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Appendix Table S1

found Total ratio pValue FDR found total ratio

Cellular responses to stress 9 691 0.047 7.67E-04 9.97E-03 20 227 0.018 Homo sapiens 2.00

HSF1 activation 6 43 0.003 1.29E-08 2.07E-07 1 7 0.001 Homo sapiens 6.68

Cellular response to heat stress 9 135 0.009 1.45E-09 2.91E-08 12 29 0.002 Homo sapiens 7.54

Regulation of HSF1-mediated heat shock response 9 113 0.008 3.11E-10 8.40E-09 7 14 0.001 Homo sapiens 8.08

HSF1-dependent transactivation 8 59 0.004 5.16E-11 2.11E-09 4 8 0.001 Homo sapiens 8.68

Attenuation phase 8 47 0.003 8.64E-12 7.17E-10 3 5 0 Homo sapiens 9.14

Pathway analysis of differentially expressed genes reported in Dataset EV1 identified six cellular pathways impacted by HSV-1 reactivation

Entities Reactions

Species namePathway name -log10(FDR)
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Appendix Table S2

Sample ID Simple name Experiment accession Run accession Chemistry Batch
Estimated number of 
cells [ post filtering ]

Uninfected BioRep #1 Uninf_V2_rep_1 ERX4858799 ERR5052726 3066

Latent BioRep #1 Lat_V2_rep_1 ERX4858240 ERR5051908 1058

Latent BioRep #2 Lat_V2_rep_2 ERX4858255 ERR5051923 3871

Reactivation (20 hrs) BioRep #1 Reac20_V2_rep_1 ERX4858418 ERR5052302 5675

Reactivation (48 hrs) BioRep #1 Reac48_V2_rep_1 ERX4858600 ERR5052485 2727

Latent BioRep #3 Lat_V2_rep_3 ERX4858416 ERR5052300 3 2079

Uninfected BioRep #2 Uninf_V2_rep_2 ERX4858776 ERR5052682 2832

Uninfected (20 hrs LY treatment) BioRep #1 UninfLY_V2_rep_3 ERX4858740 ERR5052625 1661

Reactivation (20 hrs) BioRep #2 Reac20_V3_rep_1 ERX4858599 ERR5052484 1195

Reactivation (48 hrs) BioRep #2 Reac48_V3_rep_1 ERX4858735 ERR5052620 1700

Reactivation (72 hrs) BioRep #1 Reac72_V3_rep_1 ERX4858741 ERR5052626 2163

List of sequence datasets generated as part of this study. Libraries were sequenced in paired-
end mode on either an Illumina HiSeq 4000 or Illumina NovaSeq 6000.

All data are available via the European Nucleotide Archive under project accession: 
PRJEB39022

10X Genomics Chromium Single Cell 3' v2

10X Genomics Chromium Single Cell 3' v3
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4

HSV-1 RNAs were grouped into a 
set of 20 transcription units 
(TU1-20) for the purposes of 
mapping and analysis.



scRNASeq-V2-analysis 

### Load required libraries 
library(Seurat) 
library(cowplot) 
library(dplyr) 
library(Matrix) 
library(MAST) 

### Import Cell Ranger Gene Expression Matrices 
dmso1.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/Uninf_V2_rep_1/") 
dmso2.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/Uninf_V2_rep_2/") 
ly.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/UninfLY_V2_rep_3/") 
latent1.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/Lat_V2_rep_1/") 
latent2.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/Lat_V2_rep_2/") 
latent3.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/Lat_V2_rep_3/") 
ly20.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/Reac20_V2_rep_1/") 
ly48.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/Reac20_V2_rep_2/") 

### Setup Seurat Objects 
dmso1 <- CreateSeuratObject(counts = dmso1.data) 
dmso2 <- CreateSeuratObject(counts = dmso2.data) 
ly <- CreateSeuratObject(counts = ly.data) 
latent1 <- CreateSeuratObject(counts = latent1.data) 
latent2 <- CreateSeuratObject(counts = latent2.data) 
latent3 <- CreateSeuratObject(counts = latent3.data) 
ly20 <- CreateSeuratObject(counts = ly20.data) 
ly48 <- CreateSeuratObject(counts = ly48.data) 

