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Context and significance

Antibodies are a principal

mediator of protective immunity

to SARS-CoV-2 infections, and

human monoclonal antibodies are

promising for COVID-19

prophylaxis or therapy. Defining

antibody protective efficacy and

establishing the titer of

neutralizing antibodies required

for protection are imperative for

the development of efficient

antibody-based therapeutics

against COVID-19. Here, studies

reveal that passive transfer of

individual neutralizing human

monoclonal antibodies or

combinations of the two given

prophylactically by an intravenous

or intramuscular route protected

non-human primates against

SARS-CoV-2 infection. Efficient

antibody-mediated prophylaxis

protection was achieved

principally via direct virus

neutralization and defined a

protective titer of neutralizing

antibodies in serum. These results

support clinical development of

the tested antibody combination

as a biologic for COVID-19

prevention.
SUMMARY

Background: Human monoclonal antibody (mAb) treatments are
promising for COVID-19 prevention or therapy. The pre-exposure
prophylactic efficacy of neutralizing antibodies that are engineered
with mutations to extend their persistence in human serum and the
neutralizing antibody titer in serum required for protection against
SARS-CoV-2 infection remain poorly characterized.
Methods: The Fc region of two neutralizing mAbs (COV2-2130 and
COV2-2381) targeting non-overlapping epitopes on the receptor bind-
ing domain of SARS-CoV-2 spike protein was engineered to extend
their persistence in humans and reduce interactions with Fc gamma
receptors. We assessed protection by individual antibodies or a combi-
nation of the two antibodies (designated ADM03820) given prophylac-
tically by an intravenous or intramuscular route in a non-human primate
(NHP) model of SARS-CoV-2 infection.
Findings: Passive transfer of individual mAbs or ADM03820 conferred
virological protection in the NHP respiratory tract in a dose-dependent
manner, and ADM03820 potently neutralized SARS-CoV-2 variants of
concern in vitro. We defined a protective serum-neutralizing antibody
titer and concentration in NHPs for passively transferred human anti-
bodies that acted by direct viral neutralization.
Conclusions: In summary, we demonstrate that neutralizing antibodies
with extended half-life and lacking Fc-mediated effector functions are
efficient for pre-exposure prophylaxis of SARS-CoV-2 infection in
NHPs. These results support clinical development of ADM03820 for
COVID-19 prevention.
Funding: This research was supported by a contract from the JPEO-
CBRND (W911QY-20-9-003, 20-05); the Joint Sciences and Technology
Office and Joint Program Executive Office (MCDC-16-01-002 JSTO,
JPEO); a DARPA grant (HR0011-18-2-0001); an NIH grant (R01
AI157155); and the 2019 Future Insight Prize from Merck KGaA.

INTRODUCTION

In the past decades, two pathogenic human coronaviruses, severe acute respiratory

syndrome (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV),
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have been reported to cause severe respiratory tract disease associated with high

morbidity and mortality. In December 2019, the severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) emerged in Wuhan, Hubei province, China.1 SARS-

CoV-2 is the causative agent of the current worldwide coronavirus 2019 (COVID-19)

outbreak. The pandemic caused by COVID-19 has made the development of

countermeasures an urgent global priority.2–6 Safe and effective vaccines and ther-

apeutics are essential to combat this global pandemic.

Initial work identified that SARS-CoV-2 uses the angiotensin-converting enzyme 2

(ACE2) protein from bats, civet cats, swine, non-human primate (NHPs), or humans

as an attachment and entry receptor.6–8 As with related coronaviruses, interaction

with ACE2 is mediated principally through the viral spike (S) protein. Hence, S on

the surface of the virion is the main target for neutralizing antibodies on these coro-

naviruses. This homotrimeric glycoprotein is anchored in the viral membrane and

consists of two subunits: S1, containing the N-terminal domain (NTD) and host cell

receptor binding domain (RBD), and S2, which contains the fusion peptide.9,10

The S protein RBD directly interacts with the peptidase domain of ACE2.6–8,10

Recent studies of the S protein structure have shown that the protein exists in

different conformations.9,11 Initially, the RBD switches from a closed conformation

to an open conformation to allow human ACE2 (hACE2) interaction. Upon interac-

tion with the hACE2 receptor and TMPRSS2 priming, S2 undergoes a dramatic

conformational change to trigger host membrane fusion.12

The RBD is the primary target of most potently neutralizing anti-SARS-CoV-2 anti-

bodies identified to date.13–19 The RBD is also themain antigenic site for neutralizing

antibody responses in current and experimental COVID-19 vaccines.20–22 Previous

studies established an NHP model for SARS-COV-2 infection,23,24 demonstrating

protection from viral infection by transfer of a high dose of ACE2-blocking mono-

clonal antibodies (mAbs).19 All available antibody therapeutics that have received

Emergency Use Authorization (EUA) from the Food and Drug Administration (FDA)

except for tixagevimab/cilgavimab were approved for post-exposure treatment,

not for pre-exposure prophylaxis.25–27 Prophylaxis with passive antibody therapy

is important as an option for individuals at high risk of disease from SARS-CoV-2

infection who cannot be adequately vaccinated, including immunocompromised in-

dividuals or others who respond poorly to vaccination.28,29

In NHP studies, the prophylactic efficacy of a single mAb or a combination of two

mAbs that were produced as a recombinant immunoglobulin (IgG) 1 with a conven-

tional Fc region has been demonstrated previously.19,30,31 Here, we evaluated the

prophylactic efficacy of low or moderate doses of two different human mAbs target-

ing non-overlapping neutralization epitopes in the RBD domain19,32 engineered

with variant Fc regions associated with extended half-life, which we assessed individ-

ually or in combination. It has been previously shown that antibody combinations

can limit the risk of viral mutations that escape antibody neutralization more effi-

ciently than monotherapy.33–35 The antibody COV2-2381 binds directly to the re-

ceptor binding motif on the RBD on an S protomer in the open position. In contrast,

the antibody COV2-2130 binds a non-overlapping site on the RBD that is accessible

