sampling	variance	of	𝜔 = 𝑉 ⋅ K
Σ$

(𝑉 + Σ)$N 

 
(S16) 

 
Thus the posterior mode 𝜔 is closer to zero than the maximum likelihood estimate v (i.e. it is a 
“shrinkage estimate”); the posterior variance Ω is smaller than the likelihood variance V; and the 
sampling variance of 𝜔 is smaller still.  The degree of shrinkage in each case depends on the relative 
magnitude of the likelihood variance V and the prior variance Σ, with the extremes being Σ = ∞ 
(which produces no shrinkage at all) and Σ = 0 (which makes all three expressions equal to zero). 
 
In our implementation, for each parasite variant and each human variant considered, we obtain the 
posterior mode 𝜔 by numerical approximation using a modified Newton-Raphson with line search 20.  
We then compute the approximate posterior variance-covariance matrix Ω|	 (computed as the inverse of 
negative the second derivative of the log-posterior at 𝜔) and an approximate likelihood covariance 𝑉}  
(computed as the inverse of negative the second derivative of the log-likelihood at 𝜔).  By analogy 
with (S14) we then compute a P-value for the parameter of interest 𝜔C as 
 

 
P-value = 2 × 𝐹 ~−|𝜔C|; 0, �Ω|𝑉}6!Ω|�C�	 (S17) 



 
2.4.2. Implementation using a log-F prior 

As described above, in our implementation we chose to use the log-F distribution which is a natural 
choice for logistic regression problems18 and provides slightly stronger regularization near zero than a 
Gaussian with similar tails. There are therefore two ways in which (S17) might fail to give an accurate 
P-value.  First, if the asymptotic approximations (S12) and (S13) fail then (S14) may not be accurate; 
in this case (S17) and (S14) might also differ.  Second, the expressions might differ because of 
differences between the log-F prior and the Gaussian.  To assess the impact of these, we conducted a 
simulation study as follows 
 

1. We considered human and parasite variants at population frequencies of 1%, 5%, 10%, 20%, 
30% and 50%.   

2. For each frequency f, we simulated genotypes for 10 human variants in N=3,346 samples by 
binomial sampling given the frequency. 

3. For each frequency f, we also simulated genotypes for 10,000 parasite variants in N=3,346 
samples by binomial sampling given the frequency (thus representing no association between 
human and parasite genotypes). 

4. We ran hptest to test for association between each human and parasite variant (3.6 million 
tests in total) with no prior applied and computed a Wald test P-value (S14) and a likelihood 
ratio test P-value. 

5. We ran hptest a second time applying the log-F(2,2) prior and applied (S17) to recompute the 
P-value. 

6. We plotted results stratified by the minimum count observed across all combined host and 
parasite genotypes at the two variants (i.e. the minimum value in the 2x2 contigency table 
formed by the two genotypes). 

 
The following image shows a comparison of Wald test P-values and parameter estimates for the 
unregularized and log-F(2,2)-regularised regression. 

 
We noted that when the minimum combined genotype count is at least 20, the P-values computed by 
(S14) and (S17) are essentially identical, although discrepancies can be observed for lower counts; the 
P-value computed from regularised regression is typically more conservative in these cases.  These 
discrepancies are similar in magnitude to those observed between Wald and likelihood ratio test P-
values computed from unregularized regression.  For smaller counts, inclusion of the prior has the 
desirable property that it generates less overestimation of effect size magnitude, including for some 
pairs of variants that generate extremely large estimates when the prior is not included. 

2.5. Interpretation of statistical evidence for host-parasite association 
2.5.1. Thresholds for interpretation of P-values 
Consider possible association between a given host variant v and a parasite variant w.  Let A stand for 
the statement “v and w are genuinely associated in severe malaria cases”, and let ! 𝐴 stand for the 



converse statement (i.e. that the variants are unassociated).  Let p denote the P-value for the test of 
association.  For any chosen threshold value T, the evidence for association given a p-value < T can be 
derived as: 
 

 
𝑃(𝐴|𝑝 < 𝑇) =

𝑃(𝑝 < 𝑇|𝐴)𝑃(𝐴)
𝑃(𝑝 < 𝑇|𝐴)𝑃(𝐴) + 𝑃(𝑝 < 𝑇|! 𝐴)𝑃(! 𝐴) 

 

 
This expression can be simplified by noting that: 
 

- The distribution of P-values for unassociated variants is uniform, i.e. 𝑃(𝑝 < 𝑇|! 𝐴) = 𝑇; 
- The distribution of P-values for associated variants is reflected in the term 𝑃(𝑝 < 𝑇|𝐴), which 

is the association test power.  The power in turn depends on the magnitude of the true effect 
and the variant frequencies and is investigated further below. 

- The left-hand side of the formula is the posterior probability of association given the P-value 
threshold; it is equal to one minus the positive false discovery rate 21. 

