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In the supplementary information, we describe the EM algorithm for maximizing the penalized likeli-

hoods in equation (18), prove the three main propositions, and provide other details and figures that were

omitted from the main document.

Web Appendix A Identifiability of total, natural direct and nat-

ural indirect effects

The total effect (TE), natural direct effect (NDE), and natural indirect effect (IDE), as defined by equations

(1-3) of the main text, are not generally identifiable [1]. However, we show that the three effects are

identifiable when the models defined by equations (4-7) hold. Moreover, although not discussed in the

main text, we can show that the three effects are identifiable even without the assumption of conditional

independence (i.e ef,i ∼ N(0, Iq)) among the factors. In other words, we prove that the effects are

identifiable when the true underlying model is defined by equations (A.1 - A.4) below and Σ∗q is of full

rank. We assume that the distribution of Yi belongs to an exponential family,

f(Yi; ζ
∗
i , ψ

∗
Y ) = exp [{Yiζ∗i − b(ζ∗i )} /a(ψ∗Y ) + c(Yi, ψ

∗
Y )] (A.1)

with

ζ∗i = γ∗Y + β∗EYEi + β∗
′

FYF
∗
i . (A.2)
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We also assume that F ∗i and M i are normally distributed:

F ∗i = β∗EFEi + e∗f,i with e∗f,i ∼ N(0,Σ∗q), (A.3)

where Σ∗q is the q by q covariance matrix of full rank and

M i = γ∗M + Λ∗F ∗i + e∗m,i with e∗m,i ∼ N(0,Ψ∗2),Ψ∗2 = diag(ψ∗21 , ..., ψ
∗2
p ). (A.4)

Moreover, the estimates of these effects from fitting the models assuming independence (i.e. ef,i ∼

N(0, Iq)) are consistent for the true estimates regardless of the format of Σ∗q.

Under the assumption of sequential ignorability, we know that the key terms in equations (1-3) defining

the TE, NDE, and NIE are related to the relevant probability distributions by

E [Yi{e′,F ∗(e)}] =

∫
x

∫
f ∗

E (Yi|F ∗i = f ∗, Ei = e′,X i = x) dFF ∗i |Ei=e,Xi=x
(f ∗)dFXi(x), (A.5)

where X i is the set of baseline covariates, dFF ∗i |Ei=e,Xi=x
(f ∗) is the conditional distribution of latent

factors F ∗i and dFXi(x) is the distribution of baseline covariates. Under a generalized linear model, the

conditional mean of Y is

E (Yi|F ∗i = f ∗, Ei = e′,X i = x) = g−1(γ∗Y + β∗EY e
′ + β∗

′

FY f
∗ + β∗

′

XY x)., (A.6)

where g() is a link function. We now note that equation A.5 is equivalent to

E [Yi{e′,F ∗(e)}] =

∫
x

∫
f ∗∗

g−1(γ∗Y + β∗EY e
′ + f ∗∗ + β∗

′

XY x)dFF ∗∗i |Ei=e,Xi=x(f
∗∗)dFXi(x), (A.7)

where f ∗∗ = β∗
′

FY f
∗ = β∗

′
FY Σ

∗1/2
q Σ

∗−1/2
q f ∗ = β

′

FY f and

F i = Σ∗−1/2
q F ∗i = Σ∗−1/2

q β∗EFEi + ef,i = βEFEi + ef,i with e∗f,i ∼ N(0, Iq).
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Furthermore, the parameters from the model defined by (4 - 7), βEF and βFY are identifiable up to

orthogonal rotation and β
′

FY βEF , β
′

FY ΩXF and β
′

FY βFY are identifiable (see Proposition 1). Therefore,

the conditional distribution of F ∗∗i = β
′

FYF i is

F ∗∗i |Ei = e,X i = x = β
′

FYF i|Ei = e,X i = x ∼ N
(
β
′

FY βEF e+ β
′

FY ΩXFx,β
′

FY βFY

)
.

Thus, expectation A.5 is identifiable.