in either the open or closed S protomer conformation.We engineered the Fc portion

of these antibodies to contain mutations that extend half-life (M252Y/S254T/T256E,

designated YTE)36–38 and also to reduce Fcg receptor binding (L234A/L235A, desig-

nated LALA).39–41 One conceptual advantage of this approach is that the use of

these antibodies lacking Fc-mediated effects allowed us to assess the level of serum

neutralizing activity needed in vivo to achieve efficacy in the absence of confounding
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variables. The resulting recombinant mAbs were designated COV2-2130-YTE-LALA

and COV2-2381-YTE-LALA, and a two-mAb combination that is a 1:1 mixture of the

two was designated ADM03820. The results demonstrate that ADM03820 protects

against challenge with SARS-CoV-2 in the lungs and nasopharynx in a dose-depen-

dent manner and define titers of passively transferred neutralizing antibodies that

are necessary for protection in NHPs. In addition, our results support the use of an

antibody combination that could be administered by either an intravenous or intra-

muscular route and that neutralizes SARS-CoV-2 variants of concern. This work pro-

vides evidence for developing a combination of antibodies as prophylaxis against

SARS-CoV-2 in high-risk individuals.

RESULTS

Human antibodies are detected at primary sites of SARS-CoV-2 infection in

NHPs when ADM03820 is administered by IV or IM routes (study 1)

In this study, we used a cynomolgus macaque SARS-CoV-2 challenge model for

pre-clinical development studies of a prophylactic combination ADM03820

comprising two engineered mAbs, COV2-2130-YTE-LALA and COV2-2381-YTE-

LALA. We first assessed the human antibody concentration in serum and at primary

sites of infection (e.g., upper and lower respiratory tract mucosa) after 11.7 mg/kg

intramuscular (IM) or 31.3 mg/kg intravenous (IV) administration of ADM03820 in

cynomolgus monkeys (Figure 1A). Circulating human mAbs were detected at

high levels in serum on day 0 after administration (median 193 mg/mL after IM

or 520 mg/mL after IV administration) and persisted in serum for >80 days, exhib-

iting a slow and gradual decline. The median human IgG serum concentration was

9 mg/mL on day 84 after IM or 26 mg/mL after IV administration (Figure 1B).

Notably, ADM03820 antibodies also were detected in respiratory tract secretions,

including bronchoalveolar lavage (BAL) fluids and nasopharyngeal (NP) swab sam-

ples up to 60 days after administration and at concentrations ranging from 10 (the

assay limit of detection) to 270 ng/mL (Figures 1C–1D). The concentration of hu-

man antibodies in these secretions in vivo prior to collection is expected to be

higher, given that specimen collection from the mucosa sites with saline washes

resulted in antibody dilution.

ADM03820 antibody combination potently neutralizes variants of concern

ADM03820 exhibited broad and potent neutralizing activity in vitro with half-

maximal inhibitory concentration values <25 ng/mL, including potent neutralization

of viruses representing wild-type SARS-CoV-2 WA1/2020 with or without D614G

mutation, authentic B.1.1.7 virus, authentic B.1.617.2 virus, and chimeric Wash-

B.1.351 and Wash-B.1.1.28 viruses, which contain an S gene from B.1.351 or

B.1.1.28, respectively, in the backbone of WA1/202042 (Table 1). Collectively, these

results showed prolonged persistence of administered human antibodies in serum

and respiratory mucosa at concentrations sufficient for neutralization of currently

circulating viral variants.

Protective efficacy of ADM03820 in non-human primates (study 2)

To evaluate the protective efficacy of ADM03820, animals received various doses

(3.9–31.3 mg/kg) of the ADM03820 by either an IM or IV route followed by a viral

challenge with 105 tissue culture infectious dose (TCID50) 3 days later (Figure 2A).

We then measured the circulating human antibody concentration in serum and

serum neutralizing titers up to day 14 following IM or IV administration. While anti-

body concentration was below the limit of detection in the sham-treated group, an-

imals in the antibody treatment groups exhibited mAb levels proportional to the

dose and route of administration of the combination product (Figure 2B). The
190 Med 3, 188–203, March 11, 2022
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Figure 1. Pharmacokinetics and biodistribution of ADM03820

(A) Schema of study design. Different doses of antibody combination ADM03820 (containing

COV2-2130-YTE-LALA and COV2-2381-YTE-LALA at a 1:1 ratio) were administered to cynomolgus

macaques (n = 3 per group) by IV (11.7 or 31.3 mg/kg) or IM (11.7 or 31.3 mg/kg) route. Human

antibody concentration was assessed by ELISA in (B) serum, (C) BAL, or (D) nasal swab eluate

samples at indicated time points after ADM03820 administration. The dotted horizontal line

depicts the assay limit of detection.
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antibody concentration in serum peaked approximately 3 days post-administration

and remained constant throughout the remaining 14 days of the study.

We observed high circulating neutralizing antibody titers by pseudovirus neutraliza-

tion assays in all ADM03820 treatment groups but not in the sham-treated control

group. However, sham-treated control animals developed low-level neutralizing

titers beginning around day 6, presumably due to the induction of natural host im-

munity (Figure 2C). In general, the overall neutralizing antibody titers were consis-

tent with the pharmacokinetic data for the same treatment groups.