 
This gives 
 

 𝑃(𝐴|𝑝 < 𝑇) =
power × 𝑃(𝐴)

power × 𝑃(𝐴) + 𝑇 × (1 − 𝑃(𝐴)) (S18) 

 
Equation (3) of Methods is obtained by rewriting (S18) on the odds scale. 
 
Formula (S18) can be interpreted either in a Bayesian setting, in which 𝑃(𝐴) reflects the prior belief in 
association between v and w, or in a frequentist framework in which the variants v and w are assumed 
to be sampled from a set of variants.  𝑃(𝐴)	then reflects the frequency of true associations in this set. 
 
Calculating the power term in (S18) requires making assumptions about the variant frequencies and the 
true association effect size.  We illustrate this with a simple approximate calculation as follows.  
Suppose v and w respectively have frequencies 𝑓 and 𝑔 and suppose the total sample size is N.  We use 
a previously derived expression22 for the variance of the estimated log-odds ratio assuming an additive 
effect: 
 

 𝑉 ≈
1

2𝑁𝑓(1 − 𝑓)𝑔(1 − 𝑔) (S19) 

 
We note that the accuracy of (S19) is expected to be greatest for variants at intermediate frequencies 
and for small effect sizes22 but we adopt this here for illustration purposes.  As in (S12)-(S14) under 
asymptotic assumptions the effect size estimate 𝜃 will distributed around the true effect size 𝜃" with 
this variance 
 

 𝜃~𝑁(𝜃", 𝑉) (S20) 
 
The P-value can then be computed by formula (S14).  Supplementary Figure 4 depicts the resulting 
association test power (dashed lines) and the posterior probability of association (left-hand side of 
(S18), solid lines) for two choices of association effect size distribution (odds ratio = 2, or odds ratio = 
4) under a range of variant frequencies and prior probabilities.  
 
2.5.2. Interpretation of Bayes factors 
Since our study data has already been observed, it is appropriate to conduct a calculation similar to 
(S18) conditioned on the observed study data.  This leads to: 
 

 
𝑃(𝐴|data) =

𝑃(data|𝐴) ⋅ 𝑃(𝐴)
𝑃(data|𝐴) ⋅ 𝑃(𝐴) + 𝑃(data|! 𝐴) ⋅ 𝑃(! 𝐴) 

 

 
Since the Bayes factor is 𝑃(data|𝐴)/𝑃(data|! 𝐴), this equation can more simply be expressed in terms 
of the Bayes factor as 
 



 𝑃(𝐴|data) =
𝐵𝐹 ⋅ 𝑃(𝐴)

𝐵𝐹 ⋅ 𝑃(𝐴) + (1 − 𝑃(𝐴)) (S21) 

 
or on the odds scale as 
 

 
 posterior	odds(𝐴|data) = 𝐵𝐹 × prior	odds(𝐴) (S22) 

 
As detailed above, we have used a log F(2,2) distribution to model effect sizes in our Bayes factor 
computation; this assumes that most association effect sizes concentrate near zero but also allows for 
relatively large effects with nontrivial probability.  Under this assumption (S21-S22) can be used to 
directly interpret Bayes factors in terms of evidence for association; a possible calculation is set out in 
Methods. 

3. Supplementary Text 

3.1. Investigation of additional signals of association 

3.1.1. Overall interpretation of additional signals 

In addition to the HbS associations described in main text, we observed additional candidate 
associations between other human and Pf variants in our discovery data.  The evidence for these 
associations is likely not strong enough to establish these associations without additional information.  
A full list of associations can be found in Supplementary Table 1; we detail those with BF > 105 and 
those involving other previously established human protective mutations at the ABO, ATP2B4 and 
glycophorin regions below.  Additionally, we also observed a larger number of Pf variants associated at 
lower levels of evidence (BF > 103) with HbS and we interpret these below. 
 
3.1.2. Association between GCNT2 and two regions of the Pf genome 

We observed a candidate host-parasite genetic association intronic variation in the gene GCNT2 (lead 
SNP: rs517371 chr6:10,554,048 C>G) and a non-synonymous SNP in MSP4 (Pf chr2:278,302 T>C). 
(BF=2.8x106; P = 1.4x10-9; OR = 0.39 (0.28-0.53) for effect of human ‘G’ allele on parasite ‘C’ allele; 
Supplementary Table 1).  GCNT2 determines the two reciprocal antigens of the I blood group by 
adding a b1,6-linked polylactosamine side chain onto the i antigen to generate a branched I antigen. 
Besides newborns and individuals with rare inactivating mutations in GCNT2, all individuals express 
both I and i antigens on the erythrocyte surface to varying degrees, with I expression dominating 23. 
GCNT2 has three alternative first exons that have cell-type specific expression. The associated variants 
lie just upstream of the 2nd first exon that is expressed in multiple cell types, but not in erythrocytes 
which are thought to use the 3rd first exon isoform 24. It is thus unclear whether these variants affect 
gene or transcript expression in relevant cell types. P. falciparum’s MSP proteins are generally thought 
to act in early stages of RBC invasion, but the specific function of MSP4 remains unknown 7.  
 