Web Appendix B Derivation of the likelihoods

B.1 Prospective likelihood

Based on the model in (4-7), the conditional distribution of Yi,M i,F i in (9) is multivariate normal with

mean vector (µY ,µM ,µF ), where

µY = γY + (β′FY βEF + βEY )Ei, µM = γM + ΛβEFEi, µF = βEFEi, (B.1)

and covariance matrix

ΣY,M,F =


β′FY βFY + σ2

Y β′FY Λ′ β′FY

ΛβFY ΛΛ′ + Ψ2 Λ

βFY Λ′ I

 . (B.2)

We also use following definitions of the matrices ΣF (Y,M) and ΣY,M ,

ΣF (Y,M) = Cov(F, (Y,M)|E) =

[
βFY Λ′

]
, (B.3)

ΣY,M = Cov(Y,M |E) =

β′FY βFY + σ2
Y β′FY Λ′

ΛβFY ΛΛ′ + Ψ2

 . (B.4)
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B.2 Retrospective likelihood

Here, we assume Ei ∼ N(γE, σ
2
E). Then under the rare disease assumption, the joint distribution ofM i,F i

and Ei in controls is multivariate normal with mean vector (γE,µM ,µF ),

µM = γM + ΛβEFγE, µF = βEFγE, µE = γE, (B.5)

and covariance matrix

ΣE,M,F =


σ2
E σ2

Eβ
′
EFΛ′ σ2

Eβ
′
EF

σ2
EΛβEF σ2

EΛβEFβ
′
EFΛ′ + ΛΛ′ + Ψ2 σ2

EΛβEFβ
′
EF + Λ

σ2
EβEF σ2

EβEFβ
′
EFΛ′ + Λ′ σ2

EβEFβ
′
EF + I

 . (B.6)

We further define the matrices ΣF (E,M) and ΣE,M

ΣE(M,F ) = Cov(F, (E,M)) =

[
σ2
EβEF σ2

EβEFβ
′
EFΛ′ + Λ′

]
, and (B.7)

ΣE,M = Cov(E,M) =

 σ2
E σ2

Eβ
′
EFΛ′

σ2
EΛβEF σ2

EΛβEFβ
′
EFΛ′ + ΛΛ′ + Ψ2

 . (B.8)

Lastly, the joint distribution of M i,F i and Ei in cases is also multivariate normal with the covariance

matrix ΣE,M,F , but a different mean vector (µ1
E,µ

1
M ,µ

1
F ),


µ1
E

µ1
M

µ1
F

 =


γE

γM + ΛβEFγE

βEFγE

+ ΣEMF


βEY

0

βFY

 . (B.9)
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Web Appendix C EM algorithms to obtain θ̂
∗
P

C.1 Basic EM steps

We use a fast coordinate descent algorithm in the maximization step of the EM algorithm [8, 10] based

on the approaches developed for penalized factor analysis [5, 6, 12]. First, we outline of the EM algorithm

and then discuss the details separately for prospective and retrospective sampling.

Recall, for a fixed set of regularization parameters, {ρ1, ρ2, ρ3}, the goal of the (k + 1)th iteration of

the M-step is to find the parameters that maximize the expected value of the penalized full likelihood

(EPFLL), where the expectation is computed using the parameters from the kth iteration:

EPFLL(θ|θ̂
k
) = E

(
LF (θ)|Yi, Ei,M i; θ̂

k
)
− ρ1

q∑
j=1

P (βFY,j)− ρ2

q∑
j=1

P (βEF,j)− ρ3

p∑
m=1

q∑
j=1

P (λmj). (C.1)

Under prospective sampling, the full likelihood can be decomposed into three independent parts (see 10)

that are maximized separately at each M-step

arg max
γY ,βFY ,βEY ,ψy

(
N∑
i=1

E
[
log {fY (Yi|Ei,M i,F i)} |Yi, Ei,M i; θ̂

k
]
− ρ1

q∑
j=1

|βFY,j|
|β̂0
FY,j|

)
, (C.2)

arg max
βEF

(
N∑
i=1

E
[
log {fF (F i|Ei)} |Yi, Ei,M i; θ̂

k
]
− ρ2

q∑
j=1

|βEF,j|
|β̂0

EF,j|

)
, (C.3)

and

arg max
γM ,Λ,Ψ2

(
N∑
i=1

E
[
log {fM (M i|F i)} |Yi, Ei,M i; θ̂

k
]
− ρ3

p∑
m=1

q∑
j=1

|λmj|
|λ̂0
mj|

)
. (C.4)

We note that each objective function (C.2 - C.4) is non-convex in γY ,βFY , βEY , ψY ,βEF ,γM ,Λ,Ψ
2, γE

and σ2
E. However, each objective function is convex when the variances ψY , σ2

E and Ψ2 are fixed. There-

fore, we fix them at the previous estimates ψ̂kY , σ̂2k
E and Ψ̂2k and solve the three convex optimization

problems sequentially. After the regression coefficients are updated, the corresponding variance/dispersion
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parameters are updated.