### Data exploration to determine filtering parameters 
ly20[["percent.mt"]] <- PercentageFeatureSet(object = ly20, pattern = "^Mt-") 
v2<-VlnPlot(object = ly20, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), 
ncol = 3) 
plot1 <- FeatureScatter(object = ly20, feature1 = "nCount_RNA", feature2 = 
"percent.mt") 
plot2 <- FeatureScatter(object = ly20, feature1 = "nCount_RNA", feature2 = 
"nFeature_RNA") 
plot_grid(plot1,plot2,v2) 

ly48[["percent.mt"]] <- PercentageFeatureSet(object = ly48, pattern = "^Mt-") 
v3<-VlnPlot(object = ly48, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), 
ncol = 3) 
plot1 <- FeatureScatter(object = ly48, feature1 = "nCount_RNA", feature2 = 
"percent.mt") 
plot2 <- FeatureScatter(object = ly48, feature1 = "nCount_RNA", feature2 = 
"nFeature_RNA") 
plot_grid(plot1,plot2,v3) 

ly[["percent.mt"]] <- PercentageFeatureSet(object = ly, pattern = "^Mt-") 
v4<-VlnPlot(object = ly, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), 
ncol = 3) 
plot1 <- FeatureScatter(object = ly, feature1 = "nCount_RNA", feature2 = 
"percent.mt") 
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plot2 <- FeatureScatter(object = ly, feature1 = "nCount_RNA", feature2 = 
"nFeature_RNA") 
plot_grid(plot1,plot2,v4) 

dmso1[["percent.mt"]] <- PercentageFeatureSet(object = dmso1, pattern = "^Mt-") 
v5<-VlnPlot(object = dmso1, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), 
ncol = 3) 
plot1 <- FeatureScatter(object = dmso1, feature1 = "nCount_RNA", feature2 = 
"percent.mt") 
plot2 <- FeatureScatter(object = dmso1, feature1 = "nCount_RNA", feature2 = 
"nFeature_RNA") 
plot_grid(plot1,plot2,v5) 

dmso2[["percent.mt"]] <- PercentageFeatureSet(object = dmso2, pattern = "^Mt-") 
v6<-VlnPlot(object = dmso2, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), 
ncol = 3) 
plot1 <- FeatureScatter(object = dmso2, feature1 = "nCount_RNA", feature2 = 
"percent.mt") 
plot2 <- FeatureScatter(object = dmso2, feature1 = "nCount_RNA", feature2 = 
"nFeature_RNA") 
plot_grid(plot1,plot2,v6) 

latent1[["percent.mt"]] <- PercentageFeatureSet(object = latent1, pattern = "^Mt-") 
v7<-VlnPlot(object = latent1, features = c("nFeature_RNA", "nCount_RNA", 
"percent.mt"), ncol = 3) 
plot1 <- FeatureScatter(object = latent1, feature1 = "nCount_RNA", feature2 = 
"percent.mt") 
plot2 <- FeatureScatter(object = latent1, feature1 = "nCount_RNA", feature2 = 
"nFeature_RNA") 
plot_grid(plot1,plot2,v7) 

latent2[["percent.mt"]] <- PercentageFeatureSet(object = latent2, pattern = "^Mt-") 
v12<-VlnPlot(object = latent2, features = c("nFeature_RNA", "nCount_RNA", 
"percent.mt"), ncol = 3) 
plot1 <- FeatureScatter(object = latent2, feature1 = "nCount_RNA", feature2 = 
"percent.mt") 
plot2 <- FeatureScatter(object = latent2, feature1 = "nCount_RNA", feature2 = 
"nFeature_RNA") 
plot_grid(plot1,plot2,v12) 

