Appendix - Single-cell transcriptomics identifies Gadd45b as a regulator of herpesvirusreactivating neurons

Appendix Table S1 - Upregulated host cellular pathways upon HSV-1 reactivation	page 2
Appendix Table S2 - List of sequence datasets generated as part of this study	page 3
Appendix Table S3 - List of HSV-1 ORFs and transcription units included in this study	page 4
Appendix Computer Code 1	page 5
Appendix Computer Code 2	page 10

Aligned data were subsequently imported into Seurat v3.0 for additional quality filtering, identification of highly variable genes, data integration, dimensionality reduction, unsupervised clustering and integrated differential gene expression analysis using MAST. Full details of these analysis are recorded in R Markdown files.

Appendix Table S1

Pathway name	Entities				Reactions			Species name	-log10(FDR)	
rauiwdy name	found	Total	ratio	pValue	FDR	found	total	ratio	Species name	-10g10(FDR)
Cellular responses to stress	9	691	0.047	7.67E-04	9.97E-03	20	227	0.018	Homo sapiens	2.00
HSF1 activation	6	43	0.003	1.29E-08	2.07E-07	1	7	0.001	Homo sapiens	6.68
Cellular response to heat stress	9	135	0.009	1.45E-09	2.91E-08	12	29	0.002	Homo sapiens	7.54
Regulation of HSF1-mediated heat shock response	9	113	0.008	3.11E-10	8.40E-09	7	14	0.001	Homo sapiens	8.08
HSF1-dependent transactivation	8	59	0.004	5.16E-11	2.11E-09	4	8	0.001	Homo sapiens	8.68
Attenuation phase	8	47	0.003	8.64E-12	7.17E-10	3	5	0	Homo sapiens	9.14

Pathway analysis of differentially expressed genes reported in Dataset EV1 identified six cellular pathways impacted by HSV-1 reactivation

Appendix Table S2

Sample ID	Simple name	Experiment accession	Run accession	Chemistry	Batch	Estimated number of cells [post filtering]
Uninfected BioRep #1	Uninf_V2_rep_1	ERX4858799	ERR5052726		1	3066
Latent BioRep #1	Lat_V2_rep_1	ERX4858240	ERR5051908			1058
Latent BioRep #2	Lat_V2_rep_2	ERX4858255	ERR5051923		2	3871
Reactivation (20 hrs) BioRep #1	Reac20_V2_rep_1	ERX4858418	ERR5052302	10X Genomics Chromium Single Cell 3' v2		5675
Reactivation (48 hrs) BioRep #1	Reac48_V2_rep_1	ERX4858600	ERR5052485	Tox Genomics Chromium Single Cell 3 V2		2727
Latent BioRep #3	Lat_V2_rep_3	ERX4858416	ERR5052300		3	2079
Uninfected BioRep #2	Uninf_V2_rep_2	ERX4858776	ERR5052682		4	2832
Uninfected (20 hrs LY treatment) BioRep #1	UninfLY_V2_rep_3	ERX4858740	ERR5052625		4	1661
Reactivation (20 hrs) BioRep #2	Reac20_V3_rep_1	ERX4858599	ERR5052484			1195
Reactivation (48 hrs) BioRep #2	Reac48_V3_rep_1	ERX4858735	ERR5052620	10X Genomics Chromium Single Cell 3' v3	5	1700
Reactivation (72 hrs) BioRep #1	Reac72_V3_rep_1	ERX4858741	ERR5052626			2163

List of sequence datasets generated as part of this study. Libraries were sequenced in pairedend mode on either an Illumina HiSeq 4000 or Illumina NovaSeq 6000.