For retrospective sampling, we modify these equations slightly (see Web Appendix C.3). Parameters

γM , Λ and Ψ2 are estimated from the same equation C.4. The remaining parameters can be updated by

maximizing the joint function of Ei and M i,

arg max
γE ,βEY ,σ

2
E ,βFY ,βEF

(
N∑
i=1

E
[
log {fEF (Ei,F i)} |Yi, Ei,M i; θ̂

k
]
− ρ1

q∑
j=1

|βFY,j|
|β̂0
FY,j|

− ρ2

q∑
j=1

|βEF,j|
|β̂0
EF,j|

)
. (C.5)

The objective function (C.5) can not be decomposed into two separate optimization problems because the

mean is a product of the parameters (see B.9). Additionally it is non convex in βFY , βEY ,βEF , γE and σ2
E.

However, this objective function is convex when βEF or βFY is fixed. We therefore update βEF from (C.5)

while keeping all other parameters fixed and update the remaining parameters while βEF is kept fixed.

At the (k + 1)th E-step, we calculate two conditional expectations of the latent variable Fi given Yi,

M i and Ei (see [5, 6, 10, 12]) used in the following M step:

Efi = E
(
F i|M i, Ei, Yi; θ̂

k
)

(C.6)

and

Ef2i
= E(F iF

′
i|Yi, Ei,M i; θ̂

k
) = V ar(F i|Yi, Ei,M i; θ̂

k
) +EfiE

′
fi
. (C.7)

We assume that either the distribution of (F i, Yi,M i) given Ei, or (F i, Ei,M i) given Yi is multivariate

normal to obtain closed form solutions. For other joint distributions numerical integration is required for

the for the E-step [11]. As a result, under prospective sampling, the conditional expectations of the latent

variables are
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Efi = β̂
k

EFEi +

[
β̂
k

FY Λ̂k′

]β̂k
′

FY β̂
k

FY + σ̂2k
Y σ̂2k

E β̂
k′

FY Λ̂k′

Λ̂kβ̂
k

FY Λ̂kΛ̂k′ + Ψ̂2k


−1 Yi − γ̂kY − (β̂

k′

FY β̂
k

EF + β̂kEY )Ei

M i − γ̂kM − Λ̂k′β̂
k

EFEi


= µkF + Σk

F (YM)Σ
−1k
Y,M

 Yi − µkY

M i − µkM


and

Ef2i
= I − Σk

F (YM)Σ
−1k
Y,MΣk

(YM)F +EfiE
′
fi
,

with Σk′

(YM)F = Σk
F (YM).

Under retrospective sampling, conditional expectations of latent variables are slightly different. In

controls, these expectations are

E0
fi

= µ̂0k
F +

[
σ̂2k
E β̂

k

EF σ̂2k
E β̂

k

EF β̂
k′

EF Λ̂k′ + Λ̂k′

] σ̂k2
E σ̂k2

E β̂
k′

EF Λ̂k′

σ̂k2
E Λ̂kβ̂

k

EF σ̂k2
E Λ̂kβ̂

k

EF β̂
k′

EF Λ̂k′ + Λ̂kΛ̂k′ + Ψ̂2k


−1  Ei − µ̂0k

E

M i − µ̂0k
M


= µ̂0k

F + Σk
F (EM)Σ

−1k
E,M

 Ei − µ̂0k
E

M i − µ̂0k
M


and

E0
f2i

= I + σ̂2k
E β̂

k

EF β̂
k′

EF − Σk
F (EM)Σ

−1k
E,MΣk

(EM)F +E0
fi
E0′

fi
,

with 
µ̂0k
E

µ̂0k
M

µ̂0k
F

 =


γ̂kE

γ̂kM + Λ̂kβ̂
k

EF γ̂
k
E

β̂
k

EF γ̂
k
E

 .
Lastly, in case samples, these expectations are
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E1
fi

= µ̂1k
F + Σk

F (EM)Σ
−1k
E,M

 Ei − µ̂1k
E

M i − µ̂1k
M



and

E1
f2i

= I + σ̂2k
E β̂

k

EF β̂
k′

EF − Σk
F (EM)Σ

−1k
E,MΣk

(EM)F +E1
fi
E1′

fi
,

with 
µ̂1k
E

µ̂1k
M

µ̂1k
F

 =


γ̂kE

γ̂kM + Λ̂kβ̂
k

EF γ̂
k
E

β̂
k

EF γ̂
k
E

+ Σk
E,M,F


β̂kEY

0

β̂
k

FY

 .