We assessed the kinetics of viral loads up to day 14 following viral challenge in BAL

and NP swab samples by determining the levels of SARS-CoV-2 subgenomic RNA
Med 3, 188–203, March 11, 2022 191



Table 1. Neutralization breadth of ADM03820 against SARS-CoV-2 variants of concerna (IC50

[ng/mL] against indicated virus)b

WA1/2020 D614G
B.1.1.7
(alpha)

Wash-B.1.351
(beta)

B.1.617.2
(delta)

Wash-B.1.1.28
(gamma)

28 21 20 19 25 8
aNeutralizing activity of ADM03820 against authentic SARS-CoV-2 WA1/2020, authentic SARS-CoV-2

WA1/2020 bearing D614G mutation, or authentic B.1.1.7, authentic B.1.617.2, chimeric Wash-B.1.351,

and chimeric Wash-B.1.1.28 viruses was assessed using a focus reduction neutralization test (FRNT).
bHalf-maximal inhibitory concentration (IC50) values are shown and represent the average of technical du-

plicates and two independent experiments.
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(sgRNA), which distinguishes replicating virus from input challenge virus, using RT-

PCR23,24,43 (Chandrashekar et al., 2020; Wolfel et al., 2020; Yu et al., 2020). High

levels of sgRNA were observed in the sham controls (Figures 2D–2E), with a median

peak of 5.0 (range = 3.3 to 5.4) log10 sgRNA copies/mL in BAL fluid and 6.9 (range =

4.9 to 7.3) log10 copies per swab of sgRNA in NP swab samples. As expected, peak

viral loads occurred between days 1 and 4 after challenge. All treatment groups

showed nearly full protection from viral replication in the BAL fluid, although individ-

ual animals displayed low-level, transient viral replication on day 1, which was elim-

inated by day 2 (Figure 2D). Although somewhat higher sgRNA levels were observed

in some animals in the NP swab samples on day 1, similar to BAL fluid, most treated

animals quickly eliminated detectable virus by day 2 (Figure 2E), with the exception

of 1 animal in the group receiving the lowest dose (3.9 mg/kg IM) and 1 animal in the

group receiving 11.7 mg/kg dose.
Protective efficacy of individual mAbs of the combination in non-human

primates (study 3)

The next challenge study was conducted after prophylactic administration by either

the IM or IV route of the individual 2130-YTE-LALA or 2381-YTE-LALA antibodies

(1.95–15.65 mg/kg) and was followed by quantitative serum antibody levels and

virological protection measurements as in the challenge study 2 (Figure 3A). As ex-

pected, the concentration of circulating human antibodies was below the level of

detection in the sham-treated group. In contrast, animals that received either

mAb demonstrated concentrations in serum proportional to the administered

dose (Figure 3B). Peak antibody concentration was observed within 3 days of admin-

istration and remained constant throughout the study. Serum neutralizing titers of

administered individual mAbs showed similar peak and kinetics to those seen with

the ADM03820 combination (Figure 3C). Sham-treated animals showed low levels

of neutralizing antibody activity by day 6 due to the host immune response to

SARS-CoV-2 infection (Figure 3C).

As evidenced by sgRNA levels, viral infection again was observed in all the sham-

treated control animals in both BAL fluid and NP swab samples (Figures 3D and

3E). For both treatment mAbs, most animals quickly cleared virus by day 2 post-chal-

lenge after transient viral replication regardless of dose or route of administration,

except for one animal in the 1.95 mg/mL 2381-YTE-LALA IM group (Figure 3D).

Similar levels of viral protection were observed in NP swab samples with the

15.65 mg/mL dose of either individual antibody (Figure 3E), as was observed with simi-

larly high tested doses of theADM03820 combination (Figure 2E). However, higherme-

dian viral loads were observed in the NP swab samples for both antibody treatments at

the low dose of 1.95 mg/mL. This dose is 2-fold lower than the lowest dose tested for
192 Med 3, 188–203, March 11, 2022
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Figure 2. Pharmacokinetics, antibody neutralizing titers, and prophylactic efficacy of ADM03820 mAbs in SARS-CoV-2-challenged NHPs

(A) Schema of study design. Different doses of ADM03820 were administered to cynomolgus macaques (day�3) by IM (3.9 or 11.7 mg/kg) or IV (31.3 mg/

kg) route (n = 4 per group). One group of NHPs was left untreated (sham; n = 4) and served as a control. Animals in all groups were challenged with 105

TCID50 SARS-CoV-2 by the intranasal and intratracheal routes on day 0.

(B) Human antibody concentration in serum was assessed by ELISA at indicated time points after ADM03820 administration and viral challenge.

(C) Total neutralizing antibody titers were assessed in serum at indicated time points using pseudovirus neutralization assay. The red line indicates the

median titer of neutralizing antibodies in each group.

(D) Subgenomic RNA (sgRNA) levels were assessed at various time points after viral challenge in bronchoalveolar lavage (BAL) samples using qRT-PCR.
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the combination and likely represents viral breakthrough due to insufficient neutralizing

antibody levels.

Protective efficacy of ADM03820 administered by IM route at low doses

(study 4)

To determine the minimally protective dose of the ADM03820 combination, animals

were treated with 2-fold decreasing doses of the antibody combination across 4

treatment groups, from 3.91 to 0.49 mg/kg by the IM route (Figure 4A). Circulating

human antibody titers were not present in sham-treated animals and were consistent

with the administered dose in the treatment groups (Figure 4B). The serum neutral-

izing antibody titer decrease was proportional to the administered ADM03820 dose

and was observed across all 4 treatment groups but not observed in sham group

animals (Figure 4C). BAL fluid viral load measurement suggested protection in

the lower airways at all tested antibody doses, including at the 0.49 mg/kg dose

(Figure 4D). However, increases in NP swab sample viral loads were seen across

decreasing dose conditions, with no protection observed in the 0.98 or

0.49 mg/mL groups (Figure 4E).

Defining protective serum antibody concentration and neutralizing antibody

titer in NHP SARS-CoV-2 challenge model

We next estimated a protective threshold for prophylaxis with potent YTE-LALA-Fc-

region-engineered human antibodies that acted principally via direct virus neutrali-

zation in vivo. We performed an overall analysis using data from challenge studies 2,

3, and 4, above, by comparing human mAb concentration in serum or half-maximal

neutralizing titer values at the time of challenge with the time-weighted average

values for the change of sgRNA viral load in BAL fluid or NP swab samples from

day 1 to 10 after viral challenge (see STAR Methods and Tables S1 and S2). A

threshold for virological protection in BAL fluid and NP swab samples was estimated

to be equal to or higher than 20 mg/mL for circulating human antibody concentration

and equal to or higher than 6,000 for serum neutralizing antibody titer (NT50) (Fig-

ures 5A–5D). Antibody levels above these thresholds conferred full protection in

83%–93% of challenged NHPs, which contrasted with 17%–50% fully protected an-

imals with antibody levels below these estimated protective thresholds (Figure 5E).

