Supporting Information

Structural insights into methylated DNA recognition by the methyl-CpG binding domain of MBD6 from *Arabidopsis thaliana*

Yutaka Mahana¹, Izuru Ohki², Erik Walinda³, Daichi Morimoto¹, Kenji Sugase¹, and Masahiro Shirakawa^{1*}

¹Department of Molecular Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto 615-8510, Japan ²Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

³Graduate School of Medicine, Kyoto University, Yoshida Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan

This file includes Supporting Figures S1–S6.

Supporting Figures

Figure S1. Gel shift assay of DNA binding by the AtMBD6 MBD domain at different concentrations. The molar ratios of the protein to DNA in the reactions were 0, 1, 5 for the left, middle, and right lanes, respectively.

Figure S2. Comparison of backbone amide chemical shifts of the AtMBD6 MBD domain at different concentrations. The virtually identical spectra demonstrate that MBD_{AtMBD6} exists as a monomer and is not in a monomer-homodimer equilibrium at micromolar concentrations.

Figure S3. Comparison of the SSP scores of the AtMBD6 MBD domain in the free and bound states. The SSP scores of MBD_{AtMBD6} in the bound state (black) were calculated by the SSP program. For comparison, the SSP scores in the free state (gray) estimated in our previous study²¹ are displayed. Schematic representation of the secondary structure is shown at the top.

			Ŗ	R	R	D	
	107 102						
AUVIDDI	115 105						
Ativibdz	115-195	TREWAIDKPNISKPPA	GWQRLLF	TROEGO	J-IKFADVI	TVAP-SGKKLKSTV	VQK
AtMBD3	62-140	TMRWFQDEHSIPKTPQ	GLKRVL	/V <mark>R</mark> TNC-	VKVDVY	YESLAP- <u>RR</u> KRFKSIKE	VATFIEDKEEFKDMTLEEVSFAAPKRLKL
AtMBD4	80-156	SRTWVIDKPGLPKTPK	(<mark>G</mark> FKRSL)	/L <mark>R</mark> KDY-	SKMDTY	YFT <mark>P-TG</mark> KK <u>L</u> RSRN	IAA <u>FV</u> EANPEFRNAPLGDFNFTVPKVMED
AtMBD5	22-104	KSRKRATPGDDNWLP	DWRTEIF	RVRTSG	rkagtv <mark>d</mark> kf	YYEPITGRKFRSKNE	VLYYLEHGTPKKKSVKTAENGD <u>S</u> HSEHSEGR
AtMBD6	69-149	KSRKRAAPGD-NWLP	GWRVED	(I <mark>R</mark> TSG/	ATAGSV <mark>D</mark> KY	YYEPNTGRKFRSRTE	VLY <mark>YL</mark> EHGTSKR-GTKKAENTY <mark>F</mark> NPDHFEGQ
AtMBD7-a	18-98	QLQIADPTSFCGKIMP	GWTVVNF	RP <mark>R</mark> SSN-	NGVVDTY	FIEPG <mark>TG</mark> RQFS <mark>S</mark> LE <i>I</i>	IHRH AGEVNDRRLTRAGSFFQDKTRVYEGS
AtMBD7-b	103-168	DHCGVEYASKGFRL	GWSVEE∖	/P <mark>R</mark> KN	SHYI <mark>D</mark> KY	YVE <u>R</u> K <mark>TG</mark> KRFRSLVS	VERYLRESRNSIEQQLR
AtMBD7-c	169-248	VLQNRRGHSKDFRL	GW IVEEK	(P <mark>R</mark> RS	SSHI D RS	YIEPG TG NK F RSMA/	VER <mark>YL</mark> ISVGNITLDSVSMVHSERLPLLMNRN
AtMBD8	331-412	KKKVVNACDYGGYLPR	GWRLML	′I <mark>K</mark> RKGS	SNLLL <u>A</u> CRR	YISP-D <mark>G</mark> QQFETCKE	VST <mark>YL</mark> RSLLESPSKNQHYYLQSDNKTLGQQP
AtMBD9	255-333	QNLRHFISERHGVLEC	GWRVEFF	RQPLNG-	YQLCAV	YCAP- <u>NG</u> KTFS <mark>S</mark> IQE	VACYLGLAINGNYSCMDAEIRN <u>E</u> NSLLQERL
AtMBD10	1-77	MENTDELVSIELPAPA	S <mark>WK</mark> KLF۱ א	′P <mark>K</mark> RAG-	-TPRKTEIV	FVA <mark>P-TG</mark> EEIS <mark>S</mark> RKO	LEQ <mark>YL</mark> KAHPGNPVISEFEWTTGETPRR
AtMBD11	1-77	MGGEEEVVSVELPAPS	<u>S<mark>W</mark>K</u> KLF۱	'P <u>N</u> KVG-	-SVKKT <u>E</u> VV	FVAP-TGEEISNRK(<pre>DLEQYLKSHPGNPAIAEFDWTTSGTPRR</pre>
AtMBD12	50-129	DGTTCDTWPSIPPIPT	GWSRSVI	II <mark>R</mark> SES-	TKFA <mark>D</mark> VY	Y <u>F</u> PP-S <mark>G</mark> ERLR <mark>S</mark> SA	VQSFLDNHPEYVREGVNRSQFSFQIPKPLDD
AtIDM1	239-318	PRPLLYKYVCKVLTAA	RWKIEKF	RERSAG-	RKHV <mark>D</mark> TF	Y––ISP–E <mark>G</mark> RKFREFGS	SAWKALGGILLADRKLMDTGTKKWTGINDFWS