C.2 Further computational details for prospective sampling

We first assume that Yi has a normal distribution and Efi and Ef2i
are calculated at the E-step of the

(k + 1)th iteration. At the M-step, we then update the estimates of each set of regression coefficients (e.g.

{γY , βFY , βEY }, βFE, {Λ, γM}) in sequence by the one-step coordinate descent algorithm [14]. We repeat

this step until convergence of all parameters is met.

Here, we show how to update our estimate of the first set, involved in equation (C.2), and note that all

other updates proceed similarly. We calculate γ̂Y
k+1, β̂k+1

EY , and β̂
k+1

FY,j from the following set of sequential

iterations

γ̂k+1
Y =

∑N
i=1

(
Yi − β̂kEYEi −E′fiβ̂

k

FY

)
N

, (C.8)

β̂k+1
EY =

∑N
i=1

(
YiEi − γ̂k+1

Y Ei − EiE′fiβ̂
k

FY

)
E′E

, (C.9)

and

β̂k+1
FY,j = sign(β̃FY,j)

(
|β̃FY,j| −

ρ1

N ˆ|β0
FY,j|

)
+

for j=1,...,q, (C.10)
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where (·)+ is the soft thresholding operator defined as

(x)+ =


x, if x > 0

0, if x ≤ 0,

(C.11)

and

β̃FY,j =

∑N
i=1

(
YiEfi [j]− γ̂k+1

y Efi [j]−Ef2i
[j,−j]β̂

k+1

FY,−j − β̂k+1
EY EiEfi [j]

)
∑N

i=1Ef2i
[j, j]

, (C.12)

where Efi [j] denotes the jth elements of the vector Efi , Ef2i
[j, j] is the [j, j] element of the matrix and

Ef2i
[j,−j] is the jth row without the jth element of the matrix Ef2i

. Given these new estimates, we calculate

σ̂2k+1
Y by

σ̂2k+1
Y =

∑N
i=1

(
Yi − γ̂k+1

Y − β̂k+1
EY Ei

)2

− 2
∑N

i=1

(
Yi − γ̂k+1

Y − β̂k+1
EY Ei

)
E′fiβ̂

k+1

FY + β̂
′k+1

FY Ef2i
β̂
k+1

FY

N
. (C.13)

These M and E steps are repeated until convergence is satisfied and the final estimates, θ̂ are recorded.

C.3 Further computational details for retrospective sampling

The updating step for {γM ,Λ,Ψ2} is the same as for prospective sampling, with the caveat that Efi and

Ef2i
need to be calculated separately for cases and controls as discussed on previous section.

Here we show steps to estimate remaining parameters. In the first step we update βEF by maximizing

the penalized likelihood (C.5) with {γE, βEY ,βFY , σ2
E} set to kth iteration values. In the second step, we

update {γE, βEY ,βFY } with βEF set to k + 1th iteration values (i.e. maximization of E and M).

In the first step of the (k+ 1)th iteration of our coordinate descent algorithm, βEF is updated from the

conditional distribution of F i given Ei by

β̂k+1
EF,j = sign(β̃EF,j)

(
|β̃EF,j| −

ρ2

N |β̂0
EF,j|

)
+

for j = 1, ..., q, (C.14)

where (·)+ is the soft thresholding operator,
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β̃EF,j =

∑N1

i=1(Ei − µ̂1k
E )(E1

fi
[j]− µ̂1k

F [j]) +
∑N0

i=1(Ei − γ̂Ek)(E0
fi

[j]− µ̂0k
F [j])∑N1

i=1(Ei − µ̂1k
E )2 +

∑N0

i=1(Ei − γ̂kE)2
where (C.15)

µ̂1k
F , µ̂0k

F , µ̂1k
E and γ̂kE are estimates from the kth iteration and µ̂1k

F [j] is the jth element of its vector (see

section B.2). The remaining parameters γE, βFY , βEY and σ2
E are estimated from the rewriting the

optimization problem (C.5) as

arg max
γE ,βFY ,βEY

[
N1∑
i=1

−E

(
q∑
j=1

(Fi[j]− β̂
k+1

EF [j]Ei − βFY [j])2

2
|Yi = 1, Ei,M i; θ̂

k

)

−
N1∑
i=1

(Ei − γE − σ2
Eβ̂

k+1′

FE βFY − σ2
EβEY )2

2σ2
E

−
N0∑
i=1

(Ei − γE)2

2σ2
E

− ρ1

q∑
j=1

|βFY,j|
|β̂0
FY,j|

]
where (C.16)