latent3[["percent.mt"]] <- PercentageFeatureSet(object = latent3, pattern = "^Mt-") 
v9<-VlnPlot(object = latent3, features = c("nFeature_RNA", "nCount_RNA", 
"percent.mt"), ncol = 3) 
plot1 <- FeatureScatter(object = latent3, feature1 = "nCount_RNA", feature2 = 
"percent.mt") 
plot2 <- FeatureScatter(object = latent3, feature1 = "nCount_RNA", feature2 = 
"nFeature_RNA") 
plot_grid(plot1,plot2,v9) 
``` 

### Filter datasets 
ly20$stim <- "ly20" 
ly20 <- subset(x = ly20, subset = nFeature_RNA > 500 & nCount_RNA < 60000 & 
percent.mt < 25) 
ly20 <- NormalizeData(object = ly20, verbose = FALSE) 
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ly20 <- FindVariableFeatures(object = ly20, selection.method = "vst", nfeatures = 
2000) 

ly48$stim <- "ly48" 
ly48 <- subset(x = ly48, subset = nFeature_RNA > 500 & nCount_RNA < 60000 & 
percent.mt < 25) 
ly48 <- NormalizeData(object = ly48, verbose = FALSE) 
ly48 <- FindVariableFeatures(object = ly48, selection.method = "vst", nfeatures = 
2000) 

ly$stim <- "ly" 
ly <- subset(x = ly, subset = nFeature_RNA > 500 & nCount_RNA < 60000 & percent.mt < 
25) 
ly <- NormalizeData(object = ly, verbose = FALSE) 
ly <- FindVariableFeatures(object = ly, selection.method = "vst", nfeatures = 2000) 

dmso1$stim <- "dmso1" 
dmso1 <- subset(x = dmso1, subset = nFeature_RNA > 500 & nCount_RNA < 60000 & 
percent.mt < 25) 
dmso1 <- NormalizeData(object = dmso1, verbose = FALSE) 
dmso1 <- FindVariableFeatures(object = dmso1, selection.method = "vst", nfeatures = 
2000) 

dmso2$stim <- "dmso2" 
dmso2 <- subset(x = dmso2, subset = nFeature_RNA > 500 & nCount_RNA < 60000 & 
percent.mt < 25) 
dmso2 <- NormalizeData(object = dmso2, verbose = FALSE) 
dmso2 <- FindVariableFeatures(object = dmso2, selection.method = "vst", nfeatures = 
2000) 

latent1$stim <- "latent1" 
latent1 <- subset(x = latent1, subset = nFeature_RNA > 500 & nCount_RNA < 60000 & 
percent.mt < 25) 
latent1 <- NormalizeData(object = latent1, verbose = FALSE) 
latent1 <- FindVariableFeatures(object = latent1, selection.method = "vst", nfeatures 
= 2000) 

latent2$stim <- "latent2" 
latent2 <- subset(x = latent2, subset = nFeature_RNA > 500 & nCount_RNA < 60000 & 
percent.mt < 25) 
latent2 <- NormalizeData(object = latent2, verbose = FALSE) 
latent2 <- FindVariableFeatures(object = latent2, selection.method = "vst", nfeatures 
= 2000) 

latent3$stim <- "latent3" 
latent3 <- subset(x = latent3, subset = nFeature_RNA > 500 & nCount_RNA < 60000 & 
percent.mt < 25) 
latent3 <- NormalizeData(object = latent3, verbose = FALSE) 
latent3 <- FindVariableFeatures(object = latent3, selection.method = "vst", nfeatures 
= 2000) 

### Find Integration Anchors 
reactivation.anchors <- FindIntegrationAnchors(object.list = list(ly20, ly48, ly, 
dmso1, dmso2, latent1, latent2, latent3), dims = 1:25) 
reactivation.combined <- IntegrateData(anchorset = reactivation.anchors, dims = 1:25) 
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### Report number of cells present in each dataset post-filtering 
table(reactivation.combined@meta.data$stim) 

### Generate UMAP plot for combined dataset 
DefaultAssay(object = reactivation.combined) <- "integrated" 