Spearman rank correlation analysis revealed a strong negative correlation between

serum antibody concentration and time-weighted average viral load measurements

in the upper airways when considering both antibody administration routes or the IM

route only (Figure S1). These results suggested that a higher antibody dose would be

necessary to control viral replication in the upper airways following IM or IV admin-

istration. Overall, our results suggested that high prophylaxis efficacy can be

achieved with the combination of two YTE-LAL-Fc-region-engineered human anti-

bodies formulated as the combination ADM03820 and demonstrated the potential

for IM delivery of human antibody-based therapeutics for COVID-19.

DISCUSSION

Numerous groups have reported the isolation of potently neutralizing antibodies

from survivors that target the RBD of SARS-CoV-2 S protein.13,16–18,47–49 These

studies provide insights into both quantitative and qualitative aspects of the use

of human mAbs as medical countermeasures for COVID-19. First, we demonstrate

the principle that prophylaxis against infection in NHPs can be achieved using
(E) sgRNA levels were assessed at various time points after viral challenge in nasopharyngeal (NP) swab samples. Each black curve shows the

measurements from individual animals, with red lines indicating the median values of measurements for animals within each treatment group.

Neutralization assay limit of detection = 50 copies/mL or 50 copies/swab for (D) and (E). For statistical analysis, refer to STAR Methods section.
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Figure 3. Pharmacokinetics, neutralizing titers, and prophylactic efficacy of individual mAbs of the combination in SARS-CoV-2-challenged NHPs

(A) Schema of study design. Individual mAbs COV2-2130/YTE-LALA or COV2-2381/YTE-LALA (n = 3 NHPs per group) were administered to cynomolgus

macaques (day �3) at different doses (1.95 or 15.65 mg/kg) and routes (IM or IV), as indicated. One group of NHPs was left untreated (sham; n = 4) to

serve as controls. Animals in all groups were challenged with SARS-CoV-2 by the intranasal and intratracheal routes on day 0.

(B) Human antibody concentration was assessed by ELISA in serum at indicated time points after indicated mAb administration and viral challenge.

(C) Total neutralizing antibody titers were assessed in serum at indicated time points using a pseudovirus neutralization assay. Each black curve shows

the measurements from an individual animal, with red lines indicating the median values of measurements for animals within each treatment group.
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neutralizing antibodies engineered to lack Fc-mediated functions. These data

extend previous findings that demonstrated prophylaxis efficacy for neutralizing

mAbs with intact Fc-mediated functions in NHPs.19,30,31 Second, the data show

excellent protection by antibodies acting only by direct neutralization of virus and

define the protective level of serum neutralizing activity in the absence of confound-

ing variables of Fc-mediated effects. A threshold for virological protection in BAL

fluid and NP swab samples was estimated to be equal to or higher than 6,000 for

serum NT50, because antibody levels above these thresholds conferred full protec-

tion in 83%–93% of challenged NHPs. Although it remains to be determined if the

protective titer level observed in the current study is generalizable to other prophy-

lactic candidate anti-SARS-CoV-2 human mAbs, the quantitative determination of a

neutralizing titer as a direct mechanistic correlate of protection has implications for

estimating the durability of protection conferred by passive immunization with anti-

bodies29 or active immunization with vaccines. With the caveat that the results may

be specific to these mAbs, the failure to achieve serum neutralizing titers above the

threshold reported in this study may provide a plausible explanation for the limited

efficacy observed in most clinical trials of COVID-19 convalescent plasma.44–46 Also,

this quantitative threshold for correlate of protection sheds light on the somewhat

limited magnitude and durability of the humoral immunity component of protection

following natural infection or immunization. Third, the studies also support a public

health strategy of prophylaxis of high-risk individuals who cannot be adequately

vaccinated by using administration of neutralizing mAbs instead. Engineering of

the Fc region to accomplish long half-life extends the prophylactic efficacy of the an-

tibodies, predicted to last up to 12 months in humans.29 Fourth, we also assessed IM

and IV administration and found that IM administration was effective, which could

allow a much easier and more practical approach to administration of these anti-

bodies at large scale in populations at risk.

The studies here support the further development of a two-mAb prophylactic anti-

SARS-CoV-2 combination (ADM03820) incorporatingmAbs that target non-overlap-

ping regions of the RBD.19,32 The combination of engineered antibodies possesses

desirable features consistent with the objectives above, including long half-life, an

effective IM formulation, accumulation at respiratory mucosa following systemic

administration, and a clear mechanism of action purely through direct virus neutral-

ization. The combination was shown effective in a stringent rhesus macaque model

for SARS-CoV-2 we previously developed with high viral loads in the upper and lower

respiratory tract, cellular and humoral immune responses, and pathogenic evidence

of viral pneumonia.23,24 In the present study, we demonstrated that prophylactic

administration of the two-mAb combination ADM03820 for protection against

SARS-CoV-2 infection in the cynomolgus macaque model reduced viral loads in

the upper and lower airways and accelerated virus clearance.

These antibodies include the YTEmutations in Fc region, which increase the serum half-

life of themAbs,50–52 and the LALA Fcmutations that were designed to decrease the Fc

effector function by reducing interaction with Fcg receptors.39,40,52,53 Studies in murine

SARS-CoV-2 challenge models have demonstrated equivalently high prophylactic effi-

cacy by potently neutralizing RBD-specific mAb variants with intact or abrogated Fc
(C) sgRNA levels were assessed after viral challenge at various time points in BAL samples using qRT-PCR.

(D) sgRNA levels were assessed after viral challenge at various time points in NP swab samples.

The red line depicts the median levels of sgRNA in each group. Each black curve shows an individual animal’s measurements, with red lines indicating

the median values of measurements for animals within each treatment group. Neutralization assay limit of detection = 50 copies/mL or 50 copies/swab.