All data are available via the European Nucleotide Archive under project accession: PRJEB39022

Appendix Table S3

Transcription Unit	HSV-1 transcripts				
LAT	LAT*				
RL1	RL1*				
RL2	RL2*				
RS1	RS1*				
TU1	UL1; UL2; UL3				
TU10	US8; US8A; US9				
TU11	UL4; UL5				
TU12	UL8; UL9				
TU13	UL11; UL12; UL13; UL14				
TU14	UL16; UL17				
TU15	UL18; UL19; UL20				
TU16	UL27; UL28				
TU17	UL31; UL32				
TU18	UL46; UL47				
TU19	UL49; UL49A				
TU2	UL6; UL7				
TU20	US10; US11gfp; US12				
TU3	UL24; UL25; UL26				
TU4	UL33; UL34; UL35				
TU5	UL38; UL39; UL40				
TU6	UL43; UL44; UL45				
TU7	UL52; UL53; UL54; UL55				
TU8	US3; US4				
TU9	US5; US6; US7				
UL10	UL10				
UL15	UL15				
UL21	UL21				
UL22	UL22				
UL23	UL23				
UL29	UL29				
UL30	UL30				
UL36	UL36				
UL37	UL37				
UL41	UL41				
UL42	UL42				
UL50	UL50				
UL51	UL51				
UL56	UL56				
US1	US1				
US12	US12				
US2	US2				
* data aggregated between both copies					

HSV-1 RNAs were grouped into a set of 20 transcription units (TU1-20) for the purposes of mapping and analysis.

* data aggregated between both copies

List of HSV-1 ORFs and transcription units (TUs) included in this study. Transcription units comprise multiple ORFs encoded on overlapping mRNAs.

scRNASeq-V2-analysis

```
### Load required libraries
library(Seurat)
library(cowplot)
library(dplyr)
library(Matrix)
library(MAST)
```

Import Cell Ranger Gene Expression Matrices

```
dmso1.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/Uninf_V2_rep_1/")
dmso2.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/Uninf_V2_rep_2/")
ly.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/UninfLY_V2_rep_3/")
latent1.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/Lat_V2_rep_1/")
latent2.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/Lat_V2_rep_2/")
latent3.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/Lat_V2_rep_3/")
ly20.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/Lat_V2_rep_3/")
ly48.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/Reac20_V2_rep_2/")</pre>
```

Setup Seurat Objects

```
dmso1 <- CreateSeuratObject(counts = dmso1.data)
dmso2 <- CreateSeuratObject(counts = dmso2.data)
ly <- CreateSeuratObject(counts = ly.data)
latent1 <- CreateSeuratObject(counts = latent1.data)
latent2 <- CreateSeuratObject(counts = latent2.data)
latent3 <- CreateSeuratObject(counts = latent3.data)
ly20 <- CreateSeuratObject(counts = ly20.data)
ly48 <- CreateSeuratObject(counts = ly48.data)</pre>
```