# Run the standard workflow for visualization and clustering 
reactivation.combined <- ScaleData(object = reactivation.combined, verbose = FALSE) 
reactivation.combined <- RunPCA(object = reactivation.combined, npcs = 30, verbose = 
FALSE)  

# t-SNE and Clustering 
reactivation.combined <- RunUMAP(object = reactivation.combined, reduction = "pca", 
dims = 1:15) 
reactivation.combined <- FindNeighbors(object = reactivation.combined, reduction = 
"pca", dims = 1:15) 
reactivation.combined <- FindClusters(reactivation.combined, resolution = 0.2) 

# Visualization 
p1 <- DimPlot(object = reactivation.combined, reduction = "umap", group.by = "stim") 
p2 <- DimPlot(object = reactivation.combined, reduction = "umap", label = TRUE) 
plot_grid(p1, p2) 

### Generate individual UMAP plots for each dataset 
DimPlot(reactivation.combined, reduction = "umap", split.by = "stim", ncol = 3) 
table(Idents(reactivation.combined), reactivation.combined$stim) 

### Generate plots showing expression levels of select genes across cell population 
FeaturePlot(object = reactivation.combined, features = c("Prph", "Tubb3", "Sox10", 
"S100b", "Aif1", "Cd68", "Col1a1", "Fn1", "Sox2", "percent.mt", "Gadd45b", "Th"), 
min.cutoff = "q9", cols = c("grey", "red")) 

### Assign cell type identities (based on expression patterns observed in above 
plots) 
reactivation.combined <- RenameIdents(object = reactivation.combined, `0` = 
"neurons", `1` = "neurons", `2` = "fibroblasts", `3` = "neurons", `4` = "Satellite 
glial cells", `5` = "Schwann cells", `6` = "neurons", `7` = "neurons", `8` = 
"neurons", `9` = "fibroblasts", `10` = "neurons", `11` = "neurons") 

DimPlot(object = reactivation.combined, label = FALSE, cols = c("blue", "tomato3", 
"limegreen", "goldenrod1"), split.by="stim") 

table(Idents(reactivation.combined), reactivation.combined$stim) 

### Subset data to focus on neurons only 
neurons2.combined <- subset(reactivation.combined, idents = "neurons") 
Idents(neurons2.combined) <- "stim" 

# t-SNE and Clustering 
neurons2.combined <- RunTSNE(object = neurons.combined, reduction = "pca", dims = 
1:15) 
neurons2.combined <- FindNeighbors(object = neurons.combined, reduction = "pca", dims 
= 1:15) 
neurons2.combined <- FindClusters(neurons.combined, resolution = 0.2) 
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# Visualization 
p1 <- DimPlot(object = neurons2.combined, reduction = "umap", group.by = "stim") 
p2 <- DimPlot(object = neurons2.combined, reduction = " umap ", label = TRUE) 
plot_grid(p1, p2) 

### Generate plots showing expression levels of select genes across neuronal 
population 
FeaturePlot(object = neurons.combined, features = c("Npy", 'Dbh', 'Th', 
"percent.mt"), min.cutoff = "q9", cols = c("grey", "blue"), ncol = 3) 
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scRNASeq-V3-analysis 

### Load libraries 
library(rlang) 
library(Seurat) 
library(cowplot) 
library(dplyr) 
library(Matrix) 
library(MAST) 
library(EnhancedVolcano) 

### Load CellRanger Gene Expression Matrices 
ly20.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/Reac20_V3_rep_1/") 
ly48.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/Reac48_V3_rep_1/") 
