
Appendix - Single-cell transcriptomics identifies Gadd45b as a regulator of herpesvirus-
reactivating neurons

page 2

page 3

Appendix Table S1 - Upregulated host cellular pathways upon HSV-1 reactivation

Appendix Table S2 - List of sequence datasets generated as part of this study

Appendix Table S3 - List of HSV-1 ORFs and transcription units included in this study

Appendix Computer Code 1

Appendix Computer Code 2

Aligned data were subsequently imported into Seurat v3.0 for additional quality
filtering, identification of highly variable genes, data integration, dimensionality
reduction, unsupervised clustering and integrated differential gene expression
analysis using MAST. Full details of these analysis are recorded in R Markdown
files.

1

page 4

page 5

page 10

Appendix Table S1

found Total ratio pValue FDR found total ratio

Cellular responses to stress 9 691 0.047 7.67E-04 9.97E-03 20 227 0.018 Homo sapiens 2.00

HSF1 activation 6 43 0.003 1.29E-08 2.07E-07 1 7 0.001 Homo sapiens 6.68

Cellular response to heat stress 9 135 0.009 1.45E-09 2.91E-08 12 29 0.002 Homo sapiens 7.54

Regulation of HSF1-mediated heat shock response 9 113 0.008 3.11E-10 8.40E-09 7 14 0.001 Homo sapiens 8.08

HSF1-dependent transactivation 8 59 0.004 5.16E-11 2.11E-09 4 8 0.001 Homo sapiens 8.68

Attenuation phase 8 47 0.003 8.64E-12 7.17E-10 3 5 0 Homo sapiens 9.14

Pathway analysis of differentially expressed genes reported in Dataset EV1 identified six cellular pathways impacted by HSV-1 reactivation

Entities Reactions

Species namePathway name -log10(FDR)

2

Appendix Table S2

Sample ID Simple name Experiment accession Run accession Chemistry Batch
Estimated number of
cells [post filtering]

Uninfected BioRep #1 Uninf_V2_rep_1 ERX4858799 ERR5052726 3066

Latent BioRep #1 Lat_V2_rep_1 ERX4858240 ERR5051908 1058

Latent BioRep #2 Lat_V2_rep_2 ERX4858255 ERR5051923 3871

Reactivation (20 hrs) BioRep #1 Reac20_V2_rep_1 ERX4858418 ERR5052302 5675

Reactivation (48 hrs) BioRep #1 Reac48_V2_rep_1 ERX4858600 ERR5052485 2727

Latent BioRep #3 Lat_V2_rep_3 ERX4858416 ERR5052300 3 2079

Uninfected BioRep #2 Uninf_V2_rep_2 ERX4858776 ERR5052682 2832

Uninfected (20 hrs LY treatment) BioRep #1 UninfLY_V2_rep_3 ERX4858740 ERR5052625 1661

Reactivation (20 hrs) BioRep #2 Reac20_V3_rep_1 ERX4858599 ERR5052484 1195

Reactivation (48 hrs) BioRep #2 Reac48_V3_rep_1 ERX4858735 ERR5052620 1700

Reactivation (72 hrs) BioRep #1 Reac72_V3_rep_1 ERX4858741 ERR5052626 2163

List of sequence datasets generated as part of this study. Libraries were sequenced in paired-
end mode on either an Illumina HiSeq 4000 or Illumina NovaSeq 6000.

All data are available via the European Nucleotide Archive under project accession:
PRJEB39022

10X Genomics Chromium Single Cell 3' v2

10X Genomics Chromium Single Cell 3' v3

1

2

4

5

3

4

HSV-1 RNAs were grouped into a
set of 20 transcription units
(TU1-20) for the purposes of
mapping and analysis.

scRNASeq-V2-analysis

Load required libraries
library(Seurat)
library(cowplot)
library(dplyr)
library(Matrix)
library(MAST)