Data exploration to determine filtering parameters

```
ly20[["percent.mt"]] <- PercentageFeatureSet(object = ly20, pattern = "^Mt-")
v2<-VlnPlot(object = ly20, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"),
ncol = 3)
plot1 <- FeatureScatter(object = ly20, feature1 = "nCount_RNA", feature2 =
"percent.mt")
plot2 <- FeatureScatter(object = ly20, feature1 = "nCount_RNA", feature2 =
"nFeature_RNA")
plot_grid(plot1,plot2,v2)</pre>
```

```
ly48[["percent.mt"]] <- PercentageFeatureSet(object = ly48, pattern = "^Mt-")
v3<-VlnPlot(object = ly48, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"),
ncol = 3)
plot1 <- FeatureScatter(object = ly48, feature1 = "nCount_RNA", feature2 =
"percent.mt")
plot2 <- FeatureScatter(object = ly48, feature1 = "nCount_RNA", feature2 =
"nFeature_RNA")
plot_grid(plot1,plot2,v3)
```

```
ly[["percent.mt"]] <- PercentageFeatureSet(object = ly, pattern = "^Mt-")
v4<-VlnPlot(object = ly, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"),
ncol = 3)
plot1 <- FeatureScatter(object = ly, feature1 = "nCount_RNA", feature2 =
"percent.mt")</pre>
```

```
plot2 <- FeatureScatter(object = ly, feature1 = "nCount_RNA", feature2 =</pre>
"nFeature_RNA")
plot grid(plot1,plot2,v4)
dmso1[["percent.mt"]] <- PercentageFeatureSet(object = dmso1, pattern = "^Mt-")</pre>
v5<-VlnPlot(object = dmso1, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"),
ncol = 3)
plot1 <- FeatureScatter(object = dmso1, feature1 = "nCount_RNA", feature2 =</pre>
"percent.mt")
plot2 <- FeatureScatter(object = dmso1, feature1 = "nCount RNA", feature2 =</pre>
"nFeature RNA")
plot grid(plot1,plot2,v5)
dmso2[["percent.mt"]] <- PercentageFeatureSet(object = dmso2, pattern = "^Mt-")</pre>
v6<-VlnPlot(object = dmso2, features = c("nFeature RNA", "nCount RNA", "percent.mt"),
ncol = 3)
plot1 <- FeatureScatter(object = dmso2, feature1 = "nCount RNA", feature2 =</pre>
"percent.mt")
plot2 <- FeatureScatter(object = dmso2, feature1 = "nCount RNA", feature2 =</pre>
"nFeature RNA")
plot grid(plot1,plot2,v6)
latent1[["percent.mt"]] <- PercentageFeatureSet(object = latent1, pattern = "^Mt-")</pre>
v7<-VlnPlot(object = latent1, features = c("nFeature_RNA", "nCount_RNA",
"percent.mt"), ncol = 3)
plot1 <- FeatureScatter(object = latent1, feature1 = "nCount_RNA", feature2 =</pre>
"percent.mt")
plot2 <- FeatureScatter(object = latent1, feature1 = "nCount_RNA", feature2 =</pre>
"nFeature_RNA")
plot_grid(plot1,plot2,v7)
latent2[["percent.mt"]] <- PercentageFeatureSet(object = latent2, pattern = "^Mt-")</pre>
v12<-VlnPlot(object = latent2, features = c("nFeature_RNA", "nCount_RNA",</pre>
"percent.mt"), ncol = 3)
plot1 <- FeatureScatter(object = latent2, feature1 = "nCount RNA", feature2 =</pre>
"percent.mt")
plot2 <- FeatureScatter(object = latent2, feature1 = "nCount RNA", feature2 =</pre>
"nFeature RNA")
plot grid(plot1,plot2,v12)
latent3[["percent.mt"]] <- PercentageFeatureSet(object = latent3, pattern = "^Mt-")</pre>
v9<-VlnPlot(object = latent3, features = c("nFeature RNA", "nCount RNA",
"percent.mt"), ncol = 3)
plot1 <- FeatureScatter(object = latent3, feature1 = "nCount RNA", feature2 =</pre>
"percent.mt")
plot2 <- FeatureScatter(object = latent3, feature1 = "nCount_RNA", feature2 =</pre>
"nFeature RNA")
plot_grid(plot1,plot2,v9)
### Filter datasets
ly20$stim <- "ly20"
ly20 <- subset(x = ly20, subset = nFeature_RNA > 500 & nCount_RNA < 60000 &
percent.mt < 25)
```

```
ly20 <- NormalizeData(object = ly20, verbose = FALSE)</pre>
```

```
ly20 <- FindVariableFeatures(object = ly20, selection.method = "vst", nfeatures =
2000)
ly48$stim <- "ly48"
ly48 <- subset(x = ly48, subset = nFeature_RNA > 500 & nCount_RNA < 60000 &
percent.mt < 25)
ly48 <- NormalizeData(object = ly48, verbose = FALSE)</pre>
ly48 <- FindVariableFeatures(object = ly48, selection.method = "vst", nfeatures =</pre>
2000)
ly$stim <- "ly"</pre>
ly <- subset(x = ly, subset = nFeature RNA > 500 & nCount RNA < 60000 & percent.mt <
25)
ly <- NormalizeData(object = ly, verbose = FALSE)</pre>
ly <- FindVariableFeatures(object = ly, selection.method = "vst", nfeatures = 2000)</pre>
dmso1$stim <- "dmso1"</pre>
dmso1 <- subset(x = dmso1, subset = nFeature RNA > 500 & nCount RNA < 60000 &
percent.mt < 25)
dmso1 <- NormalizeData(object = dmso1, verbose = FALSE)</pre>
dmso1 <- FindVariableFeatures(object = dmso1, selection.method = "vst", nfeatures =</pre>
2000)
dmso2$stim <- "dmso2"</pre>
dmso2 <- subset(x = dmso2, subset = nFeature_RNA > 500 & nCount_RNA < 60000 &
percent.mt < 25)
dmso2 <- NormalizeData(object = dmso2, verbose = FALSE)</pre>
dmso2 <- FindVariableFeatures(object = dmso2, selection.method = "vst", nfeatures =</pre>
2000)
latent1$stim <- "latent1"</pre>
latent1 <- subset(x = latent1, subset = nFeature_RNA > 500 & nCount_RNA < 60000 &</pre>
percent.mt < 25)
latent1 <- NormalizeData(object = latent1, verbose = FALSE)</pre>
latent1 <- FindVariableFeatures(object = latent1, selection.method = "vst", nfeatures</pre>
= 2000)
latent2$stim <- "latent2"</pre>
latent2 <- subset(x = latent2, subset = nFeature RNA > 500 & nCount RNA < 60000 &
percent.mt < 25)
latent2 <- NormalizeData(object = latent2, verbose = FALSE)</pre>
latent2 <- FindVariableFeatures(object = latent2, selection.method = "vst", nfeatures</pre>
= 2000)
latent3$stim <- "latent3"</pre>
latent3 <- subset(x = latent3, subset = nFeature_RNA > 500 & nCount_RNA < 60000 &</pre>
percent.mt < 25)
latent3 <- NormalizeData(object = latent3, verbose = FALSE)</pre>
latent3 <- FindVariableFeatures(object = latent3, selection.method = "vst", nfeatures</pre>
= 2000)
### Find Integration Anchors
```

```
reactivation.anchors <- FindIntegrationAnchors(object.list = list(ly20, ly48, ly,
dmso1, dmso2, latent1, latent2, latent3), dims = 1:25)
reactivation.combined <- IntegrateData(anchorset = reactivation.anchors, dims = 1:25)</pre>
```