Interestingly, an additional signal of association between GCNT2 variation (rs78972384 C > T) and Pf 
variation in RH1 (chr:138,623 A > T) was also observed (BF=4.9; 1.5x10-6). We are unaware of any 
existing evidence for a molecular interaction between the I antigen with PfMSP4 or PfRH1, or with 
parasite invasion more generally. 
 
3.1.3. Association between HLA alleles and variation in several regions of the Pf genome 

As shown in Supplementary Table 1, a number of HLA alleles associate with variation in the parasite 
genome with Bayes factors in the range 105 – 106.  These include including HLA-A*68 (associated 
with variation in PfWDTC1 “WD and tetratricopeptide repeats protein 1, putative”); HLA-B*49 
(associated with variation in PF3D7_1141700 “OTU domain-containing protein, putative”); HLA-
DQB1*03 (associated with variation in PF3D7_0714900 “tRNA Serine”); HLA-A*01 (associated with 
variation in PfXL2 “Exported lipase 2”); and HLA-DPA*02 (associated with variation in PfSET3 “SET 
domain protein, putative”).  We caution that HLA alleles in our data were obtained by imputation using 
a reference panels with limited coverage of African populations9; however, the alleles listed here have 
reasonably allele frequency ( > 4% in both countries) and reasonable imputation confidence (IMPUTE 
info > 0.94 in both countries). 



 
Among these candidate associations, the association between HLA-A*01 and Pf chr10:86,025 A>T 
may be notable because the Pf ‘A’ allele was only observed in infections of individuals that do not 
carry the HLA-A*01 allele, leading to a large estimated effect size (OR= 0.06). 
 
3.1.4. Association with ABO, ATP2B4 and glycophorin variation 

We note here weak evidence in our discovery data (BF > 103) for association between previously 
established host protective mutations other than HbS9, and Pf variation.  We observed weak evidence 
for association of the O blood group mutation (rs8176719) and an intergenic variant near PfAROM (Pf 
chr2:257614 C>G; BF = 1.6x104).  The ATP2B4 variant rs4951377 was associated with an intergenic 
variant on Pf chromosome 7 (chr7: 507,739 G > A; BF = 7.3x103).  The glycophorin structural variant 
DUP4 was not associated with any Pf variants with BF > 103. 
 
3.1.5. Additional associations with HbS 

In addition to the Pfsa1, Pfsa2 and Pfsa3 loci described in main text, a number of other Pf loci appear 
to be associated with HbS at lower levels of evidence (BF > 103; Supplementary Table 1).  These 
include missense variants in both PfCLAG3.1 and PfCLAG3.2 (cytoadherence-linked asexual protein 3) 
on chromosome 3, in PfLSA1 (Liver-stage antigen 1), a noncoding variant close to PfREX2 (Ring-
exported protein 2) and variation in PfEBL1 (erythrocyte binding like protein 1).  These variants are 
also among those observed to be in strong LD with Pfsa variants (Supplementary Table 3) and we 
interpret them as likely reflecting the same association signal. 
 
3.1.6. Investigation of HbS-MSP1 association 
A previous study 25 reported evidence of association between HbS and specific alleles of P.falciparum 
MSP1 (“merozoite surface protein 1”, PF3D7_0930300) in asymptomatic infections from Dielmo, 
Senegal (N=77)  and Dienga, Gabon (N=163).  In both cohorts, the study found decreased frequency of 
MAD20 alleles in HbAS individuals compared to HbAA individuals.  Specific MSP1 alleles, including 
K1-d and K1-e were also observed exclusively either in HbAA or HbAS individuals in the smaller 
Senegal cohort, but these alleles were not observed in the Gabon cohort.  
 
In our study we found no strong evidence of association between HbS and MSP1 variant (maximum 
BFHbS = 94 for variants in PF3D7_0930300 or 2kb flanking region), and thus our data do not appear to 
replicate the above associations.  We note several possible reasons for this.  First, the original study 
noted several complex features, including high occurrence of infections with multiple MSP1 genotypes 
(based on multiple PCR bands), and additional epidemiological features associated with MSP1 types 
(including with MAD20 alleles) in the Senegal cohort.  The sample size was also relatively limited and 
a number of comparisons were carried out.  It is thus possible that the findings are specific to the 
cohorts studied.  However, the MSP1 locus is highly polymorphic and carries multiple allelic forms 
that were assessed via PCR approaches in the above study; moreover these display a form of 
dipmorphism in the sense that they have seldom or rarely been observed to recombine 26.  Our results, 
which are based on mapping of sequence reads to the Pf3D7 reference genome (which carries the 
MAD20 allele) may not capture the relevant genetic variation.  In general, specialised methods (such as 
those based on a population reference graph 27) will likely be needed to fully resolve variation in highly 
polymorphic or dimorphic regions. 