F [j], β̂
k+1

EF [j] and β̂
k+1

FY [j] are the jth elements of the corresponding vectors. We treat (C.16) as a penalized

least squares problem that is optimized by sequential iterations

γ̂k+1
E =

∑N1

i=1(Ei − σ̂2k
E β̂

k+1′

FE β̂
k

FY − σ̂2k
E β̂

k
EY ) +

∑N0

i=1Ei
N1 +N0

, (C.17)

β̂k+1
EY =

∑N1

i=1(Ei − γ̂k+1
E − σ̂2k

E β̂
k+1′

FE β̂
k

FY )

σ̂2k
E N1

, (C.18)

and

β̂k+1
FY,j = sign(β̃FY,j)

(
|β̃FY,j| −

ρ1

N ˆ|β0
FY,j|

)
+

for j=1,...,q, (C.19)

where

β̃FY,j =

∑N1

i=1

(
Fi[j]− β̂

k+1

EF,jEi

)
+
∑N1

i=1

(
Ei − γ̂k+1

E − σ̂2k
E β̂

k+1′

FE,−jβ̂
k+1

FY,−j − σ̂2k
E β̂

k+1
EY

)
β̂
k+1

FE,j

N1

(
1 + σ̂2k

E (β̂
k+1

FE,j)
2
) . (C.20)

Finally, we recalculate a new value of σ2
E by using the updated means (µ̂1k+1

F , µ̂1k+1
E ) = (β̂

k+1

EF γ̂
k+1
E , γ̂k+1

E )+

Σ̂k+1
F,E β̂

k+1

Y as

σ̂2k+1
E =

∑N1

i=1(Ei − µ̂1k+1
E )2

N1

+

∑N0

i=1(Ei − γ̂k+1
E )2

N0

. (C.21)
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These iterations are repeated until convergence and θ̂
k+1

is recorded as the final estimate.

Web Appendix D Proofs of Propositions 1-3

Proof of Proposition 1 (Identifiability)

Here we show that the model presented by equations (4-7) with observed data (Y,E,M) is identifiable

under both prospective and retrospective sampling. We show that under the condition from Theorem 5.1

of Anderson and Rubin [2] (condition 1 of proposition 1), if for all values of Y,E,M , f(·;θ1) = f(·;θ2)

then all parameters are equal, with Λ, βEF and βFY identifiable up to rotation by an orthogonal matrix

Q (i.e., Λ1Q = Λ2, Q′β1
FY = β2

FY , Q
′β1

EF = β2
EF ). Here f(·;θ) denotes the conditional density used

in either in the prospective or retrospective likelihood (11 or 17). We note that the intercept γY is not

identifiable under retrospective sampling. In addition to the parameters θ, the mean γE and the variance

σ2
E of E are identifiable under retrospective sampling.

First, we assume that the data are obtained from prospective sampling, where the conditional density

f(·;θ) can be decomposed into

f(Yi,M i|Ei;θ) = fY (Yi|M i, Ei; γY ,βFY , βEY , ψ
2
Y ,βEF ,γM ,Λ,Ψ

2)fM(M i|Ei;βEF ,γM ,Λ,Ψ2),

where fy belongs to

fY (Yi; ζi, ψ) = exp [{Yiζi − b(ζi)} /a(ψY ) + c(Yi, ψY )] (D.1)

with

ζi = γY + βEYEi + β′FYF i. (D.2)

Next to show identifiability of Λ and Ψ2, we note that for all values of Y,E and M , if f(·;θ1) = f(·;θ2)

then f(M |E;β1
EF ,γ

1
M ,Λ

1,Ψ2,1) = f(M |E;β2
EF ,γ

2
M ,Λ

2,Ψ2,2). Based on the conditional distribution of

M i given Ei, which is multivariate normal with covariance matrix ΛΛ′+Ψ, and the sufficient condition 1 of

Anderson and Rubin [2], we conclude that Ψ2,1 = Ψ2,2 is identifiable and Λ is identifiable up to rotation by

an orthogonal matrix (i.e. Λ1Q = Λ2). To show identifiability of γM and βEF , we consider the conditional

11



mean of M i,

E(M |E) = γM + ΛβEFE, (D.3)

which implies Λ1β1
EF = Λ2β2

EF and γ1
M = γ2

M . Because the matrices Λ1 and Λ2 have rank q, the solution

to (D.3), βEF = (Λ′Λ)−1Λ′ E(M i|Ei) is unique up to orthogonal rotation.

