

# **Supporting Information**

for Adv. Sci., DOI: 10.1002/advs.202103853

Handheld device for selective benzene sensing over toluene and xylene

Ines C. Weber, Pascal Rüedi, Petr Šot, Andreas T. Güntner, Sotiris E. Pratsinis

#### Supporting Information

#### Handheld device for selective benzene sensing over toluene and xylene

Ines C. Weber, Pascal Rüedi, Petr Šot, Andreas T. Güntner, Sotiris E. Pratsinis



Fig. S1: Benzene selectivity at higher confounder concentrations. Detector responses to 1 - 25 ppm CO (orange), 4 ppm *m*-xylene (blue) and toluene (red), and a mixture of 2 ppm (each) *m*-xylene and toluene (purple) at 50% RH. For comparison, the response to 1 ppm benzene (dashed line) is shown.



Fig. S2: Benzene selectivity over NO<sub>2</sub>. Detector response when exposed subsequently to 1 ppm benzene ( $0 \le t \le 15 \text{ min}$ ), NO<sub>2</sub> ( $30 \le t \le 45 \text{ min}$ ) and their mixture ( $60 \le t \le 75 \text{ min}$ ) at 50% RH.



Fig. S3: Conversion on the WO<sub>3</sub> catalyst. Catalytic conversion of 1 ppm benzene (squares), *m*-xylene (circles), toluene (triangles), acetaldehyde (diamonds), acetone (inverse triangles) and ethanol (stars) over WO<sub>3</sub>, as quantified by **a**) PTR-ToF-MS and **b**) the sensor as a function of the WO<sub>3</sub> temperature. Error bars for benzene, toluene and *m*-xylene in (a) correspond to n = 3 identically prepared WO<sub>3</sub> particle filters. Note that the sensor response in (b) was normalized to its value at 25 °C for better comparison to PTR-ToF-MS.



**Fig. S4: Catalytic performance of the miniaturized filter.** Concentration of 1 ppm *m*-xylene (circles), toluene (triangles) and benzene (squares) after a 40 mg WO<sub>3</sub> filter at 50% RH as a function of its temperature, as measured by PTR-ToF-MS.



**Fig. S5: Catalyst stability.** Conversion of a mixture of 1 ppm benzene (squares), toluene (triangles) and *m*-xylene (circles) at 50% RH over a WO<sub>3</sub> filter after storage at ambient condition for 100 days, as measured by PTR-ToF-MS.



Fig. S6: IR measurements of WO<sub>3</sub> nanoparticles after pyridine adsorption. IR profiles when pretreated at 400 °C under argon (green), saturated with pyridine (blue) and after desorption for 2 h (red). H-bonded pyridine (triangles), physisorbed pyridine (circles) and characteristic vibration modes of Brønsted (**B**) and Lewis (**L**) acid sites are indicated.



Fig. S7: XRD analysis of WO<sub>3</sub> at different annealing temperatures and ZnO. XRD patterns and reference peaks of the flame-made WO<sub>3</sub> annealed at 300 °C (green), 500 °C (blue), 700 °C (orange) and ZnO (red). Peak locations for monoclinic  $\gamma$ - (triangles),  $\epsilon$ -WO<sub>3</sub> (circles) and wurtzite ZnO (squares) are indicated. Crystal sizes (d<sub>XRD</sub>) as well as N<sub>2</sub> adsorption-measured specific surface areas (SSA) are indicated.



**Fig. S8: Morphology characterization of WO<sub>3</sub> at different annealing temperatures.** TEM images of WO<sub>3</sub> annealed at **a**) 300 °C and **b**) 700 °C.



**Fig. S9: Catalytic performance of differently annealed WO<sub>3</sub>.** Catalytic conversion of 1 ppm benzene (squares), *m*-xylene (circles), toluene (triangles), acetaldehyde (diamonds), acetone (inverted triangles) and ethanol (stars) over WO<sub>3</sub> annealed at **a**) 300 °C and **b**) 700 °C at 50% RH, as measured by PTR-ToF-MS.



**Fig. S10: ZnO material and catalytic characterization.** IR profiles when pretreated at 150 °C **a**) and 400 °C **b**) under argon (green), saturated with pyridine (blue) and after desorption for 2 h (red). H-bonded pyridine (triangles), physisorbed pyridine (circles) and characteristic vibration modes of Lewis (L) acid sites are indicated. **c**) HRTEM bright field image of the flame-made ZnO particles. Diameters of some particles are indicated. **d**) Catalytic conversion of 1 ppm benzene (squares), *m*-xylene (circles), toluene (triangles), acetaldehyde (diamonds), acetone (inverted triangles) and ethanol (stars) over ZnO at 50% RH, as measured by PTR-ToF-MS. The ZnO catalyst was tested at a catalyst surface area of 3.6 m<sup>2</sup> that is identical to the WO<sub>3</sub>.



Fig. S11: WO<sub>3</sub> nanoparticle images and size analysis. a) TEM bright field image. b) Particle size distribution with a mean geometric diameter ( $d_g$ ) and respective geometric deviation ( $\sigma_g$ ) of n = 517 particles.



**Fig. S12: Humidity and analyte variations during indoor air measurement. a)** Indoor air RH as measured with a commercial sensor (Sensirion SHT2x) over 24 h. b) Corresponding ethanol (stars) and acetone (circles) concentrations determined by PTR-ToF-MS.



Fig. S13: Detector bias and precision. Relative deviation between the detector and PTR-ToF-MS as a function of the concentration for room air spiked with benzene only (squares) and with additional 1 ppm toluene & *m*-xylene (triangles) for n = 22 samples. Bias and precision ( $\sigma$ ) are indicated.



Fig. S14: Hand-held detector calibration. Detector response when exposed to calibrated gas standards at 40% RH. Error bars correspond to n = 3 subsequent measurements.