For statistical analysis, refer to STAR Methods section.
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Figure 4. Pharmacokinetics, neutralizing titers, and prophylactic efficacy of ADM03820 in a dose de-escalation study and IM antibody administration

in NHPs

(A) Schema of study design. Different doses of ADM03820 were administered to cynomolgus macaques (day �6) by IM route (3.91, 1.95, 0.98, and

0.49 mg/kg; n = 3 NHP per group). One group of NHPs was left untreated (sham; n = 3) and served as a control. Animals in all groups were challenged

with SARS-CoV-2 by the intranasal and intratracheal routes at day 0.

(B) Human antibody concentration was assessed by ELISA in serum at indicated time points after ADM03820 administration and viral challenge.

(C) Total neutralizing antibody titers in serum were assessed at indicated time points using a pseudovirus neutralization assay. The red line shows

median titer of neutralizing antibodies in each group.
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region-mediated effector functions.54 Previous studies in a similar NHP model have

shown that COV2-2381 IgG with a conventional Fc region cleared the virus infection,

and no virus was observed when given at 50 mg/kg.19 Here, the addition of YTE and

LALA mutations did not appear to reduce the ability of these mAbs to clear SARS-

CoV-2 infection in either the BAL fluid or NP swab samples in cynomolgus macaques

when administered 3 days prior to challenge. Thus, prophylaxis with ADM03820 con-

taining antibodies with extended half-life and lacking Fc effector functions conferred

a high level of protection in NHPs at the highest tested antibody dose, 31 mg/kg,

with no virus detected in BAL fluid and only transient virus detection at day 1 in NP

swab samples. A comparison with previous prophylactic studies in NHPs with casirivi-

mab/imdevimab (no sgRNA detected in NP swab samples at a 50 mg/kg antibody

dose after challenge with regular titer viral inoculum and high lasting virus shedding

at a 150 mg/kg antibody dose with high titer viral inoculum),30 LY-CoV555 (no sgRNA

detected inNP swab samples at a 50mg/kg antibody dose and transient virus shedding

at a 15 mg/kg mAb dose),31 and COV2-2381 or COV-2196 (no sgRNA detected in NP

swab samples at a 50 mg/kg mAb dose)19 suggested at least a similar potency of

ADM03820. More NHP studies are needed to compare the efficacy of extended-half-

life IgG lacking Fc effector functions to IgGwith a conventional Fc region to prevent res-

piratory tract infection in different prophylaxis settings.

A lower serum antibody neutralizing titer (>100) was associated with protection by vac-

cines in NHP SARS-CoV-2 challenge models24–56 and in human clinical trials57–59

relative to the protective titer associated with mAbs (�6,000) that we defined here.

However, a similar protective titer against SARS-CoV-2 was identified in NHPs for

another combination of two neutralizing human mAbs in clinical use—tixagevimab/cil-

gavimab.29 Future studies are needed to determine if the lower serum neutralizing anti-

body protective titer for COVID-19 vaccines relative to that achieved by passive mAb

transfer is due to targeting of multiple epitopes on the SARS-CoV-2 spike protein,

different anatomical distribution of antibody responses, a contribution of Fc-mediated

effector functions in the polyclonal response, or complementarymechanisms of protec-

tion that are mediated by vaccine-induced T cells.

The RBD sequence is highly variable in SARS-CoV-2, which may represent a selective

adaptation.60–63 Our approach, to use a combination of two antibodies that do not

compete for the same epitope, could prevent the selection of escape mutant viruses

that are likely inherent in monotherapy approaches. Recent work in the context of

SARS-CoV-2 has demonstrated that combinations of two antibodies that do not

compete for binding to the same region of the S protein offer higher resistance to

escape mutations while protecting animals from SARS-CoV-2 challenge.19,30,33,42,64

In prior NHP studies, mAbs typically were infused via IV administration. The studies

presented here demonstrate the efficacy of these antibodies either administered as

a combination or alone when administered by the IM route This approach could pro-

vide a more broadly deployable route of administration for these antibodies to pa-

tients in clinical settings. In addition, the doses that were efficacious in these studies

translate to very low doses in humans compared with conventional antibody thera-

pies. The data generated in these studies provide strong evidence for the continued

development of these antibodies for clinical use.
(D) sgRNA levels were assessed at various time points after viral challenge in BAL samples using qRT-PCR.

(E) sgRNA levels were assessed at various time points after viral challenge in NP swab samples. The red line depicts the median levels of sgRNA in each

group. Each black curve shows measurements from an individual animal, with red lines indicating the median values of measurements for animals within

each treatment group. Assay limit of detection = 50 copies/mL or 50 copies/swab. For statistical analysis, refer to STAR Methods section.
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Figure 5. Human antibody concentration and antibody neutralizing titer in NHP serum associated with protection against viral challenge in BAL fluid

or NP swab samples

(A–D) The time-weighted average (TWA) values for the change of sgRNA viral load in BAL fluid or NP swab samples from day 1 to 10 after viral challenge

were compared with antibody concentration in serum or serum NT50 value for each animal from studies 2, 3, and 4, described in Figures 2–4. The fitting

curves were estimated using the locally weighted scatterplot smoothing (LOWESS) method and are shown in black, and gray shading indicates the CI.

Shapes indicate individual animals, colors indicate route of antibody treatment, and animals from separate studies are shown with different shapes, as

detailed in the figure. Horizontal black dotted lines indicate designated TWA thresholds for full (bottom line) and partial (top line) protection. Vertical

dotted orange dashed line in the graphs indicates designated estimated optimal cutoff for protective antibody concentration or titer in NHP serum. For

calculation of TWA and cutoff values, refer to STAR Methods section.

(E) Percent animals that fully protected, partially protected, or non-protected determined using the estimated thresholds for protection as in (A–D).