3.2. Functional information on the Pfsa loci 
3.2.1. Relevant gene and protein identifiers 
The Pfsa loci described in main text include non-synonymous mutations of three P.falciparum genes: 
PF3D7_0215300 (PfACS8 “acyl-CoA synthetase”), PF3D7_0220300 (“Plasmodium exported protein, 
unknown function”) and PF3D7_1127000 (“protein phosphatase, putative”) (Figure 1). The following 
table details the name and relevant identifier symbols for these genes. 
 

Locus Gene identifier and name Alternate identifiers Protein identifier 

Pfsa1 PF3D7_0215300 
(ACS8; “Acyl co-A synthetase”) 

PF02_0144; PFB0695c O96232 

Pfsa2 PF3D7_0220300 (“Plasmodium 
exported protein, unknown function”) 

PFB0923c 
 

Q8I654 



Pfsa3 PF3D7_1127000 (“Protein phosphatase, 
putative”)  

PF11_0281 Q8II93 

 
In addition to these genes, we note in main text that available genome assemblies from Pfsa3+ 
parasites contain a structural rearrangement of the Pfsa3 region which appears to duplicate part of the 
gene SNRPF (Extended Data Figure 9 and Supplementary Figure 3). 
 
3.2.2. Information on protein function 
We detail known functional information relating to the above genes. 
 
PF3D7_0215300: PfACS8 is a member of the Acyl co-A synthetase family, which includes 13 genes in 
P.falciparum but varies in number of paralogs between other laverania28,29.  ACS8 and a number of 
other ACS genes are thought to have arisen as duplicates of ACS9 28.  Acyl-coA synthetases play roles 
in fatty acid metabolism and particular in activation of fatty acids scavenged from the host cytosol30.  
They are expressed in intraerythrocytic blood stages as detailed further below.  ACS8 and ACS9 in 
particular have been predicted to localise to the apicoplast membrane based on the presence of a 
bipartite leader sequence 31, but to our knowledge their cellular location and function has not been 
directly observed 32.  This is distinct from other ACS proteins which are thought to localise to the 
erythrocyte cytoplasm 33. Previous doctoral work used CRISPR-Cas9 to generate an in vitro knockout 
for ACS8 and other ACS genes from the 3D7 lab strain, and used this to study growth phenotypes 
under conditions of glucose depletion and enriched for specific fatty acids 34; this suggested ACS8 is 
nonessential for intraerythrocytic growth, as only modest variation in growth rates was observed, with 
some decrease in growth rates of the ACS8 knockout observed in low-glucose conditions.  Consistent 
with this, ACS8 was not found to be essential for in vitro growth in a recent screen using randomly 
inserted piggyBac transposons to knockdown genes 35 genome-wide, detailed further below. 
 
PF3D7_0220300: Q8I654 (encoded by PF3D7_0220300) was previously computationally identified 
as an exported protein (meaning that it is exported from the parasite to the host cytosol during blood-
stage infections) due to the presence of a PEXEL motif in its amino acid sequence and an appropriate 
signal peptide sequence 36,37.  We describe the PEXEL motif and its sequence context further below.  
Export of Q8I654 to the erythrocyte cytosol was confirmed in doctoral work by Tamira K. Butler 
described previously38. In that work, cultured 3D7 parasites, and 3D7 parasites modified to 
conditionally express a recombinant version of Q8I654 with a fluorescent tag incorporated at the C-
terminal end, were used to investigate the expression and localisation of Q8I654 in in vitro blood stage 
infections.  Q8I654 was observed to localise to vesicles that appeared distinct from either Maurer’s 
clefts or J-dots.  It was further reported that Q8I654 acts to sequester the host protein stomatin within 
these vesicles. 
 
Butler also found that Q8I654 growth differed in conditional knockout lines depending on conditions38 
and therefore suggested that Q8I654 is essential to in vitro growth of parasites, through a putative role 
in glucose uptake.  However, this result contrasts with findings from the piggyBac screen 35 described 
further below, and other knockdown experiments that have been performed (Daniel Goldberg, personal 
communication).  These experiments suggest that PF3D7_0220300 is likely not to be essential to in 
vitro growth and may be unrelated to glucose uptake, except perhaps under particular conditions. 
 
PF3D7_112700: Q8II93 encoded by PF3D7_112700 has been identified as a putative protein 
phosphatase due to the presence of a PTP Tyrosine Phosphatase-like group in its amino acid sequence 
39.  However, it was reported as low-scoring in that analysis and it was further noted that its PTP 
domain clustered separately to PTP domains from other Eukaryotes, suggesting it is somewhat unusual.  
Q8II93 has also been identified as an exported protein36 and contains a non-canonical PEXEL motif 
which we detail further below.  Using mass spectrometry, Q8II93 was also identified as one of 116 
proteins present in the P.falciparum food vacuole 40. 
 