Report number of cells present in each dataset post-filtering table(reactivation.combined@meta.data\$stim) ### Generate UMAP plot for combined dataset DefaultAssay(object = reactivation.combined) <- "integrated"</pre> # Run the standard workflow for visualization and clustering reactivation.combined <- ScaleData(object = reactivation.combined, verbose = FALSE) reactivation.combined <- RunPCA(object = reactivation.combined, npcs = 30, verbose = FALSE) # t-SNE and Clustering reactivation.combined <- RunUMAP(object = reactivation.combined, reduction = "pca", dims = 1:15)reactivation.combined <- FindNeighbors(object = reactivation.combined, reduction =</pre> "pca", dims = 1:15) reactivation.combined <- FindClusters(reactivation.combined, resolution = 0.2) # Visualization p1 <- DimPlot(object = reactivation.combined, reduction = "umap", group.by = "stim")</pre> p2 <- DimPlot(object = reactivation.combined, reduction = "umap", label = TRUE) plot_grid(p1, p2) ### Generate individual UMAP plots for each dataset DimPlot(reactivation.combined, reduction = "umap", split.by = "stim", ncol = 3) table(Idents(reactivation.combined), reactivation.combined\$stim) ### Generate plots showing expression levels of select genes across cell population FeaturePlot(object = reactivation.combined, features = c("Prph", "Tubb3", "Sox10", "S100b", "Aif1", "Cd68", "Col1a1", "Fn1", "Sox2", "percent.mt", "Gadd45b", "Th"), min.cutoff = "q9", cols = c("grey", "red")) ### Assign cell type identities (based on expression patterns observed in above plots) reactivation.combined <- RenameIdents(object = reactivation.combined, `0` =</pre> "neurons", `1` = "neurons", `2` = "fibroblasts", `3` = "neurons", `4` = "Satellite
glial cells", `5` = "Schwann cells", `6` = "neurons", `7` = "neurons", `8` =
"neurons", `9` = "fibroblasts", `10` = "neurons", `11` = "neurons") DimPlot(object = reactivation.combined, label = FALSE, cols = c("blue", "tomato3", "limegreen", "goldenrod1"), split.by="stim") table(Idents(reactivation.combined), reactivation.combined\$stim) ### Subset data to focus on neurons only neurons2.combined <- subset(reactivation.combined, idents = "neurons")</pre> Idents(neurons2.combined) <- "stim"</pre> # t-SNE and Clustering neurons2.combined <- RunTSNE(object = neurons.combined, reduction = "pca", dims = 1:15)neurons2.combined <- FindNeighbors(object = neurons.combined, reduction = "pca", dims = 1:15)neurons2.combined <- FindClusters(neurons.combined, resolution = 0.2)</pre> 4