Import Cell Ranger Gene Expression Matrices
dmso1.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/Uninf_V2_rep_1/")
dmso2.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/Uninf_V2_rep_2/")
ly.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/UninfLY_V2_rep_3/")
latent1.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/Lat_V2_rep_1/")
latent2.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/Lat_V2_rep_2/")
latent3.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/Lat_V2_rep_3/")
ly20.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/Reac20_V2_rep_1/")
ly48.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/Reac20_V2_rep_2/")

Setup Seurat Objects
dmso1 <- CreateSeuratObject(counts = dmso1.data)
dmso2 <- CreateSeuratObject(counts = dmso2.data)
ly <- CreateSeuratObject(counts = ly.data)
latent1 <- CreateSeuratObject(counts = latent1.data)
latent2 <- CreateSeuratObject(counts = latent2.data)
latent3 <- CreateSeuratObject(counts = latent3.data)
ly20 <- CreateSeuratObject(counts = ly20.data)
ly48 <- CreateSeuratObject(counts = ly48.data)

Data exploration to determine filtering parameters
ly20[["percent.mt"]] <- PercentageFeatureSet(object = ly20, pattern = "^Mt-")
v2<-VlnPlot(object = ly20, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"),
ncol = 3)
plot1 <- FeatureScatter(object = ly20, feature1 = "nCount_RNA", feature2 =
"percent.mt")
plot2 <- FeatureScatter(object = ly20, feature1 = "nCount_RNA", feature2 =
"nFeature_RNA")
plot_grid(plot1,plot2,v2)

ly48[["percent.mt"]] <- PercentageFeatureSet(object = ly48, pattern = "^Mt-")
v3<-VlnPlot(object = ly48, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"),
ncol = 3)
plot1 <- FeatureScatter(object = ly48, feature1 = "nCount_RNA", feature2 =
"percent.mt")
plot2 <- FeatureScatter(object = ly48, feature1 = "nCount_RNA", feature2 =
"nFeature_RNA")
plot_grid(plot1,plot2,v3)

ly[["percent.mt"]] <- PercentageFeatureSet(object = ly, pattern = "^Mt-")
v4<-VlnPlot(object = ly, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"),
ncol = 3)
plot1 <- FeatureScatter(object = ly, feature1 = "nCount_RNA", feature2 =
"percent.mt")

1

5

2

plot2 <- FeatureScatter(object = ly, feature1 = "nCount_RNA", feature2 =
"nFeature_RNA")
plot_grid(plot1,plot2,v4)

dmso1[["percent.mt"]] <- PercentageFeatureSet(object = dmso1, pattern = "^Mt-")
v5<-VlnPlot(object = dmso1, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"),
ncol = 3)
plot1 <- FeatureScatter(object = dmso1, feature1 = "nCount_RNA", feature2 =
"percent.mt")
plot2 <- FeatureScatter(object = dmso1, feature1 = "nCount_RNA", feature2 =
"nFeature_RNA")
plot_grid(plot1,plot2,v5)

dmso2[["percent.mt"]] <- PercentageFeatureSet(object = dmso2, pattern = "^Mt-")
v6<-VlnPlot(object = dmso2, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"),
ncol = 3)
plot1 <- FeatureScatter(object = dmso2, feature1 = "nCount_RNA", feature2 =
"percent.mt")
plot2 <- FeatureScatter(object = dmso2, feature1 = "nCount_RNA", feature2 =
"nFeature_RNA")
plot_grid(plot1,plot2,v6)

latent1[["percent.mt"]] <- PercentageFeatureSet(object = latent1, pattern = "^Mt-")
v7<-VlnPlot(object = latent1, features = c("nFeature_RNA", "nCount_RNA",
"percent.mt"), ncol = 3)
plot1 <- FeatureScatter(object = latent1, feature1 = "nCount_RNA", feature2 =
"percent.mt")
plot2 <- FeatureScatter(object = latent1, feature1 = "nCount_RNA", feature2 =
"nFeature_RNA")
plot_grid(plot1,plot2,v7)