3.2.3. Dispensability of HbS-associated genes 
A recent study used piggyBac transposons to randomly introduce mutations to 3D7 genome-wide, and 
analysed viability for in vitro growth of the mutant parasites 35.  The table below details the results of 
this study for the three genes of interest.  Notably, the study found viable parasites containing 
insertions upstream of the PEXEL motif in both PF3D7_0220300 and PF3D7_1127000, suggesting 



these genes (and their encoded proteins) are not essential for blood stage growth of 3D7-derived 
parasites. 
 

Locus 

Gene identifier, strand, and 
transcription and CDS 
locations 

# of 
piggyBac 
sites 

Observed recognition 
sites 

Mutagenesis index 
/ mutant growth 
fitness scores; 
study conclusion 

Pfsa1 PF3D7_0215300 
(chr2; -ve strand) 
628,091 - 632,681 
[628,639 – 631,305] 

38 629083; 631100; 631886; 
632052; 632086; 632350; 
632390; 632621; 632662 

1 / -1.796; Mutable 
in coding sequence 

Pfsa2 PF3D7_0220300 
(chr2; -ve strand) 
812,892 – 815,853 
[813,845 – 814,672] 

10 813018; 813355; 813693; 
814310*; 815013; 
815610; 815757  

0.817 / -2.119 
Mutable in coding 
sequence 

Pfsa3 PF3D7_1127000 
(chr11; -ve strand) 
1,055,701 – 1,058,777 
[1,056,199 – 1,058,055] 

20 1055840; 1057481†; 
1057630†; 1057814; 
1058384; 1058543 

1 / -0.05 
Mutable in coding 
sequence 

Table: detail of previously reported dispensability data35 for Pfsa genes based on a piggyBac screen.  
Columns show the region and gene identifier and chromosome of the relevant gene; location of gene on 
chromosome including annotated transcribed sequence and coding sequence (CDS; in square brackets) 
on the 3D7 reference genome; number of piggyBac recognition (TTAA) sites in coding sequence; the 
location of piggyBac recognition sites observed in the screen35, with sites in the untranslated sequence 
denoted in italics and sites in coding sequence in bold.  Asterisk denotes a site inside a PEXEL motif and 
dagger denotes site upstream of a PEXEL motif. The last column reports the mutagenesis and mutant 
growth scores and the conclusion reported by the study35. 
 
3.2.4. Relationship of Pfsa1+ and Pfsa2+ alleles to PEXEL motifs 
As described above, both PF3D7_0220300 and PF3D7_1127000 are identified as exported proteins 
based on the presence of PEXEL motifs within their amino acid sequence.  We review background on 
PEXEL-mediated protein export in this section, and describe the relationship of the HbS-associated 
alleles in the Pfsa2 and Pfsa3 regions to the motifs.  The PEXEL motif (reviewed recently36) is a 
sequence of amino acids of the form RxLxE/Q/D (in which the capital letters follow the IUPAC code 
and x stands for an arbitrary amino acid 41,42) which is known to mediate export of the protein from the 
parasite to the erythrocyte cytosol.  Slightly altered ‘non-canonical’ PEXEL motifs also mediate export 
in some proteins 36,43.  Export of PEXEL-containing proteins is a multi-step process, with a first step 
involving initial cleavage of the motif by plasmepsin V (PMV) in the parasite endoplasmic reticulum 
44.  This cleavage leaves the last two residues of the motif (i.e. xE/Q/D) at the N-terminus of the 
cleaved protein. 
 
Experimental studies using engineered recombinants of known exported proteins (including PfEMP1 
and KAHRP) have indicated that while this cleavage by PMV is necessary for export, it is not 
sufficient.  Several additional factors also appear to determine successful export, including the position 
of the motif relative to signal peptide within the protein45 and the sequence of amino acids immediately 
downstream (C-terminal) of the PEXEL46,47, although to our knowledge the precise conditions for 
protein export have not been discovered.  It has also been reported that export of mature PEXEL 
proteins (i.e. proteins following cleavage by PMV), and of exported proteins that lack a PEXEL motif 
(PNEPs), use a common pathway that depends substantially on the remaining N-terminal sequence 47.  
It is therefore possible that export is affected by genetic variation within or immediately downstream of 
the motif. 
 
The following table indicates the position of the HbS-associated SNPs (Supplementary Table 1) in 
PF3D7_0220300 and PF3D7_112700 in relation to the PEXEL motif in these genes.  It is notable that 
the HbS-associated variants lie close to the PEXEL motif and affect bases immediately downstream (in 
an immediately adjacent amino acid for PF3D7_1127000, and amino acids both up- and downstream 
of the PEXEL for PF3D7_0220300).  This therefore raises the question of whether the Pfsa+ alleles 
might alter export of these proteins. 
 