Similarly, we show that for given sets of parameters Λ1, γ1
M , β1

EF and Λ2 = Λ1Q, γ2
M = γ1

M , β2
EF =

Q′β2
EF , equality of conditional densities fY (Y |E,M ; γ1

Y ,β
1
FY , β

1
EY , ψ

1
Y ) = fY (Y |E,M ; γ2

Y ,β
2
FY , β

2
EY , ψ

2
Y )

implies equalities and βFY up to orthogonal rotation (i.e. Q′β1
FY = β2

FY ).

The density of Y belongs to the exponential family with ζ = γY + βEYE + β′FYF and deviation

parameter ψY and has the form

fY (Y |E,M ; γY ,βFY , βEY , ψY ) =

∫
fY (Y |ζ;ψY )fF (F |E,M)dF . (D.4)

Conditional on E and M , the factors F have a multivariate normal distribution with mean and covariance

E(F |E,M ) = βFEE + Λ′
(
ΛΛ′ + Ψ2

)−1
(M − γM − ΛβEFE) = γ∗F + β∗FEEi + Λ∗

′
M i, (D.5)

Cov(F |E,M ) = I − Λ′
(
ΛΛ′ + Ψ2

)−1
Λ, (D.6)

where γ∗F = Λ′ (ΛΛ′ + Ψ2)
−1
γM , β∗FE = (I−Λ′ (ΛΛ′ + Ψ2)

−1
Λ)βFE and Λ∗ = (ΛΛ′ + Ψ2)

−1
Λ. For sets of

parameters Λ1, γ1
M , β1

EF and Λ2 = Λ1Q, γ2
M = γ1

M , β2
EF = Q′β1

EF , we observe Q′γ∗1F = γ∗2F , Q′β∗1FE = β∗2FE

and Λ∗1Q = Λ∗2.

Using (D.6), ζ can be written as ζ = γY + β′FY γ
∗
F + βEYE + β′FY β

∗
FEE + β′FY Λ∗

′
M + β′FYZ with

random error coming from Z ∼ N
(

0, I − Λ′ (ΛΛ′ + Ψ2)
−1

Λ
)

. The integral in (D.4) is thus equivalent to

fY (Y |E,M ; γY ,βFY , βEY , ψy) =

∫
fY (Y |ζ;ψY )fF (F |E,M )dF =

∫
fY (Y |ζ;ψY )fz(Z)dZ. (D.7)

We now reformulated our set-up in a way that is equivalent to Berkson measurement error model [3].

In that model the parameters cannot be identified except when the variance of the term Z is known. Here,

the variance of Z is , I − Λ′ (ΛΛ′ + Ψ2)
−1

Λ, is known. Therefore, identifiability of the fixed effects of E

12



and M , γY + β′FY γ
∗
F , β′FY Λ∗

′
, βEY + β′FY β

∗
EF and the deviation parameter ψY have been discussed in [4]

and proven for linear and logistic regression models in [7]. As a result, we obtain

γ1
Y + β1′

FY γ
∗1
F = γ2

Y + β2′

FY γ
∗2
F , β

1
EY + β1′

FY β
∗1
EF = β2

EY + β2′

FY β
∗2
EF and β1′

FY Λ∗1
′
= β2′

FY Λ∗2
′

(D.8)

Because Λ∗1Q = Λ∗2 and both matrices have rank q, the equality (D.8) impliesQ′β1
FY = β2

FY and remaining

equalities γ1
Y = γ2

Y , β1
EY = β2

EY and ψ1
y = ψ2

y are straight forward to see. Hence, the proposition is proven

for prospective sampling.

Under retrospective sampling, identifiability of the parameters θ (except γY ) follows from the above

proof and the form of the joint distribution of E and M . Identifiability of γM , Λ, βEF and Ψ2 follows

from the corresponding proofs for prospective sampling. Recall that the joint density of the observed data

in controls, f(Ei,Mi|Yi = 0;θ, γE, σ
2
E) is a multivariate normal distribution with mean and covariance

presented in section B.2. As result, identifiability of γE and σ2
E from the marginal distribution of E in

controls is trivial. Lastly, recall that in cases f(Ei,Mi|Yi = 0;θ, γE, σ
2
E) is multivariate normal distribution

with the same covariance matrix but different meansµ1
E

µ1
M

 =

 γE

γM + ΛβEFγE

+

 σ2
E σ2

Eβ
′
EF

σ2
EΛβEF σ2

EΛβEFβ
′
EF + Λ


βEY
βFY

 (D.9)

Identifiability of βEY and βFY up to orthogonal rotation follows from equality of mean vectors (D.9)

between two joint distributions in cases. Since γE, γM +ΛβEFγE, σ2
E and elements of the covariance matrix

ΣE,M are unique, βEY is unique and βFY is unique up to orthogonal rotation.

