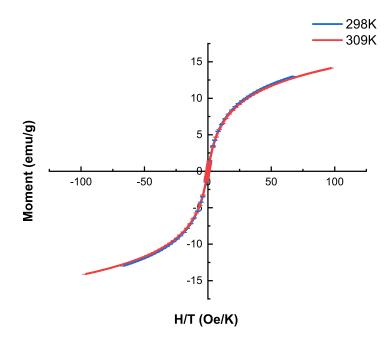
Electronic Supplementary Information

ES-MIONs Based Dual-modality PET/MRI Probes for Acidic Tumor Microenvironment Imaging


Xiuyan Wei^{1 §}, Haitao Zhao^{2 §}, Gang Huang³, Jianhua Liu¹ *, Weina He¹ *, Qingqing Huang³ *

- 1 Medical Chemistry and Bioinformatics Center, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
- 2 Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
- 3 Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China

* E-mail: jhliu7912@sjtu.edu.cn (J. Liu); hewn0319@sjtu.edu.cn (W. He); qingqinghuang80@gmail.com (Q. Huang)

[§]These authors contributed equally to this work.

Figure S1. Synthesis route of Fe₃O₄-PEG-DOTA/pHLIP NPs.

Figure S2. Magnetization curves of citrate-stabilized Fe₃O₄ NPs measured at 298K and 309K.

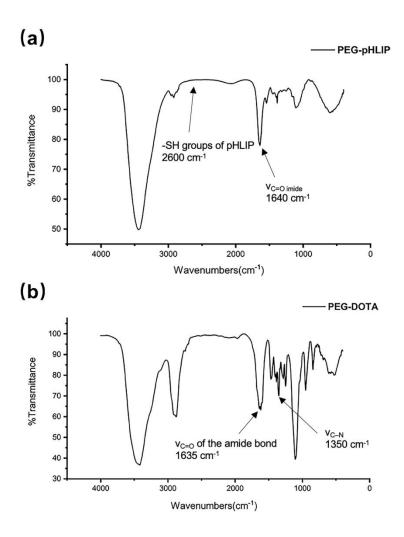
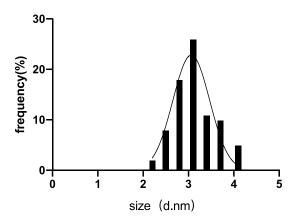
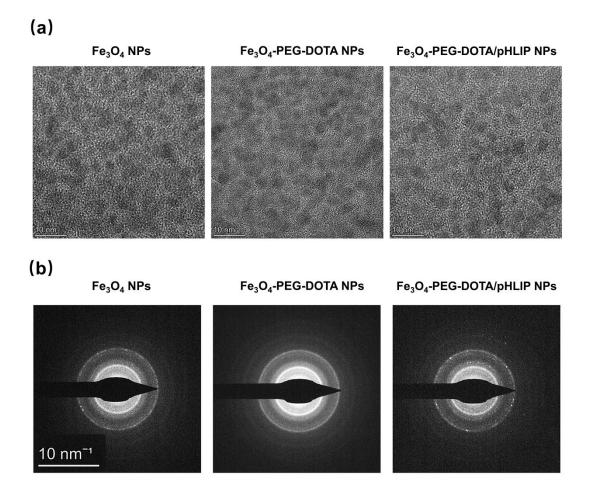
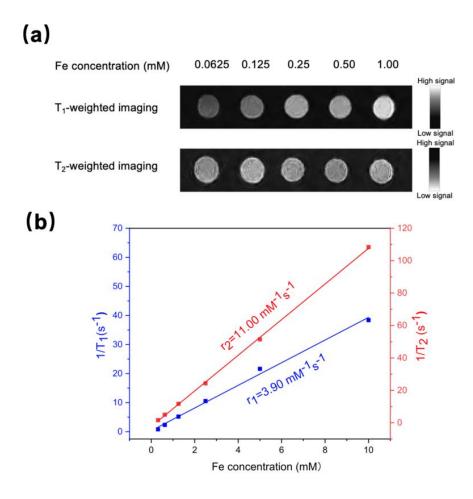
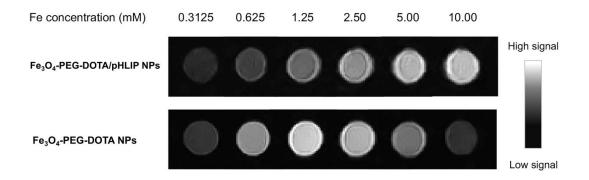
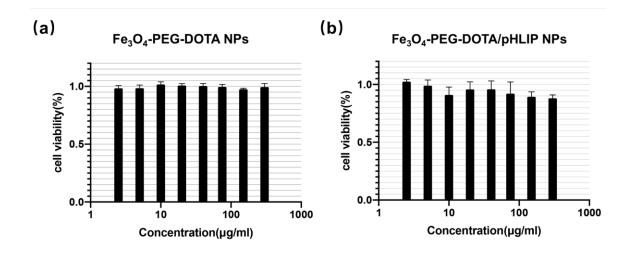