latent2[["percent.mt"]] <- PercentageFeatureSet(object = latent2, pattern = "^Mt-")
v12<-VlnPlot(object = latent2, features = c("nFeature_RNA", "nCount_RNA",
"percent.mt"), ncol = 3)
plot1 <- FeatureScatter(object = latent2, feature1 = "nCount_RNA", feature2 =
"percent.mt")
plot2 <- FeatureScatter(object = latent2, feature1 = "nCount_RNA", feature2 =
"nFeature_RNA")
plot_grid(plot1,plot2,v12)

latent3[["percent.mt"]] <- PercentageFeatureSet(object = latent3, pattern = "^Mt-")
v9<-VlnPlot(object = latent3, features = c("nFeature_RNA", "nCount_RNA",
"percent.mt"), ncol = 3)
plot1 <- FeatureScatter(object = latent3, feature1 = "nCount_RNA", feature2 =
"percent.mt")
plot2 <- FeatureScatter(object = latent3, feature1 = "nCount_RNA", feature2 =
"nFeature_RNA")
plot_grid(plot1,plot2,v9)
``` 

### Filter datasets 
ly20$stim <- "ly20" 
ly20 <- subset(x = ly20, subset = nFeature_RNA > 500 & nCount_RNA < 60000 & 
percent.mt < 25) 
ly20 <- NormalizeData(object = ly20, verbose = FALSE) 

6



3 

ly20 <- FindVariableFeatures(object = ly20, selection.method = "vst", nfeatures = 
2000) 

ly48$stim <- "ly48" 
ly48 <- subset(x = ly48, subset = nFeature_RNA > 500 & nCount_RNA < 60000 & 
percent.mt < 25) 
ly48 <- NormalizeData(object = ly48, verbose = FALSE) 
ly48 <- FindVariableFeatures(object = ly48, selection.method = "vst", nfeatures = 
2000) 

ly$stim <- "ly" 
ly <- subset(x = ly, subset = nFeature_RNA > 500 & nCount_RNA < 60000 & percent.mt < 
25) 
ly <- NormalizeData(object = ly, verbose = FALSE) 
ly <- FindVariableFeatures(object = ly, selection.method = "vst", nfeatures = 2000) 

dmso1$stim <- "dmso1" 
dmso1 <- subset(x = dmso1, subset = nFeature_RNA > 500 & nCount_RNA < 60000 & 
percent.mt < 25) 
dmso1 <- NormalizeData(object = dmso1, verbose = FALSE) 
dmso1 <- FindVariableFeatures(object = dmso1, selection.method = "vst", nfeatures = 
2000) 

dmso2$stim <- "dmso2" 
dmso2 <- subset(x = dmso2, subset = nFeature_RNA > 500 & nCount_RNA < 60000 & 
percent.mt < 25) 
dmso2 <- NormalizeData(object = dmso2, verbose = FALSE) 
dmso2 <- FindVariableFeatures(object = dmso2, selection.method = "vst", nfeatures = 
2000) 

latent1$stim <- "latent1" 
latent1 <- subset(x = latent1, subset = nFeature_RNA > 500 & nCount_RNA < 60000 & 
percent.mt < 25) 
latent1 <- NormalizeData(object = latent1, verbose = FALSE) 
latent1 <- FindVariableFeatures(object = latent1, selection.method = "vst", nfeatures 
= 2000) 

latent2$stim <- "latent2" 
latent2 <- subset(x = latent2, subset = nFeature_RNA > 500 & nCount_RNA < 60000 & 
percent.mt < 25) 
latent2 <- NormalizeData(object = latent2, verbose = FALSE) 
latent2 <- FindVariableFeatures(object = latent2, selection.method = "vst", nfeatures 
= 2000) 

latent3$stim <- "latent3" 
latent3 <- subset(x = latent3, subset = nFeature_RNA > 500 & nCount_RNA < 60000 & 
percent.mt < 25) 
latent3 <- NormalizeData(object = latent3, verbose = FALSE) 
latent3 <- FindVariableFeatures(object = latent3, selection.method = "vst", nfeatures 
= 2000) 

### Find Integration Anchors 
reactivation.anchors <- FindIntegrationAnchors(object.list = list(ly20, ly48, ly, 
dmso1, dmso2, latent1, latent2, latent3), dims = 1:25) 