Proof of Proposition 2 (Convergence of the EM algorithm)

Convergence of the EM algorithm to a single stationary point θ∗P follows from direct extension of Theorem

1 [12] to adaptive lasso penalties.

Proof of Proposition 3 (Consistency/Oracle-properties)

Let A = {j|βFY,j 6= 0} index the set of factors with effects on Y not equal to 0, Â =
{
j|β̂FY,j 6= 0

}
index

the set of factors with estimated effects on Y not equal to 0, β̂
S

FY =
{
β̂FY,j : j ∈ A

}
be the vector of

13



estimates for the non-zero parameters and φS = (γY ,β
S
FY , βEY ). Here, we show

lim
N→∞

P
(
Â = A

)
= 1 (D.10)

and as N →∞
√
N(φ̂

S
− φS)→d N

(
0, I−1

φS

)
, (D.11)

for both prospectively and retrospectively sampled data.

Consistency and asymptotic normality for other parameters, γ̂E, γ̂M , the factor loadings Λ̂S and ef-

fects β̂
S

FE follow from the decomposition of the distribution f into four parts as in (10), Theorem 4.2 of

Shrivastava et al. (2014) and the proofs for (D.10) and (D.11).

We prove statements (D.10) and (D.11) by considering one iteration of the EM algorithm, which

is a variation of M-estimation (Van der Vaart, 2000). Let θ̂0 be the initial
√
N -consistent estimate of

θ = (γY ,βFY , βEY , σ
2
Y , γE,βEF , σ

2
E,γM ,Λ,Ψ

2). Let γ∗Y ,β
∗
FY , β

∗
EY and A∗ be the true values, γY = γ∗Y +

uγY√
N

, βFY = β∗FY +
uβFY√

N
, βEY = β∗EY +

uβEY√
N

and for convenience we set β∗ = (γ∗Y , β
∗
EY ,β

∗
FY ), u =

(uγY , uβEY ,uβFY ) and X i = (1, Ei,F i). Then, the expected penalized full log-likelihood with a fixed value

of ψY is

EPFLLn(uγY ,uβFY , uβEY ) =

N∑
i=1

E
[
Yi(β

∗′Xi +
u′Xi√
N

)− b(β∗
′
Xi +

u′Xi√
N

)|Yi, Ei,M i; θ̂0

]
+ ρn

q∑
j=1

|β∗FY,j +
uβFY ,j√

N
|

|β̂0
FY,j |

.

(D.12)

Let (ûγY , ûβFY , ûβEY ) = arg minuγY ,uβFY ,uβEY
EPFLLn(uβ0 ,uβFY , uβEY )−EPFLLn(0,0, 0); then one step-

estimates for γY , βFY and βEY are γ̂Y = γ∗Y +
ûγY√
N

, β̂FY = β∗FY +
ûβFY√

N
and β̂EY = β∗EY +

ûβEY√
N

. Using a

14



second order Taylor expansion,

EPFLLn(uγY ,uβFY , uβEY )− EPFLLn(0,0, 0) ∼
N∑
i=1

E
[(
Yi − b′(β∗

′
Xi)

)X ′iu√
N
|Yi, Ei,M i; θ̂0

]
︸ ︷︷ ︸

Part I

−
N∑
i=1

E

[
b′′(β∗

′
Xi)u

′XiX
′
iu

2N
|Yi, Ei,M i; θ̂0

]
︸ ︷︷ ︸

Part II

−
N∑
i=1

E

[
b′′′(β+′Xi)(u

′Xi)
3

6N3/2
|Yi, Ei,M i; θ̂0

]
︸ ︷︷ ︸

Part III

+
ρn√
N

q∑
j=1

√
N
|β∗FY,i +

uβFY,j√
N
| − |β∗FY,j |

ˆ|β0
FY,j |︸ ︷︷ ︸

Part IV

(D.13)

where β+ is between β∗ and β∗ + u√
N

.