Gradient of green shading visualize percent of protected animals, in which dark green indicates higher percent of protected animals and light green

indicates lower percent of protected animals for each described condition.
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Limitations of the study

The estimated thresholds of protection for human mAbs cannot be generalized and

should be confirmed through other studies using different mAbs. More studies are

needed to compare the efficacy of extended-half-life IgG lacking Fc effector func-

tions to IgG with a conventional Fc region to prevent respiratory tract infection in

different prophylaxis settings.
STAR+METHODS

Detailed methods are provided in the online version of this paper and include the
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d Any additional information required to reanalyze the data reported in this paper is

available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals

Cynomolgus monkeys (Macaca fascicularis) were maintained at Bioqual, Inc. (Rock-

ville, MD) which is fully accredited by the Association for Assessment and Accredita-

tion of Laboratory Animal Care International (AAALAC) and approved by the Office

of Laboratory Animal Welfare (NIH/PHS assurance number D16-00052). Studies

were conducted in compliance with all relevant local, state, and federal regulations

and were approved by the Bioqual Institutional Animal Care and Use Committee

(IACUC).
Viruses

The SARS-CoV-2 USA-WA1/2020 strain was obtained from BEI Resource (NR-52281;

Lot #7003175). The viral stocks were expanded using Vero E6 cells and harvested on

day 5 following inoculation. To confirm the viral identity, complete genome

sequencing was performed and was shown to be 100% identical to the parent virus

sequence. The D614G virus was produced by introducing the mutation into an infec-

tious clone ofWA1/2020, and the B.1.351 and B.1.1.28 spike genes were cloned into

the WA1/2020 infectious clone to produce Wash-B.1.351 and Wash-B.1.1.28 (P.1

lineage) chimeric viruses, as described previously.42 B.1.1.7 and B.1.617.2 were iso-

lated from infected individuals. D614G, Wash-B.1.351, Wash-B.1.1.28, B.1.1.7, and

B.1.617.2 viruses were propagated on Vero-TMPRSS2 cells and subjected to deep

sequencing.
Monoclonal antibodies

The antibody COV2-2381 and COV2-2130 sequences have been previously

described.19,32. The antibodies were produced and purified as previously

described.66 Briefly, stably transfected CHO cells expressing either COV2-2130-

YTE-LALA or COV2-2381-YTE-LALA were generated using Leap-In transposon vec-

tors (ATUM) containing the respective antibody heavy and light chain genes and a

glutamine synthetase gene as a selectable marker. Leap-In vectors were transfected

into a CHO-K1 GS knockout cell line (HD-BIOP3; from Horizon Discovery) and stably

transfected pools were selected using medium lacking L-glutamine. Manufacturing

was performed under Good Manufacturing Practices using stably transfected pools

in large-scale bioreactors, and antibody material was purified from harvested super-

natants. The downstream processes consisted of 3 chromatography steps: 1) Protein

A chromatography, 2) cation exchange chromatography, and 3) mixed mode anion

exchange/hydrophobic interaction chromatography. Both individual antibodies and

the combination were generated as cGMP-grade drug substance and drug product

materials, were provided at a concentration of 52 mg/mL and were stored at �80�C
until day of administration.
METHOD DETAILS

Antibody administration

On the day of administration, the stock vials were thawed at room temperature (RT)

and gently inverted 6 to 10 times to mix the contents. After thawing, the vials were

stored at RT until use. Based on individual animal weights and dose required, the pu-

rified antibody stock for each NHP was diluted to 1 mL in 0.9% normal saline diluent

(Baxter) for IM injections and 10 mL in the same diluent for IV infusions. IM injections

were delivered bilaterally in the upper quadriceps at 0.5 mL/quadriceps. IV infusions
Med 3, 188–203.e1–e4, March 11, 2022 e2
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were performed at a rate of 1 to 2mL/min over 5 to 10 min/animal for a total of 10 mL

infused per animal.
Animal studies

Cynomolgus monkeys (2.2 – 5.8 kg body weight; 6 to 12 years old) were mixed male

and female and randomly assigned to groups. In Study 1 (n=3/group), experimental

animals received the ADM03820 cocktail of COV2-2130-YTE-LALA and COV2-2381-

YTE-LALA at either 11.7 mg/kg IM or 31.3 mg/kg IV and were followed for 12 weeks

for antibody pharmacokinetics only without any SARS-CoV-2 challenge. In Study 2

(n=4/group), sham control animals received no mAb while 12 experimental animals

were administered the ADM03820 cocktail at varying doses and administration

routes three days before challenge as described in Figure 2. Animals then were chal-

lenged with 105 TCID50 SARS-CoV-2 USA-WA1/2020. These doses were adminis-

tered as 0.5 mL per nare intranasally and 1 mL intratracheally on day 0. In Study 3,

four sham-treated controls received no mAb while 12 experimental animals (n=3/

group) were administered three days prior to challenge with either COV2-2130-

YTE-LALA or COV2-2381-YTE-LALA separately at varying doses and administration

routes as described in Figure 3A. Animals were then challenged with 105 TCID50

SARS-CoV-2 similarly as in the first study. In Study 4 (n=3/group), sham control an-

imals received no mAb while experimental animals were administered the

ADM03820 cocktail IM at varying low doses three days before challenges performed

similarly to studies 2 and 3 (Figures 2 and 3). In all studies, antibody doses were

selected based on material availability and to approximate the various dosing

regimens to achieve a wide concentration of circulating mAb in NHP plasma

representative of low, intermediate or high levels. Macaques in all four studies

were monitored daily with an internal scoring protocol approved by the IACUC.

These studies were not blinded.
Quantification of circulating human mAbs and serum neutralization activity

The quantification of infused/injected human SARS-CoV-2 mAbs in NHP serum at

multiple time points was performed as previously described.19 Additionally, the

serum neutralization activities of infused or injected mAbs were also monitored at

the same time points using a pseudovirus neutralization assay as previously

described.23,24
BAL and NP swab collection

Collection of mucosal secretions was performed on sedated NHPs using cotton

swabs (COPAN flocked swab) or nasosorption FX-I devices (Hunt Developments

Ltd.). The swabs were inserted into the nasal cavity and rotated gently. Following

collection, the swabs were placed into a collection vial containing 1 mL of phosphate

buffered saline (PBS). All vials were stored at%�70�C until viral load testing (or anti-

body quantification if required).