Visualization

p1 <- DimPlot(object = neurons2.combined, reduction = "umap", group.by = "stim")
p2 <- DimPlot(object = neurons2.combined, reduction = " umap ", label = TRUE)
plot_grid(p1, p2)</pre>

Generate plots showing expression levels of select genes across neuronal population

FeaturePlot(object = neurons.combined, features = c("Npy", 'Dbh', 'Th', "percent.mt"), min.cutoff = "q9", cols = c("grey", "blue"), ncol = 3)

scRNASeq-V3-analysis

```
### Load libraries
library(rlang)
library(Seurat)
library(cowplot)
library(dplyr)
library(Matrix)
library(MAST)
library(EnhancedVolcano)
### Load CellRanger Gene Expression Matrices
ly20.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/Reac20_V3_rep_1/")
ly48.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/Reac48_V3_rep_1/")</pre>
ly72.data <- Read10X(data.dir = "/path/to/scRNASeq-V2data/Reac72_V3_rep_1/")
### Setup Seurat objects and perform simple data exploration of (i) number of
features, (ii) feature counts, (iii), fraction of mitochondrial reads per cell
ly20 <- CreateSeuratObject(counts = ly20.data)</pre>
ly48 <- CreateSeuratObject(counts = ly48.data)</pre>
ly72 <- CreateSeuratObject(counts = ly72.data)</pre>
ly20[["percent.mt"]] <- PercentageFeatureSet(object = ly20, pattern = "^Mt-")</pre>
v1<-VlnPlot(object = ly20, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"),
ncol = 3)
plot1 <- FeatureScatter(object = ly20, feature1 = "nCount RNA", feature2 =</pre>
"percent.mt")
plot2 <- FeatureScatter(object = ly20, feature1 = "nCount_RNA", feature2 =</pre>
"nFeature_RNA")
plot_grid(plot1,plot2,v1)
ly48[["percent.mt"]] <- PercentageFeatureSet(object = ly48, pattern = "^Mt-")</pre>
v2<-V1nPlot(object = 1y48, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"),</pre>
ncol = 3)
plot1 <- FeatureScatter(object = ly48, feature1 = "nCount_RNA", feature2 =</pre>
"percent.mt")
plot2 <- FeatureScatter(object = ly48, feature1 = "nCount_RNA", feature2 =</pre>
"nFeature RNA")
plot_grid(plot1,plot2,v2)
ly72[["percent.mt"]] <- PercentageFeatureSet(object = ly72, pattern = "^Mt-")</pre>
v3<-VlnPlot(object = ly72, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"),
ncol = 3)
plot1 <- FeatureScatter(object = ly72, feature1 = "nCount_RNA", feature2 =</pre>
"percent.mt")
plot2 <- FeatureScatter(object = ly72, feature1 = "nCount RNA", feature2 =</pre>
"nFeature RNA")
plot grid(plot1,plot2,v3)
```

```
### Filter datasets to exclude possible doublets and cells with a higher fraction of
mitochondrial reads (>25%)
ly20$stim <- "ly20"</pre>
```