reactivation.combined <- IntegrateData(anchorset = reactivation.anchors, dims = 1:25) 

7



4 

### Report number of cells present in each dataset post-filtering 
table(reactivation.combined@meta.data$stim) 

### Generate UMAP plot for combined dataset 
DefaultAssay(object = reactivation.combined) <- "integrated" 

# Run the standard workflow for visualization and clustering 
reactivation.combined <- ScaleData(object = reactivation.combined, verbose = FALSE) 
reactivation.combined <- RunPCA(object = reactivation.combined, npcs = 30, verbose = 
FALSE)  

# t-SNE and Clustering 
reactivation.combined <- RunUMAP(object = reactivation.combined, reduction = "pca", 
dims = 1:15) 
reactivation.combined <- FindNeighbors(object = reactivation.combined, reduction = 
"pca", dims = 1:15) 
reactivation.combined <- FindClusters(reactivation.combined, resolution = 0.2) 

# Visualization 
p1 <- DimPlot(object = reactivation.combined, reduction = "umap", group.by = "stim") 
p2 <- DimPlot(object = reactivation.combined, reduction = "umap", label = TRUE) 
plot_grid(p1, p2) 

### Generate individual UMAP plots for each dataset 
DimPlot(reactivation.combined, reduction = "umap", split.by = "stim", ncol = 3) 
table(Idents(reactivation.combined), reactivation.combined$stim) 

### Generate plots showing expression levels of select genes across cell population 
FeaturePlot(object = reactivation.combined, features = c("Prph", "Tubb3", "Sox10", 
"S100b", "Aif1", "Cd68", "Col1a1", "Fn1", "Sox2", "percent.mt", "Gadd45b", "Th"), 
min.cutoff = "q9", cols = c("grey", "red")) 

### Assign cell type identities (based on expression patterns observed in above 
plots) 
reactivation.combined <- RenameIdents(object = reactivation.combined, `0` = 
"neurons", `1` = "neurons", `2` = "fibroblasts", `3` = "neurons", `4` = "Satellite 
glial cells", `5` = "Schwann cells", `6` = "neurons", `7` = "neurons", `8` = 
"neurons", `9` = "fibroblasts", `10` = "neurons", `11` = "neurons") 

DimPlot(object = reactivation.combined, label = FALSE, cols = c("blue", "tomato3", 
"limegreen", "goldenrod1"), split.by="stim") 

table(Idents(reactivation.combined), reactivation.combined$stim) 

### Subset data to focus on neurons only 
neurons2.combined <- subset(reactivation.combined, idents = "neurons") 
Idents(neurons2.combined) <- "stim" 

# t-SNE and Clustering 
neurons2.combined <- RunTSNE(object = neurons.combined, reduction = "pca", dims = 
1:15) 
neurons2.combined <- FindNeighbors(object = neurons.combined, reduction = "pca", dims 
= 1:15) 
neurons2.combined <- FindClusters(neurons.combined, resolution = 0.2) 

8



5 

# Visualization 
p1 <- DimPlot(object = neurons2.combined, reduction = "umap", group.by = "stim") 
p2 <- DimPlot(object = neurons2.combined, reduction = " umap ", label = TRUE) 
plot_grid(p1, p2) 

### Generate plots showing expression levels of select genes across neuronal 
population 
FeaturePlot(object = neurons.combined, features = c("Npy", 'Dbh', 'Th', 
"percent.mt"), min.cutoff = "q9", cols = c("grey", "blue"), ncol = 3) 

9



1 

scRNASeq-V3-analysis 

### Load libraries 
library(rlang) 
library(Seurat) 
library(cowplot) 
library(dplyr) 
library(Matrix) 
library(MAST) 
library(EnhancedVolcano) 