Figure S4. Sequence alignment of the MBD domains in *A. thaliana*. Identical and homologous residues are colored in black and gray, respectively. The important residues for specific recognition of the methyl-CpG site and formation of the hairpin loop motif conserved among mammalian MBD domains are indicated on the top.

AtMBD6 vs. HsMBD1

AtMBD6

AtMBD6 vs. HsMBD2

AtMBD6 vs. HsMBD4

AtMBD6 vs. HsMBD3

Figure S5. Structural superposition of the AtMBD6 MBD domain and human MBD domains. (A) Superposition of the solution structure of MBD_{AtMBD6} in the free form (cyan) and the crystal or solution structure of human MBD domains bound to methyl-CpG-containing DNA (gray). DNA moieties are omitted for clarity. Side-chains of important residues marked by asterisks and daggers in Figure 4A are shown as sticks. Protein Data Bank IDs of the human MBD domains shown are: HsMBD1, 1IG4; HsMeCP2, 3C2I; HsMBD2, 6CNQ; HsMBD4, 2MOE; HsMBD3, 6CCG. (B) Superposition of all six MBD domains shown in Figure S5A focusing on the important residues.

Figure S6. Binding of the S100R AtMBD6 MBD domain to methyl-CpG-containing DNA. (A) Overall view of the spectral changes of S100R MBD_{AtMBD6} over the course of the titration. The enclosed region corresponds to Figure 4D. (B) Normalized CSD values of S100R MBD_{AtMBD6} upon binding toward methyl-CpG-containing DNA. (C) Spectral overlay of WT (blue) and S100R (red) MBD_{AtMBD6} bound to methyl-CpG-containing DNA (the molar ratios of the protein to DNA are 1:1.5 and 1:2, respectively). The blue line indicates the spectral border in the ¹⁵N dimension of the spectrum of WT MBD_{AtMBD6}. For clarity, only residues showing large CSD values between WT and S100R MBD_{AtMBD6} (as marked in blue in Figure S6D, bottom) are annotated. The paired side-chain amide resonances of asparagine and glutamine residues are connected by black horizontal lines. Cross-peaks in the areas surrounded by dashed lines, except for an amide NH₂ signal marked with an asterisk, correspond to aliased side-chain resonances. (D) Comparison of backbone amide chemical shifts between WT MBD_{AtMBD6} and the S100R mutant. Residues 99–101 were excluded in the calculation of the average values and the standard deviations.