1y20 < - subset(x = 1y20, subset = nFeature_RNA > 500 & nCount_RNA < 150000 & percent.mt < 25) ly20 <- NormalizeData(object = ly20, verbose = FALSE)</pre> ly20 <- FindVariableFeatures(object = ly20, selection.method = "vst", nfeatures = 2000) lv48\$stim <- "lv48" $1y48 < -subset(x = 1y48, subset = nFeature_RNA > 500 & nCount_RNA < 150000 &$ percent.mt < 25) ly48 <- NormalizeData(object = ly48, verbose = FALSE)</pre> ly48 <- FindVariableFeatures(object = ly48, selection.method = "vst", nfeatures = 2000) ly72\$stim <- "ly72" ly72 <- subset(x = ly72, subset = nFeature_RNA > 500 & nCount_RNA < 150000 & percent.mt < 25) ly72 <- NormalizeData(object = ly72, verbose = FALSE)</pre> ly72 <- FindVariableFeatures(object = ly72, selection.method = "vst", nfeatures = 2000) ### Integrate datasets using first 20 dimensions + report number of cells in each dataset post-filtering reactivation.anchors <- FindIntegrationAnchors(object.list = list(ly20, ly48, ly72),</pre> dims = 1:20) #latent reactivation.combined <- IntegrateData(anchorset = reactivation.anchors, dims = 1:20) table(reactivation.combined@meta.data\$stim) ### Scale and cluster data + Generate UMAP plots. DefaultAssay(object = reactivation.combined) <- "integrated"</pre> reactivation.combined <- ScaleData(object = reactivation.combined, verbose = FALSE) reactivation.combined <- RunPCA(object = reactivation.combined, npcs = 30, verbose =</pre> FALSE) reactivation.combined <- RunUMAP(object = reactivation.combined, reduction = "pca", dims = 1:25) reactivation.combined <- FindNeighbors(object = reactivation.combined, reduction = "pca", dims = 1:25) reactivation.combined <- FindClusters(reactivation.combined, resolution = 0.2) p1 <- DimPlot(object = reactivation.combined, reduction = "umap", group.by = "stim")</pre> p2 <- DimPlot(object = reactivation.combined, reduction = "umap", label = TRUE) plot_grid(p1, p2) ### Separate UMAP plots by dataset & determine number of cells per identity DimPlot(reactivation.combined, reduction = "umap", split.by = "stim", ncol = 3) table(Idents(reactivation.combined), reactivation.combined\$stim) ### Generate plots for canonical markers to aid in cell type identification # Sympathetic neurons: Prph, Tubb3, Snap25 # Schwann cells: Sox10, S100b # Satellite glial cells: Aif1, Cd68 # Fibroblasts: Fn1, Col3a1, Col1a1 FeaturePlot(object = reactivation.combined, features = c("Prph", "Tubb3", "Snap25", "Sox10", "S100b", "nes", "Aif1", "Cd68", "Col3a1", "Fn1", "Col1a1", "percent.mt"), min.cutoff = "q9") #"nCount_RNA", "nFeature_RNA" percent.mt

```
### Generate plots for viral RNA markers to identify cells/clusters with reactivating
virus
FeaturePlot(object = reactivation.combined, features = c("TU1", "TU2", "TU3", "TU4",
"TU5", "TU6", "TU7", "TU8", "TU9", "TU10", "TU11", "TU12", "TU13", "TU14", "TU15",
"TU16", "TU17", "TU18", "TU19", "TU20"), min.cutoff = "q9")
### Merge similar clusters and label with cell identity + generate counts of each
cell type per condition
reactivation.combined <- RenameIdents(object = reactivation.combined, `0` =</pre>
"neurons", `1` = "Schwann cell", `2` = "Fibroblasts", `3` = "Schwann cell", `4` =
"neurons", `5` = "Schwann cell", `6` = "Schwann cell", `7` = "Schwann cell", `8` =
"neurons")
DimPlot(object = reactivation.combined, label = FALSE)
table(Idents(reactivation.combined), reactivation.combined$stim)
### Subset data to focus on neurons only
neurons.combined <- subset(reactivation.combined, idents = "neurons")</pre>
Idents(neurons.combined) <- "stim"</pre>
# t-SNE and Clustering
neurons.combined <- RunTSNE(object = neurons.combined, reduction = "pca", dims =</pre>
1:20)
neurons.combined <- FindNeighbors(object = neurons.combined, reduction = "pca", dims</pre>
= 1:20)
neurons.combined <- FindClusters(neurons.combined, resolution = 0.2)</pre>