### Load CellRanger Gene Expression Matrices 
ly20.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/Reac20_V3_rep_1/") 
ly48.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/Reac48_V3_rep_1/") 
ly72.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/Reac72_V3_rep_1/") 

### Setup Seurat objects and perform simple data exploration of (i) number of 
features, (ii) feature counts, (iii), fraction of mitochondrial reads per cell 
ly20 <- CreateSeuratObject(counts = ly20.data) 
ly48 <- CreateSeuratObject(counts = ly48.data) 
ly72 <- CreateSeuratObject(counts = ly72.data) 

ly20[["percent.mt"]] <- PercentageFeatureSet(object = ly20, pattern = "^Mt-") 
v1<-VlnPlot(object = ly20, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), 
ncol = 3) 
plot1 <- FeatureScatter(object = ly20, feature1 = "nCount_RNA", feature2 = 
"percent.mt") 
plot2 <- FeatureScatter(object = ly20, feature1 = "nCount_RNA", feature2 = 
"nFeature_RNA") 
plot_grid(plot1,plot2,v1) 

ly48[["percent.mt"]] <- PercentageFeatureSet(object = ly48, pattern = "^Mt-") 
v2<-VlnPlot(object = ly48, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), 
ncol = 3) 
plot1 <- FeatureScatter(object = ly48, feature1 = "nCount_RNA", feature2 = 
"percent.mt") 
plot2 <- FeatureScatter(object = ly48, feature1 = "nCount_RNA", feature2 = 
"nFeature_RNA") 
plot_grid(plot1,plot2,v2) 

ly72[["percent.mt"]] <- PercentageFeatureSet(object = ly72, pattern = "^Mt-") 
v3<-VlnPlot(object = ly72, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), 
ncol = 3) 
plot1 <- FeatureScatter(object = ly72, feature1 = "nCount_RNA", feature2 = 
"percent.mt") 
plot2 <- FeatureScatter(object = ly72, feature1 = "nCount_RNA", feature2 = 
"nFeature_RNA") 
plot_grid(plot1,plot2,v3) 

### Filter datasets to exclude possible doublets and cells with a higher fraction of 
mitochondrial reads (>25%) 
ly20$stim <- "ly20" 

10



2 

ly20 <- subset(x = ly20, subset = nFeature_RNA > 500 & nCount_RNA < 150000 & 
percent.mt < 25) 
ly20 <- NormalizeData(object = ly20, verbose = FALSE) 
ly20 <- FindVariableFeatures(object = ly20, selection.method = "vst", nfeatures = 
2000) 

ly48$stim <- "ly48" 
ly48 <- subset(x = ly48, subset = nFeature_RNA > 500 & nCount_RNA < 150000 & 
percent.mt < 25) 
ly48 <- NormalizeData(object = ly48, verbose = FALSE) 
ly48 <- FindVariableFeatures(object = ly48, selection.method = "vst", nfeatures = 
2000) 

ly72$stim <- "ly72" 
ly72 <- subset(x = ly72, subset = nFeature_RNA > 500 & nCount_RNA < 150000 & 
percent.mt < 25) 
ly72 <- NormalizeData(object = ly72, verbose = FALSE) 
ly72 <- FindVariableFeatures(object = ly72, selection.method = "vst", nfeatures = 
2000) 

### Integrate datasets using first 20 dimensions + report number of cells in each 
dataset post-filtering 
reactivation.anchors <- FindIntegrationAnchors(object.list = list(ly20, ly48, ly72), 
dims = 1:20) #latent 
reactivation.combined <- IntegrateData(anchorset = reactivation.anchors, dims = 1:20) 
table(reactivation.combined@meta.data$stim) 

### Scale and cluster data + Generate UMAP plots.  
DefaultAssay(object = reactivation.combined) <- "integrated" 
reactivation.combined <- ScaleData(object = reactivation.combined, verbose = FALSE) 