ly72.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/Reac72_V3_rep_1/") 

### Setup Seurat objects and perform simple data exploration of (i) number of 
features, (ii) feature counts, (iii), fraction of mitochondrial reads per cell 
ly20 <- CreateSeuratObject(counts = ly20.data) 
ly48 <- CreateSeuratObject(counts = ly48.data) 
ly72 <- CreateSeuratObject(counts = ly72.data) 

ly20[["percent.mt"]] <- PercentageFeatureSet(object = ly20, pattern = "^Mt-") 
v1<-VlnPlot(object = ly20, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), 
ncol = 3) 
plot1 <- FeatureScatter(object = ly20, feature1 = "nCount_RNA", feature2 = 
"percent.mt") 
plot2 <- FeatureScatter(object = ly20, feature1 = "nCount_RNA", feature2 = 
"nFeature_RNA") 
plot_grid(plot1,plot2,v1) 

ly48[["percent.mt"]] <- PercentageFeatureSet(object = ly48, pattern = "^Mt-") 
v2<-VlnPlot(object = ly48, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), 
ncol = 3) 
plot1 <- FeatureScatter(object = ly48, feature1 = "nCount_RNA", feature2 = 
"percent.mt") 
plot2 <- FeatureScatter(object = ly48, feature1 = "nCount_RNA", feature2 = 
"nFeature_RNA") 
plot_grid(plot1,plot2,v2) 

ly72[["percent.mt"]] <- PercentageFeatureSet(object = ly72, pattern = "^Mt-") 
v3<-VlnPlot(object = ly72, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), 
ncol = 3) 
plot1 <- FeatureScatter(object = ly72, feature1 = "nCount_RNA", feature2 = 
"percent.mt") 
plot2 <- FeatureScatter(object = ly72, feature1 = "nCount_RNA", feature2 = 
"nFeature_RNA") 
plot_grid(plot1,plot2,v3) 

### Filter datasets to exclude possible doublets and cells with a higher fraction of 
mitochondrial reads (>25%) 
ly20$stim <- "ly20" 
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ly20 <- subset(x = ly20, subset = nFeature_RNA > 500 & nCount_RNA < 150000 & 
percent.mt < 25) 
ly20 <- NormalizeData(object = ly20, verbose = FALSE) 
ly20 <- FindVariableFeatures(object = ly20, selection.method = "vst", nfeatures = 
2000) 

ly48$stim <- "ly48" 
ly48 <- subset(x = ly48, subset = nFeature_RNA > 500 & nCount_RNA < 150000 & 
percent.mt < 25) 
ly48 <- NormalizeData(object = ly48, verbose = FALSE) 
ly48 <- FindVariableFeatures(object = ly48, selection.method = "vst", nfeatures = 
2000) 

ly72$stim <- "ly72" 
ly72 <- subset(x = ly72, subset = nFeature_RNA > 500 & nCount_RNA < 150000 & 
percent.mt < 25) 
ly72 <- NormalizeData(object = ly72, verbose = FALSE) 
ly72 <- FindVariableFeatures(object = ly72, selection.method = "vst", nfeatures = 
2000) 

### Integrate datasets using first 20 dimensions + report number of cells in each 
dataset post-filtering 
reactivation.anchors <- FindIntegrationAnchors(object.list = list(ly20, ly48, ly72), 
dims = 1:20) #latent 
reactivation.combined <- IntegrateData(anchorset = reactivation.anchors, dims = 1:20) 
table(reactivation.combined@meta.data$stim) 

### Scale and cluster data + Generate UMAP plots.  
DefaultAssay(object = reactivation.combined) <- "integrated" 
reactivation.combined <- ScaleData(object = reactivation.combined, verbose = FALSE) 
reactivation.combined <- RunPCA(object = reactivation.combined, npcs = 30, verbose = 
FALSE) 
reactivation.combined <- RunUMAP(object = reactivation.combined, reduction = "pca", 