The bronchoalveolar lavage (BAL) collection procedure was performed on anesthe-

tized animals by the ‘‘chair method’’. In brief, each animal was placed in dorsal re-

cumbency in a chair channel and a red rubber feeding tube inserted into the trachea

via a laryngoscope during inspiration. A total of 10 mL PBS was flushed through the

tube and the volume instilled and recovered from each animal recorded. The

collected BAL samples were placed immediately onto wet ice and processed for

isolation of fluid by centrifugation at 4�C followed by supernatant removal. BAL al-

iquots were stored at % �70�C until viral load testing (or antibody quantification if

required).
e3 Med 3, 188–203.e1–e4, March 11, 2022
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Focus reduction neutralization test

Serial dilutions of mAbs were incubated with 102 FFU of different strains or variants

of SARS-CoV-2 for 1 h at 37 �C. Antibody–virus complexes were added to Vero-

TMPRSS2 cell monolayers in 96-well plates and incubated at 37 �C for 1 h. Subse-

quently, cells were overlaid with 1% (w/v) methylcellulose in MEM. Plates were

collected 30 h later by removing overlays and fixed with 4% PFA in PBS for 20 min

at room temperature. Plates were washed and sequentially incubated with an oligo-

clonal pool of SARS2-2, SARS2-11, SARS2-16, SARS2-31, SARS2-38, SARS2-57 and

SARS2-71 anti-S65 antibodies and HRP-conjugated goat anti-mouse IgG (Sigma, 12-

349) in PBS supplemented with 0.1% saponin and 0.1% bovine serum albumin.

SARS-CoV-2-infected cell foci were visualized using TrueBlue peroxidase substrate

(KPL) and quantitated on an ImmunoSpot microanalyzer (Cellular Technologies).
Subgenomic mRNA assay

The subgenomic mRNA of SARS-CoV-2 was assessed by RT-PCR as previously

described.23,24,43 The standard curve is based on the SARS-CoV-2 E gene. Prior to

PCR, cDNA was generated from each animal using Superscript III VILO (Invitrogen)

according to the manufacturer’s instructions. Using the sequences targeting the E

gene mRNA, a TaqMan custom gene expression assay (Thermo Fisher Scientific)

was designed43 and reactions were carried out using a QuantStudio 6 and 7 Flex

Real-Time PCR system (Applied Biosystems) according to the manufacturer’s in-

structions. Standard curves were generated to calculate sgRNA/mL or per swab.

Viral load for each timepoint tested per NHP was reported as the average of two rep-

licates. The sensitivity of this assay was 50 copies per mL of BAL or per swab.
QUANTIFICATION AND STATISTICAL ANALYSIS

The average change in viral load (log10 sgRNA copies/mL or swab) was assessed

from day 1 to day 14 (Study 2), or from day 1 to day 10 (Study 3 and 4). The time-

weighted average (TWA) values for the change of sgRNA viral load in BAL or NP

from day 1 to day 10 after viral challenge were calculated as the area under the curve

(AUC) of the change in viral load in Prism (version 9.1.2; GraphPad) and then divided

by 10 as described previously30 (Table S1). The TWA values of each treatment group

were compared to those of the sham group using Welch’s t-test. The significance

level alpha of 10%was pre-specified, and estimated P-values are indicated in the fig-

ures. TWA threshold was set up to % 0.3 for full protection, % 0.51 (the lower sham

point) for partial protection, and > 0.51 for no protection in BAL, and % 0.3 for full

protection, < 1.638 (the lower sham point), for partial protection, and > 1.638 for no

protection in NP. To estimate protective antibody concentration or neutralizing titer

in serum, the optimal thresholds that maximizes the sum of sensitivity and specificity

for full protection were calculated and reported in Table S2. Sensitivity is the propor-

tion above the threshold in the fully-protected subjects, and specificity is the propor-

tion below the threshold in partially- or non-protected subjects. The fitting curves

and confidence intervals to visualize the relationship between TWA and antibody

levels were estimated using the Lowess curve smoothing method using ggplot2 in

R software.67 Spearman’s rank correlation analysis that assumes a monotonic (as X

increases, Y decrease) rather than linear relationship was used to determine the rela-

tionship between serum antibody concentration and time-weighted average viral

loadmeasurements in the upper airways. The other data visualization was performed

using Prism software.
Med 3, 188–203.e1–e4, March 11, 2022 e4
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Figure S1. Correlation analysis between the change of sgRNA viral load in NP swabs and 

human antibody concentration in NHP serum. Related to Figure 5. 

TWA values for the change of sgRNA viral load for IM and IV administration routes (A) or IM 

and administration route (B) were compared to antibody concentration in serum using Spearman's 

rank correlation analysis. Spearman's rank correlation coefficient () and P-values are indicated. 

The fitting curves were estimated using Lowess curve smoothing method and are shown in black, 

and grey shading indicates the confidence interval. Shapes indicate individual animals and colors 

indicate route of antibody treatment as detailed in the figure. Horizontal black dotted lines indicate 

designated TWA thresholds for full (bottom line) and partial (top line) protection. Vertical dotted 

orange dashed line in the graphs indicates designated estimated optimal cut-off for protective 

antibody concentration or titer in NHP serum as detailed in Figure 5.  



Table S1. Measurements to determine thresholds for antibody-mediated protection against viral challenge 

in BAL or NP sites in NHP. Related to Figure 5. 