reactivation.combined <- RunPCA(object = reactivation.combined, npcs = 30, verbose = 
FALSE) 
reactivation.combined <- RunUMAP(object = reactivation.combined, reduction = "pca", 
dims = 1:25) 
reactivation.combined <- FindNeighbors(object = reactivation.combined, reduction = 
"pca", dims = 1:25) 
reactivation.combined <- FindClusters(reactivation.combined, resolution = 0.2) 
p1 <- DimPlot(object = reactivation.combined, reduction = "umap", group.by = "stim") 
p2 <- DimPlot(object = reactivation.combined, reduction = "umap", label = TRUE) 
plot_grid(p1, p2) 

### Separate UMAP plots by dataset & determine number of cells per identity 
DimPlot(reactivation.combined, reduction = "umap", split.by = "stim", ncol = 3) 
table(Idents(reactivation.combined), reactivation.combined$stim) 

### Generate plots for canonical markers to aid in cell type identification 
# Sympathetic neurons: Prph, Tubb3, Snap25 
# Schwann cells: Sox10, S100b 
# Satellite glial cells: Aif1, Cd68 
# Fibroblasts: Fn1, Col3a1, Col1a1 
FeaturePlot(object = reactivation.combined, features = c("Prph", "Tubb3", "Snap25", 
"Sox10", "S100b", "nes", "Aif1", "Cd68", "Col3a1", "Fn1", "Col1a1", "percent.mt"), 
min.cutoff = "q9") #"nCount_RNA", "nFeature_RNA" percent.mt 

11



3 

### Generate plots for viral RNA markers to identify cells/clusters with reactivating 
virus 
FeaturePlot(object = reactivation.combined, features = c("TU1", "TU2", "TU3", "TU4", 
"TU5", "TU6", "TU7", "TU8", "TU9", "TU10", "TU11", "TU12", "TU13", "TU14", "TU15", 
"TU16", "TU17", "TU18", "TU19", "TU20"), min.cutoff = "q9") 

### Merge similar clusters and label with cell identity + generate counts of each 
cell type per condition 
reactivation.combined <- RenameIdents(object = reactivation.combined, `0` = 
"neurons", `1` = "Schwann cell", `2` = "Fibroblasts", `3` = "Schwann cell", `4` = 
"neurons", `5` = "Schwann cell", `6` = "Schwann cell", `7` = "Schwann cell", `8` = 
"neurons") 
DimPlot(object = reactivation.combined, label = FALSE) 
table(Idents(reactivation.combined), reactivation.combined$stim) 

### Subset data to focus on neurons only 
neurons.combined <- subset(reactivation.combined, idents = "neurons") 
Idents(neurons.combined) <- "stim" 

# t-SNE and Clustering 
neurons.combined <- RunTSNE(object = neurons.combined, reduction = "pca", dims = 
1:20) 
neurons.combined <- FindNeighbors(object = neurons.combined, reduction = "pca", dims 
= 1:20) 
neurons.combined <- FindClusters(neurons.combined, resolution = 0.2) 

# Visualization 
p1 <- DimPlot(object = neurons.combined, reduction = "umap", group.by = "stim") #umap 
rather than tsne? 
p2 <- DimPlot(object = neurons.combined, reduction = "umap", label = TRUE) 
plot_grid(p1, p2) 

### Check whether HSV-1 RNAs are enriched in one or more neuronal subsets 
FeaturePlot(object = neurons.combined, features = c("TU1", "TU2", "TU3", "TU4", 
"TU5", "TU6", "TU7", "TU8", "TU9", "TU10", "TU11", "TU12", "TU13", "TU14", "TU15", 
"TU16", "TU17", "TU18", "TU19", "TU20"), min.cutoff = "q9")  

### Label neurons according to expression level of HSV-1 transcripts 
neurons.combined <- RenameIdents(object = neurons.combined, `0` = "neurons (low/no 
HSV-1 expression)", `1` = "neurons (low/no HSV-1 expression)", `2` = "neurons (low/no 