Locus Gene identifier, base pair and 
amino acid location of PEXEL 
motif in Pf3D7 

MOTIF 
sequence 

Pfsa mutation Codon change 

Pfsa2 PF3D7_0220300 
Pf3D7_02_v3 
814,307 - 814,321 
AA: 49-53 

RTLTE 314,288 C>T 
(+7) 

GAT -> AAT 
(Aspartic acid -> 
Asparagine) 
 

 314,329 A>G 
(-3) 

ATA -> ACA 
(Isoleucine -> 
Threonine) 

Pfsa3 PF3D7_1127000 
Pf3D7_11_v3 
1,057,438 – 1,057,452 
AA: 71-75 

RCLNY* 1,057,437 T > C 
(+1) 

AAA -> GAA 
(Lysine -> Glutamic 
acid)  

 
Table: detail of HbS-associated SNPs (Supplementary Table 1) in protein coding sequence within 
50bp of a PEXEL motif.  Columns show the locus name; the gene identifier, motif sequence (asterisk 
denotes the sequence matches a non-canonical motif 36), location of the nucleotide sequence of the motif 
within the 3D7 reference sequence, and location in terms of amino acids within the translated protein; 
the base pair location of the mutation (from Supplementary Table 1), with numbers in brackets indicating 
the amino acid location upstream (-ve numbers) or downstream (+ve numbers) of the PEXEL motif; and 
the corresponding amino acid change. 
 
3.2.5. Pfsa gene expression in 3D7 parasites 
Several datasets on mRNA expression in the 3D7 lines of P.falciparum have been generated.  We 
examined data on asexual blood stage infections 48-51, and on gametocyte and mosquito-borne stages 52. 
We also examined transcripts identified using long-read sequencing of mixed asexual blood stage 
parasites 53.  Using these datasets we noted the following features.  Some expression of all three genes 
was detected in gametocytes and sporozoites52. Expression was also observed in multiple asexual blood 
stages 48,50,51.  Across asexual blood stages we noted that expression of ACS8 / PF3D7_0215300 was 
generally highest in early-stage parasites (5-20 hours following invasion; representing rings and early 
trophozoites; Extended Data Figure 7).  Expression of PF3D7_0220300 was relatively constant but 
with some evidence for increased expression at trophozoite stages (Extended Data Figure 7). In these 
experiments using 3D7, PF3D7_1127000 was expressed at similar levels across all blood stage 
timepoints.  The long-read sequencing dataset53 also reports an alternate transcript of PF3D7_1127000 
in which transcription appears to continue through the first intron. 
 
3.2.6. Increased expression of PF3D7_1127000 in Pfsa+ parasites 
In main text we describe a recent study which analysed RNA transcription levels of Pf genes in a 
sample of HbAA and HbAS children from Mali, all of whom were ascertained with uncomplicated 
malaria infections49.  This study found that PF3D7_1127000 has higher mRNA expression levels 
among trophozoite-stage infections of HbAS children than in the HbAA children (log2 fold change of 
expression in HbAS versus HbAA children = 5.0; P = 1.08 × 10-18; computed using DESeq249).  Our 
results raise the question of whether the expression change may be driven by a genetic change in 
parasites linked to the Pfsa3+ allele. 
 
To investigate this we re-examined the data from Saelens et al49 as follows.  First, we examined RNA-
seq reads aligning to the three lead HbS-associated SNPs the Pfsa1-3 loci and used these to call 
genotypes (detailed in Supplementary Table 6).  The Pfsa1+ and Pfsa3+ alleles were strongly 
associated with HbS in these samples (OR = 15.2, 95% CI =2.7 – 87.0, P = 2.2x10-3 for Pfsa1+; OR = 
58.9, 95% CI = 5.9 – 590.0, P = 5.31x10-4 for Pfsa3+) as detailed in Supplementary Table 2.  The 
Pfsa2+ allele was not observed in these samples; this presumably reflects the low population 
frequencies of this allele in Mali (Figure 3) but we also noted that the Pfsa2 SNP was covered by 
relatively few reads in several samples (Supplementary Table 6), suggesting low expression levels 
and leading to missing genotype calls.  These results therefore provide replication of the HbS-Pfsa 
association described in main text in this set of uncomplicated malaria samples. 
 



Given that HbAS and Pfsa3+ are associated in these samples, we considered whether the upregulation 
of PF3D7_1127000 might be better explained by Pfsa3+ genotypes than HbAS status in these samples 
We noted that the genotype at the second-most HbS-associated SNP in this region (chr11:1,057,437 
T>C) was a particularly good predictor of PF3D7_1127000 expression (Extended Data Figure 6 and 
Supplementary Table 6).  This improvement is due to two individuals for which the expression of 
Pf3D7_1127000 appear inconsistent with a model where high expression is due to the HbAS genotype.  
First, an HbAS individual (AS08) who was reported as having trophozoite-stage parasites and Pfsa3- 
genotype at the chr11:1,057,437 SNP, showed the lowest expression of PF3D7_1127000 among all 
HbAS samples in the data (transcripts per kilobase million (TPM) = 28, versus TPM > 140 for all other 
HbAS samples; TPM > 1390 for all other HbAS samples with trophozoite-stage infections).  Secondly, 
a single HbAA individual (AA01) which had predominantly Pfsa3+ genotype had the highest 
expression of PF3D7_1127000 among all HbAA samples (TPM = 253, versus TPM < 155 for all other 
HbAA samples), despite being identified as a ring stage infection. 
 