# Visualization
p1 <- DimPlot(object = neurons.combined, reduction = "umap", group.by = "stim") #umap
rather than tsne?
p2 <- DimPlot(object = neurons.combined, reduction = "umap", label = TRUE)
plot_grid(p1, p2)
### Check whether HSV-1 RNAs are enriched in one or more neuronal subsets
FeaturePlot(object = neurons.combined, features = c("TU1", "TU2", "TU3", "TU4",
"TU5", "TU6", "TU7", "TU8", "TU9", "TU10", "TU11", "TU12", "TU13", "TU14", "TU15",
"TU16", "TU17", "TU18", "TU19", "TU20"), min.cutoff = "q9")
### Label neurons according to expression level of HSV-1 transcripts
neurons.combined <- RenameIdents(object = neurons.combined, `0` = "neurons (low/no
HSV-1 expression)", `1` = "neurons (low/no HSV-1 expression)", `2` = "neurons (low/no
HSV-1 expression)", `3` = "neurons (low/no HSV-1 expression)", `4` = "neurons (low/no
HSV-1 expression)", `5` = "neurons (high HSV-1 expression)")
DimPlot(object = neurons.combined, label = FALSE)
### Perform DGE between clusters using MAST
dds <- FindMarkers(neurons.combined, ident.1 = "neurons (high HSV-1 expression)",</pre>
ident.2 = "neurons (low/no HSV-1 expression)", test.use="MAST")
### Generate Volcano Plot, and export data.
EnhancedVolcano(dds, lab = rownames(dds), x = 'avg_logFC', y = 'p_val_adj',
ylim=c(0,350), xlim = c(-3, 8), title = 'Regulated during HSV-1 reactivation',
pCutoff = 0.05, FCcutoff = 1.5, transcriptLabSize = 4.0,
col=c('darkgrey','darkgrey','darkgrey','darkred'), transcriptPointSize = 1.5,
cutoffLineCol = 'blue', colAlpha = 0.9)
```

```
EnhancedVolcano(dds, lab = rownames(dds), x = 'avg_logFC', y = 'p_val_adj',
ylim=c(0,350), xlim = c(-3, 8), pCutoff = 0.05, FCcutoff = 1.5, transcriptLabSize =
4.0, col=c('darkgrey','darkgrey','darkgrey','darkred'), transcriptPointSize = 1.5,
cutoffLineCol = 'blue', colAlpha = 0.9, drawConnectors = TRUE, widthConnectors = 0.2,
colConnectors = "grey")
EnhancedVolcano(dds, lab = rownames(dds), x = 'avg_logFC', y = 'p_val_adj',
ylim=c(0,350), xlim = c(-3, 8), pCutoff = 0.05, FCcutoff = 1.5,
col=c('darkgrey','darkgrey','darkgrey','darkred'), transcriptPointSize = 1.5,
cutoffLineCol = 'blue', colAlpha = 0.9, selectLab = "TU3")
write.table(dds,file="MAST-DGE.csv")
### Generate heatmap comparing clusters
# Set up list of viral transcription units to plot
VirusList <- c("TU1", "TU2", "TU3", "TU4", "TU5", "TU6", "TU7", "TU8", "TU9", "TU10",
"TU11", "TU12", "TU14", "TU15", "TU16", "TU17", "TU18", "TU19", "TU20", "US1",
"US12", "RS1", "RL1", "RL2")
# Set up list of significantly upregulated cellular genes to plot
HostUpList <-
c("AABR07030834.1","Cdkn1c","Gadd45b","Gadd45g","Galns","Hspa1b","Hspa2","Idi1","Igf2
 ,"Ing1","Ldah","LOC690422","Mgp","Nefh","Nefm","Nusap1","RGD1562673","Srsf2","Tchh",
"Zdbf2")
# Set up list of randomly sampled cellular genes that are not differentially
expressed
HostNoChangeList <-
c("Bag3","Chp1","Ddit3","Fdft1","Gadd45a","Ngb","Rgs17","S100a1","Serpinb1a","Vip")
# Set up list of significantly downregulated cellular genes to plot
HostDownList <- c("Basp1", "Hspb1", "Mmd")</pre>
# Randomly subsample 100 cells from each population (to make plot manageable)
sample<-subset(neurons.combined, downsample=100)</pre>
### Generated plots
DoHeatmap(sample, features = VirusList, size = 3) + scale fill gradientn(colors =
rev(RColorBrewer::brewer.pal(n = 7, name = "RdBu")))
DoHeatmap(sample, features = HostUpList, size = 3) + scale fill gradientn(colors =
rev(RColorBrewer::brewer.pal(n = 7, name = "RdBu")))
DoHeatmap(sample, features = HostDownList, size = 3) + scale_fill_gradientn(colors =
rev(RColorBrewer::brewer.pal(n = 7, name = "RdBu")))
DoHeatmap(sample, features = HostNoChangeList, size = 3) +
scale fill gradientn(colors = rev(RColorBrewer::brewer.pal(n = 7, name = "RdBu")))
```