dims = 1:25) 
reactivation.combined <- FindNeighbors(object = reactivation.combined, reduction = 
"pca", dims = 1:25) 
reactivation.combined <- FindClusters(reactivation.combined, resolution = 0.2) 
p1 <- DimPlot(object = reactivation.combined, reduction = "umap", group.by = "stim") 
p2 <- DimPlot(object = reactivation.combined, reduction = "umap", label = TRUE) 
plot_grid(p1, p2) 

### Separate UMAP plots by dataset & determine number of cells per identity 
DimPlot(reactivation.combined, reduction = "umap", split.by = "stim", ncol = 3) 
table(Idents(reactivation.combined), reactivation.combined$stim) 

### Generate plots for canonical markers to aid in cell type identification 
# Sympathetic neurons: Prph, Tubb3, Snap25 
# Schwann cells: Sox10, S100b 
# Satellite glial cells: Aif1, Cd68 
# Fibroblasts: Fn1, Col3a1, Col1a1 
FeaturePlot(object = reactivation.combined, features = c("Prph", "Tubb3", "Snap25", 
"Sox10", "S100b", "nes", "Aif1", "Cd68", "Col3a1", "Fn1", "Col1a1", "percent.mt"), 
min.cutoff = "q9") #"nCount_RNA", "nFeature_RNA" percent.mt 
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### Generate plots for viral RNA markers to identify cells/clusters with reactivating 
virus 
FeaturePlot(object = reactivation.combined, features = c("TU1", "TU2", "TU3", "TU4", 
"TU5", "TU6", "TU7", "TU8", "TU9", "TU10", "TU11", "TU12", "TU13", "TU14", "TU15", 
"TU16", "TU17", "TU18", "TU19", "TU20"), min.cutoff = "q9") 

### Merge similar clusters and label with cell identity + generate counts of each 
cell type per condition 
reactivation.combined <- RenameIdents(object = reactivation.combined, `0` = 
"neurons", `1` = "Schwann cell", `2` = "Fibroblasts", `3` = "Schwann cell", `4` = 
"neurons", `5` = "Schwann cell", `6` = "Schwann cell", `7` = "Schwann cell", `8` = 
"neurons") 
DimPlot(object = reactivation.combined, label = FALSE) 
table(Idents(reactivation.combined), reactivation.combined$stim) 

### Subset data to focus on neurons only 
neurons.combined <- subset(reactivation.combined, idents = "neurons") 
Idents(neurons.combined) <- "stim" 

# t-SNE and Clustering 
neurons.combined <- RunTSNE(object = neurons.combined, reduction = "pca", dims = 
1:20) 
neurons.combined <- FindNeighbors(object = neurons.combined, reduction = "pca", dims 
= 1:20) 
neurons.combined <- FindClusters(neurons.combined, resolution = 0.2) 

# Visualization 
p1 <- DimPlot(object = neurons.combined, reduction = "umap", group.by = "stim") #umap 
rather than tsne? 
p2 <- DimPlot(object = neurons.combined, reduction = "umap", label = TRUE) 
plot_grid(p1, p2) 

### Check whether HSV-1 RNAs are enriched in one or more neuronal subsets 
FeaturePlot(object = neurons.combined, features = c("TU1", "TU2", "TU3", "TU4", 
"TU5", "TU6", "TU7", "TU8", "TU9", "TU10", "TU11", "TU12", "TU13", "TU14", "TU15", 
"TU16", "TU17", "TU18", "TU19", "TU20"), min.cutoff = "q9")  

### Label neurons according to expression level of HSV-1 transcripts 
neurons.combined <- RenameIdents(object = neurons.combined, `0` = "neurons (low/no 
HSV-1 expression)", `1` = "neurons (low/no HSV-1 expression)", `2` = "neurons (low/no 