The data above has limited power to detect differences in the possible causes of upregulation.  
However, we also analysed a second experiment from the same study49 in which both 3D7 and the 
Uganda Palo Alto isolate54 (FUP/H) were studied in a time course for 48 hours post-invasion. This 
experiment is relevant because FUP/H carries all three Pfsa+ alleles, including the C allele at 
chr11:1,057,437 T>C (inferred from available sequencing data as described in Methods.)  In the 
experiment, culture was carried out in blood from both HbAA or HbAS individuals.  In all blood 
samples, expression patterns of PF3D7_1127000 differed between 3D7 and FUP/H parasites 
(Extended Data Figure 7): strong expression was observed for PF3D7_1127000 in trophozoite-stage 
infections of FUP/H in all blood samples studied (e.g. TPM > 1,000 for FUP/H infections at 24-30 
hours post-infection) while expression was relatively weak in 3D7 infections at the same time points 
(TPM < 60).  Extended Data Figure 8 further details this behaviour in comparison to other Pf genes in 
the two HbAA blood samples analysed.  This experiment therefore also supports a model in which the 
Pfsa+ alleles (presumably Pfsa3+) cause upregulation of PF3D7_1127000, as opposed to upregulation 
in response to the HbAS genotype directly. 
 
We note that in the data from Mali, one HbAS sample (AS15) appears to carry opposing alleles (i.e. 
Pfsa3- and Pfsa3+ respectively) at the chr11:1,058,35 and chr11:1,057,437 variants.  This sample had 
high expression of PF3D7_1127000.  If the Pfsa3+ are genuinely the cause of increased expression as 
suggested above, this might suggest the chr11:1,057,437 SNP is the key functional mutation.  
However, the Pfsa3+ mutations are also linked to a nearby structural variant (Extended Data Figure 9 
and Supplementary Figure 3) and further work will be needed to determine the functional elements. 
 
Finally, for completeness, we note that this experiment also suggests that a similar differential 
expression effect may occur for PF3D7_0220300 (Extended Data Figure 7). PF3D7_0220300 in this 
experiment was expressed at substantially lower levels in FUP/H than in 3D7 during ring stages, but 
has equal or higher expression at trophozoite stages. 

3.3. Linear mixed-model based analysis of HbS-Pfsa association 
Motivated by a reviewer comment, we further explored the use of a linear mixed model (LMM) to 
assess the association between HbS and the Pfsa alleles.  Specifically we used FaST-LMM 55 to assess 
association in the 3,346 discovery samples (as used in Figure 1), working separately in each 
population and including both a parasite genetic relatedness matrix (Pf GRM) and human genetic 
relatedness matrix (human GRM) to model random effects.  To compute Pf GRMs, we used the same 
sets of SNPs as used for principal components computation (as detailed in Methods and shown in 
Extended Data Figure 3).  To compute the human GRM, we used the set of directly-typed variants 
that passed QC in our previously reported genome-wide association study 9, after excluding variants 
with minor allele frequency < 1%, variants on the sex chromosomes or in the first 10Mb of 
chromosome 11 (which contains the HBB gene and HbS allele), and after thinning variants to no closer 
than 0.02cM apart using the HapMap combined recombination map.  We ran FaST-LMM including 
only the human GRM, or both the human and Pf GRM, for each set of Pf variants considered.  For 
comparison we also used the same data to fit basic linear and logistic regression models without any 
additional covariates in each country.  
 
The table below reports the results of this analysis.  In general, we found that results were qualitatively 
similar to those reported in Extended Data Figure 3 (based on logistic regression with principal 
components).  Specifically, inclusion of the human GRM had little effect on the association test 



compared to an unadjusted linear model, but inclusion of a GRM computed from Pf genetic variants 
reduced the association signal to a limited extent.  As in Extended Data Figure 3, exclusion of the 
Pfsa region variants from the Pf GRM partly restored this association.  However, these results also 
highlight a key issue when applying the LMM approach to these data: we found that P-values from the 
LMM were systematically and substantially lower than those from logistic regression.  (For example, P 
< 6x10-18 at Pfsa1 for all versions of the linear mixed model test in Kenya, compared to P = 2x10-11 
using unadjusted logistic regression).  Similarly low P-values were observed when using a linear model 
without random effects.  Our interpretation is that the P-values from the linear models strongly 
overstate the true statistical evidence, and that this arises because of the model misspecification 
inherent in applying the homoscedastic Gaussian error model to binary outcome data in the presence of 
large effects.  