HSV-1 expression)", `3` = "neurons (low/no HSV-1 expression)", `4` = "neurons (low/no 
HSV-1 expression)", `5` = "neurons (high HSV-1 expression)") 
DimPlot(object = neurons.combined, label = FALSE) 

### Perform DGE between clusters using MAST 
dds <- FindMarkers(neurons.combined, ident.1 = "neurons (high HSV-1 expression)", 
ident.2 = "neurons (low/no HSV-1 expression)", test.use="MAST") 

### Generate Volcano Plot, and export data. 
EnhancedVolcano(dds, lab = rownames(dds), x = 'avg_logFC', y = 'p_val_adj', 
ylim=c(0,350), xlim = c(-3, 8), title = 'Regulated during HSV-1 reactivation', 
pCutoff = 0.05, FCcutoff = 1.5, transcriptLabSize = 4.0, 
col=c('darkgrey','darkgrey','darkgrey','darkred'), transcriptPointSize = 1.5, 
cutoffLineCol = 'blue', colAlpha = 0.9) 

12



4 

EnhancedVolcano(dds, lab = rownames(dds), x = 'avg_logFC', y = 'p_val_adj', 
ylim=c(0,350), xlim = c(-3, 8), pCutoff = 0.05, FCcutoff = 1.5, transcriptLabSize = 
4.0, col=c('darkgrey','darkgrey','darkgrey','darkred'), transcriptPointSize = 1.5, 
cutoffLineCol = 'blue', colAlpha = 0.9, drawConnectors = TRUE, widthConnectors = 0.2, 
colConnectors = "grey") 
EnhancedVolcano(dds, lab = rownames(dds), x = 'avg_logFC', y = 'p_val_adj', 
ylim=c(0,350), xlim = c(-3, 8), pCutoff = 0.05, FCcutoff = 1.5, 
col=c('darkgrey','darkgrey','darkgrey','darkred'), transcriptPointSize = 1.5, 
cutoffLineCol = 'blue', colAlpha = 0.9, selectLab = "TU3") 
write.table(dds,file="MAST-DGE.csv") 

### Generate heatmap comparing clusters 
# Set up list of viral transcription units to plot 
VirusList <- c("TU1", "TU2", "TU3", "TU4", "TU5", "TU6", "TU7", "TU8", "TU9", "TU10", 
"TU11", "TU12", "TU14", "TU15", "TU16", "TU17", "TU18", "TU19", "TU20", "US1", 
"US12", "RS1", "RL1", "RL2") 
# Set up list of significantly upregulated cellular genes to plot 
HostUpList <- 
c("AABR07030834.1","Cdkn1c","Gadd45b","Gadd45g","Galns","Hspa1b","Hspa2","Idi1","Igf2
","Ing1","Ldah","LOC690422","Mgp","Nefh","Nefm","Nusap1","RGD1562673","Srsf2","Tchh",
"Zdbf2") 
# Set up list of randomly sampled cellular genes that are not differentially 
expressed 
HostNoChangeList <- 
c("Bag3","Chp1","Ddit3","Fdft1","Gadd45a","Ngb","Rgs17","S100a1","Serpinb1a","Vip") 
# Set up list of significantly downregulated cellular genes to plot 
HostDownList <- c("Basp1", "Hspb1", "Mmd") 
# Randomly subsample 100 cells from each  population (to make plot manageable) 
sample<-subset(neurons.combined, downsample=100) 

### Generated plots 
DoHeatmap(sample, features = VirusList, size = 3) + scale_fill_gradientn(colors = 
rev(RColorBrewer::brewer.pal(n = 7, name = "RdBu"))) 
DoHeatmap(sample, features = HostUpList, size = 3) + scale_fill_gradientn(colors = 
rev(RColorBrewer::brewer.pal(n = 7, name = "RdBu"))) 
DoHeatmap(sample, features = HostDownList, size = 3) + scale_fill_gradientn(colors = 
rev(RColorBrewer::brewer.pal(n = 7, name = "RdBu"))) 
DoHeatmap(sample, features = HostNoChangeList, size = 3) + 
scale_fill_gradientn(colors = rev(RColorBrewer::brewer.pal(n = 7, name = "RdBu"))) 

13


	Appendix list
	Appendix Table S1
	Appendix Table S2
	Appendix Table S3
	Appendix Computer Code 1
	Appendix Computer Code 2