 
 

BAL NP swab 

Study Treatment 
NHP 

ID 

Day 0 Ab 
concentration 
(log10μg/mL)* 

Day 0 Ab 
log10NT50** 

Day 0-10 area 
under the 

curve (AUC) 
sgRNA level 

Day 0-10 area 
under the 

curve (AUC) 
sgRNA level 

minus AUC of 
LOD*** 

Time-
weighted 
average 
(TWA) 

viral sgRNA 
load 

Day 0-10 
area under 
the curve 

(AUC) 
sgRNA level 

Day 0-10 
area under 
the curve 

(AUC) 
sgRNA level 
minus AUC 
of LOD*** 

Time-
weighted 
average 
(TWA) 

viral sgRNA 
load 

2 

Sham 

V293 -2.00 1.30 22.1 5.10 0.51 39.72 22.70 2.27 

V294 -2.00 1.30 34.75 17.80 1.78 41.83 24.80 2.48 

V280 -2.00 1.30 25.75 8.80 0.88 35.58 18.60 1.86 

V284 -2.00 1.30 27.01 10.00 1.00 38.72 21.70 2.17 

3.9 mg/kg 
I.M. 

V313 1.18 4.33 16.99 0.00 0.00 30.29 13.30 1.33 

V318 1.48 4.31 16.99 0.00 0.00 18.99 2.00 0.20 

V286 1.13 3.92 18.2 1.20 0.12 19.09 2.10 0.21 

V290 1.34 3.92 16.99 0.00 0.00 19.39 2.40 0.24 

11.7 mg/kg 
I.M. 

V324 1.70 4.21 16.99 0.00 0.00 18.81 1.80 0.18 

V291 1.79 5.02 17.83 0.80 0.08 16.99 0.00 0.00 

V299 1.92 5.35 18.15 1.20 0.12 19.73 2.70 0.27 

V303 1.96 4.59 16.99 0.00 0.00 19.11 2.10 0.21 

31.3 mg/kg 
I.V. 

V331 2.63 5.69 16.99 0.00 0.00 19.05 2.10 0.21 

V308 2.36 5.64 16.99 0.00 0.00 19.27 2.30 0.23 

V314 2.59 5.74 16.99 0.00 0.00 18.51 1.50 0.15 

V315 2.55 5.27 16.99 0.00 0.00 16.99 0.00 0.00 

3 

Sham 

V298 -2.00 1.30 34.76 17.80 1.78 41.77 24.80 2.48 

V302 -2.00 1.30 27.36 10.40 1.04 35.32 18.30 1.83 

V319 -2.00 1.30 38.39 21.40 2.14 41.07 24.10 2.41 

V326 -2.00 1.30 31.51 14.50 1.45 44.81 27.80 2.78 

1.95 mg/kg 
I.M. 

V306 1.17 3.50 18.37 1.40 0.14 24.95 8.0 0.80 

V307 1.33 4.0 16.99 0.00 0.00 35.66 18.70 1.87 

V296 1.45 4.30 18.83 1.80 0.18 16.99 0.00 0.00 

15.65 
mg/kg I.V. 

V309 2.33 4.60 18.53 1.50 0.15 19.2 2.20 0.22 

V311 2.24 4.40 17.99 1.00 0.10 18.53 1.50 0.15 

V300 2.34 4.70 18.93 1.90 0.19 19.42 2.40 0.24 

1.95 mg/kg 
I.M. 

V316 1.11 2.50 16.99 0.00 0.00 19.36 2.40 0.24 

V301 1.13 2.60 24.89 7.90 0.79 40.82 23.80 2.38 

V304 1.17 2.30 18.96 2.00 0.20 22.85 5.90 0.59 

15.65 
mg/kg I.V. 

V317 2.19 3.80 16.99 0.00 0.00 19.26 2.30 0.23 

V310 2.31 3.80 18.68 1.70 0.17 18.93 1.90 0.19 

V312 2.28 3.40 18.65 1.70 0.17 18.68 1.70 0.17 



4 

Sham 

GA94
5H 

-2.00 1.30 27.37 10.40 1.04 33.37 16.40 1.64 

V320 -2.00 1.30 28.36 11.4 1.14 36.92 19.90 1.99 

V305 -2.00 1.30 32.52 15.50 1.55 37.89 20.90 2.09 

3.91 mg/kg 
I.M. 

V328 1.59 3.86 21.56 4.60 0.46 26.04 9.10 0.91 

V289 1.53 3.82 18.85 1.90 0.19 19.19 2.20 0.22 

V295 1.61 4.30 21.2 4.20 0.42 19.4 2.40 0.24 

1.95 mg/kg 
I.M. 

V281 1.13 3.75 20.27 3.30 0.33 23.92 6.90 0.69 

V321 1.11 4.03 22.67 5.70 0.57 29.41 12.40 1.24 

V288 1.14 3.96 20.72 3.70 0.37 18.94 2.00 0.20 

0.98 mg/kg 
I.M. 

V329 0.85 3.31 16.99 0.00 0.00 35.89 18.90 1.89 

V330 0.90 2.90 18.24 1.30 0.13 21.13 4.10 0.41 

V285 0.83 3.01 21.02 4.00 0.40 29.58 12.60 1.26 

0.49 mg/kg 
I.M. 

V323 0.43 2.58 23.46 6.50 0.65 34.45 17.50 1.75 

V327 0.60 3.40 20.59 3.60 0.36 35.04 18.10 1.81 

V282 0.62 3.01 21.12 4.10 0.41 27.65 10.70 1.07 

 

* Indicates LOD of antibody concentration measurement in serum with the value that is equal to 10 ng/mL (designated to 

zero in Figure 8A); ** indicates LOD of antibody neutralizing titer measurement in serum with the value that is equal to 

1.3log10 NT50 (designated to zero in Figure 8A); ***AUC LOD value was estimated for the curve from day 0 to 10 with viral 

sgRNA load below the detection limit on each timepoint and was equal to 16.99. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S2. Estimated specificity, sensitivity, and cut-off values for protective mAb concentration or titer in 

NHP serum. Related to Figure 5. 

 

Site BAL NP swap 

Measurement Sensitivity Specificity 
Cut-
off* 

Sensitivity Specificity 
Cut-
off* 

Antibody 
concentration 

0.85 0.90 1.17 0.86 0.96 1.34 

Antibody 
neutralizing 

titer 
0.76 0.81 3.8 0.91 0.84 3.8 

 

* log10μg/mL for mAb concentration and log10 NT50 for neutralizing titer measurements.  
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