 
Table: comparison of linear mixed model, linear and logistic regression analysis of HbS-Pfsa 
association.  Columns show: the Pfsa region name and variant tested, the population, an indicator of the 
variants included in the Pf GRM and the human GRM for linear mixed model (LMM) analysis, the P-value, 
estimated effect size and standard error; the estimated 'heritability' parameter indicating the contribution of 
both GRMs to the model fit (on a scale of 0-1) for LMM analysis; and the estimated mixing parameter 
determining the relative contribution of the parasite versus the human GRM to the model fit (on a scale of 
0-1) for LMM analysis.  All LMM analysis was conducted using FaST-LMM. Rows marked (*) are 
estimated using a linear regression model in R with no additional covariates.  Rows marked (**) are 

Country Pf GRM variants 
Human GRM 

variants P-value Effect size 
Std. 

error Heritability 
Pf / hs 

mixing 

Pfsa1 (chr2:631,190 T > A) 
        

Gambia All variants All 1.48E-03 0.0192 0.0060 1.00 1.00 
 Exc. Pfsa regions All 3.14E-04 0.0249 0.0069 1.00 1.00 
 Exc. chr 2 and 11 All 3.30E-04 0.0257 0.0071 1.00 1.00 
 No Pf GRM All 7.89E-06 0.0470 0.0105 0.09 0.00 
(*) None (normal linear model) 8.20E-06 0.0464 0.0104   
(**) None (logistic regression model) 2.58E-04 0.2145 0.0587   
        
Kenya All variants All 5.90E-18 0.0687 0.0078 1.00 1.00 
 Exc. Pfsa regions All 2.50E-21 0.0826 0.0085 1.00 1.00 
 Exc. chr 2 and 11 All 5.13E-22 0.0856 0.0087 1.00 0.88 
 No Pf GRM All 3.09E-25 0.0990 0.0093 0.72 0.00 
(*) None (normal linear model) 3.18E-26 0.1006 0.0093   
(**) None (logistic regression model) 2.27E-11 0.5687 0.0850   

Pfsa2 (chr2:814,288 C > T) 
        

Gambia All variants All 6.46E-01 -0.0006 0.0014 1.00 1.00 
 Exc. Pfsa regions All 6.56E-01 -0.0006 0.0015 1.00 1.00 
 Exc. chr 2 and 11 All 7.53E-01 -0.0005 0.0015 1.00 1.00 
 No Pf GRM All 6.63E-01 -0.0010 0.0023 0.34 0.00 
(*) None (normal linear model) 6.73E-01 -0.0010 0.0024   
(**) None (logistic regression model) 9.89E-01 -1.3299 94.39   
        
Kenya All variants All 2.83E-11 0.0609 0.0091 1.00 1.00 
 Exc. Pfsa regions All 1.31E-14 0.0777 0.0099 1.00 1.00 
 Exc. chr 2 and 11 All 4.10E-15 0.0796 0.0100 1.00 1.00 
 No Pf GRM All 1.20E-16 0.0915 0.0109 0.34 0.00 
(*) None (normal linear model) 4.46E-17 0.0923 0.0108   
(**) None (logistic regression model) 2.63E-09 0.4778 0.0803   

Pfsa3 (chr11:1,058,035 T > A) 
        

Gambia All variants All 4.54E-02 0.0138 0.0069 1.00 1.00 
 Exc. Pfsa regions All 1.96E-02 0.0176 0.0075 1.00 1.00 
 Exc. chr 2 and 11 All 9.21E-03 0.0207 0.0079 1.00 1.00 
 No Pf GRM All 2.06E-04 0.0437 0.0118 0.02 0.00 
(*) None (normal linear model) 2.07E-04 0.0425 0.0114   
(**) None (logistic regression model) 2.77E-03 0.2313 0.0773   
        
Kenya All variants All 5.84E-18 0.0727 0.0083 1.00 1.00 
 Exc. Pfsa regions All 2.38E-22 0.0886 0.0089 1.00 1.00 
 Exc. chr 2 and 11 All 1.72E-22 0.0892 0.0090 1.00 1.00 
  No Pf GRM All 3.83E-24 0.1017 0.0098 0.34 0.00 
(*) None (normal linear model) 6.25E-25 0.1075 0.0102   
(**) None (logistic regression model) 1.55E-11 0.5995 0.0889   



estimated using logistic regression in R with no additional covariates.  For comparison with FaST-LMM, 
predictor (HbS) genotypes were standardised to have mean 0 and empirical variance 1 prior to model fit. 
 
 
We note that the magnitude of the HbS-Pfsa association described here may be 
relatively extreme, and that linear mixed models have elsewhere been shown to work 
well for binary outcomes with balanced outcome frequencies and relatively small 
genetic effect sizes 56.  However, the strength of association between host and 
pathogen genotypes is at present unknown for most infectious diseases, and the 
frequency of the potentially relevant pathogen variants also varies widely.  These 
results suggest that some caution may be needed in interpreting linear mixed model 
results in such settings. 
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