HSV-1 expression)", `3` = "neurons (low/no HSV-1 expression)", `4` = "neurons (low/no 
HSV-1 expression)", `5` = "neurons (high HSV-1 expression)") 
DimPlot(object = neurons.combined, label = FALSE) 

### Perform DGE between clusters using MAST 
dds <- FindMarkers(neurons.combined, ident.1 = "neurons (high HSV-1 expression)", 
ident.2 = "neurons (low/no HSV-1 expression)", test.use="MAST") 

### Generate Volcano Plot, and export data. 
EnhancedVolcano(dds, lab = rownames(dds), x = 'avg_logFC', y = 'p_val_adj', 
ylim=c(0,350), xlim = c(-3, 8), title = 'Regulated during HSV-1 reactivation', 
pCutoff = 0.05, FCcutoff = 1.5, transcriptLabSize = 4.0, 
col=c('darkgrey','darkgrey','darkgrey','darkred'), transcriptPointSize = 1.5, 
cutoffLineCol = 'blue', colAlpha = 0.9) 
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EnhancedVolcano(dds, lab = rownames(dds), x = 'avg_logFC', y = 'p_val_adj', 
ylim=c(0,350), xlim = c(-3, 8), pCutoff = 0.05, FCcutoff = 1.5, transcriptLabSize = 
4.0, col=c('darkgrey','darkgrey','darkgrey','darkred'), transcriptPointSize = 1.5, 
cutoffLineCol = 'blue', colAlpha = 0.9, drawConnectors = TRUE, widthConnectors = 0.2, 
colConnectors = "grey") 
EnhancedVolcano(dds, lab = rownames(dds), x = 'avg_logFC', y = 'p_val_adj', 
ylim=c(0,350), xlim = c(-3, 8), pCutoff = 0.05, FCcutoff = 1.5, 
col=c('darkgrey','darkgrey','darkgrey','darkred'), transcriptPointSize = 1.5, 
cutoffLineCol = 'blue', colAlpha = 0.9, selectLab = "TU3") 
write.table(dds,file="MAST-DGE.csv") 

### Generate heatmap comparing clusters 
# Set up list of viral transcription units to plot 
VirusList <- c("TU1", "TU2", "TU3", "TU4", "TU5", "TU6", "TU7", "TU8", "TU9", "TU10", 
"TU11", "TU12", "TU14", "TU15", "TU16", "TU17", "TU18", "TU19", "TU20", "US1", 
"US12", "RS1", "RL1", "RL2") 
# Set up list of significantly upregulated cellular genes to plot 
HostUpList <- 
c("AABR07030834.1","Cdkn1c","Gadd45b","Gadd45g","Galns","Hspa1b","Hspa2","Idi1","Igf2
","Ing1","Ldah","LOC690422","Mgp","Nefh","Nefm","Nusap1","RGD1562673","Srsf2","Tchh",
"Zdbf2") 
# Set up list of randomly sampled cellular genes that are not differentially 
expressed 
HostNoChangeList <- 
c("Bag3","Chp1","Ddit3","Fdft1","Gadd45a","Ngb","Rgs17","S100a1","Serpinb1a","Vip") 
# Set up list of significantly downregulated cellular genes to plot 
HostDownList <- c("Basp1", "Hspb1", "Mmd") 
# Randomly subsample 100 cells from each  population (to make plot manageable) 
sample<-subset(neurons.combined, downsample=100) 

### Generated plots 
DoHeatmap(sample, features = VirusList, size = 3) + scale_fill_gradientn(colors = 
rev(RColorBrewer::brewer.pal(n = 7, name = "RdBu"))) 
DoHeatmap(sample, features = HostUpList, size = 3) + scale_fill_gradientn(colors = 
rev(RColorBrewer::brewer.pal(n = 7, name = "RdBu"))) 
DoHeatmap(sample, features = HostDownList, size = 3) + scale_fill_gradientn(colors = 
rev(RColorBrewer::brewer.pal(n = 7, name = "RdBu"))) 
DoHeatmap(sample, features = HostNoChangeList, size = 3) + 
scale_fill_gradientn(colors = rev(RColorBrewer::brewer.pal(n = 7, name = "RdBu"))) 

13


	Appendix list
	Appendix Table S1
	Appendix Table S2
	Appendix Table S3
	Appendix Computer Code 1
	Appendix Computer Code 2