Figure S3. FTIR spectra of (a) NH₂-PEG-pHLIP and (b) NH₂-PEG-DOTA.

Figure S4. 1 H NMR spectra of (a) DOTA-NHS, (b) Var3 pHLIP, (c) NH₂-PEG-Fmoc, (d) NH₂-PEG-Mal, (e) NH₂-PEG-DOTA and (f) NH₂-PEG-pHLIP.


Figure S5. Size distribution of citrate-stabilized Fe₃O₄ NPs with Gaussian fitting.


 $\label{eq:Figure S6.} \textbf{Fe_3O_4} \quad \text{TEM} \quad \text{images} \quad \text{and} \quad \text{(b)} \quad \text{SAED} \quad \text{patterns} \quad \text{of} \quad \text{citrate-stabilized} \quad \text{Fe_3O_4} \quad \text{NPs}, \\ \text{Fe_3O_4-PEG-DOTA NPs} \quad \text{and} \quad \text{Fe_3O_4-PEG-DOTA/pHLIP NPs}.$

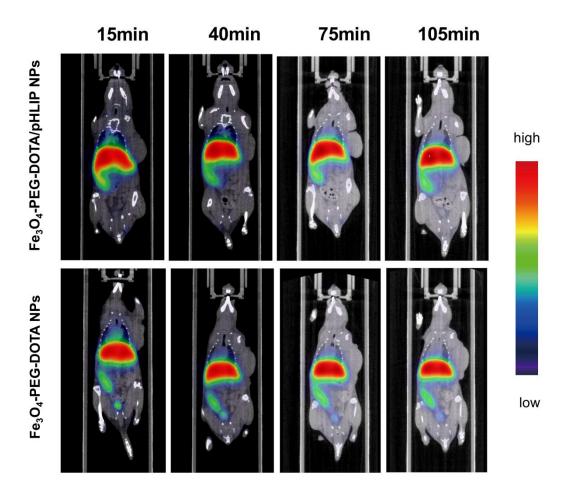

Figure S7. (a) Phantom images acquired from T_1 -weighted and T_2 -weighted MRI scans for Fe_3O_4 -PEG-DOTA NPs at different Fe concentrations at the room temperature 32-34 $^{\circ}$ C and pH 6.8. (b) Plot of the relaxation rates of Fe_3O_4 -PEG-DOTA NPs as a function of Fe concentration at the room temperature 32-34 $^{\circ}$ C and pH 6.8.

Figure S8. T₁-weighted MR imaging of Fe₃O₄-PEG-DOTA and Fe₃O₄-PEG-DOTA/pHLIP NPs at the Fe concentrations of 0.3125, 0.625, 1.25, 2.50, 5.00, 10.00 mM, respectively.

Figure S9. Cytotoxicity of 4T1 cells after treated with the (a) Fe_3O_4 -PEG-DOTA NPs and (b) Fe_3O_4 -PEG-DOTA/pHLIP NPs at different Fe concentrations for 24 h. 4T1 cells treated with PBS were used as control.

Figure S10. Whole-body PET/CT imaging on mice at 15 min, 40 min, 75 min, 105 min after the intravenous injection of Fe₃O₄-PEG-[⁶⁸Ga]DOTA/pHLIP NPs or Fe₃O₄-PEG-[⁶⁸Ga]DOTA NPs.

Table S1. Mean signal strength of in vitro tumor cellular uptake of Fe₃O₄-PEG-[⁶⁸Ga]DOTA/pHLIP NPs and Fe₃O₄-PEG-[⁶⁸Ga]DOTA NPs of 4T1 cells in pH 6.0, 6.4, 6.9, 7.4 respectively.

pН	Fe ₃ O ₄ -PEG-DOTA/pHLIP NPs (cpm)	Fe ₃ O ₄ -PEG-DOTA NPs (cpm)
6.0	9130	3172
6.4	6507	3390
6.9	6603	3133
7.4	4493	3196