The sum in Part I converges to u′ε, with ε following a multivariate normal distribution with mean 0 and

covariance

cov(ε) = E
[(
Yi − b′(β∗

′
X i)

)2

X ′iX;θ∗
]

= IφS ,

where IφS is the Fisher information matrix. By the properties of the second derivative of a density

belonging to the GLM class, the Part II of the sum converges to

lim
N→∞

N∑
i=1

E

[
b′′(β∗

′
X i)u

′X iX
′
iu

N
|Yi, Ei,M i; θ̂0

]
= u′ E

[(
Yi − b′(β∗

′
X i)

)2

X iX
′
i;θ
∗
]
u = u′ IφS u

Because b′′′(x) < 5 for any X and X have finite moments, the Part III the sum in D.13 converges in

probability to

lim
N→∞

N∑
i=1

E

[
b′′′(β+′X i)(u

′X i)
3

N3/2
|Yi, Ei,M i; θ̂0

]
= 0.

Lastly, we derive the convergence of Part IV in (D.13) using assumption that ρN/
√
N → 0 and ρN →∞.

Let β∗FY,j 6= 0 , then

ρn√
N

√
N
|β∗FY,j +

uβFY,j√
N
| − |β∗FY,j|

ˆ|β0
FY,j|

=
ρn√
N

1

|β̂0
FY,j|

uα,isign(β∗FY,j)→p 0 by Slutsky’s theorem. (D.14)
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Let β∗FY,j = 0, then

ρn√
N

√
N
|β∗FY,j +

uβFY,j√
N
| − |β∗FY,j|

ˆ|β0
FY,j|

= ρn
1

|
√
Nβ̂0

FY,j|
uα,j →d


0 if uβFY,j = 0

∞ if uβFY,j 6= 0

by Slutsky’s theorem.

(D.15)

By combining (D.14) and (D.15), we obtain the following limiting convergence of Part IV

ρn√
N

√
N
|β∗FY,j +

uβFY,j√
N
| − |β∗FY,j|

|β̂0
FY,j|

→d


0 if uβFY,j = 0 for all j /∈ A∗

∞ otherwise.

(D.16)

In conclusion, we observed that

EPFLLn(uγY ,uβFY , uβEY )− EPFLLn(0,0, 0)→d


u′
φS
εφS − 1/2u′

φS
IφS uφS if uβFY,j = 0 for all j /∈ A∗

∞ otherwise,

(D.17)

where εφS = (εγY , εβFY ,A∗ , εβEY ), uφS = (uγY , uβFY ,A∗ , uβEY ) and IφS is Fisher’ information for γY , βS∗FY

and βEY . The difference, EPFLL(uγY ,uβFY , uβEY )−EPFLL(0,0, 0), is convex and the unique minimum

of (D.17) is

(ûγY , ûβEY , ûβFY ,A∗ , ûβFY ,A∗c)
∞ =

(
I−1

φS εφS ,0

)
. (D.18)

Following the epi-convergence results of Geyer (1994) and Knight and Fu (2000); we have

(ûβ0 , ûβEY ûβFY ,A∗ , ûβFY ,A∗c)→d

(
I−1

φS εφS ,0

)
(D.19)

Therefore, we prove asymptotically normality.

Next we show the consistency part. For any j ∈ A∗, the asymptotic normality results indicate that

β̂FY,j →p β
∗
FY,j; thus P (j ∈ Â) →p 1. It is left to show that for any j′ /∈ A∗, P (j′ ∈ Â) →p 0. By the
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Karush-Kuhn-Tucker optimality conditions, we have

N∑
i=1

E
[(
Yi − b′(β̂X i)

)
Fj′ |Yi, Ei,M i; θ̂0

]
= ρn

1

|β̂0
FY,j′ |

(D.20)

By dividing both parts by
√
N and using normal convergence of the estimates (β̂), square-root consistent

initial estimates (θ̂0) and Slutsky’s theorem (Delta method), we observe

∑N
i=1 E

[(
Yi − b′(β̂X i)

)
Fj′ |Yi, Ei,M i; θ̂0

]
√
N

→d N(0, σ2
s), (D.21)

and

ρn√
N |β̂0

FY,j′ |
→p ∞. (D.22)

Thus,

P
(
j′ ∈ ÂβFY

)
≤ P

(
1√
N

N∑
i=1

E
[(
Yi − b′(β̂X i)

)
Fj′|Yi, Ei,M i; θ̂0

]
= ρn

1√
N |β̂0

FY,j′ |

)
→ 0 (D.23)

Consistency and asymptotic normality of ψ̂Y follow from the estimation equations, asymptotic normality

of the regression coefficients and Slutsky’s theorem.

The proof for the retrospective likelihood follows from similar arguments. Here we again do not show

consistency and asymptotic normality for γ̂M , factor loadings Λ̂ and Ψ̂2 because of the decomposition of

the likelihood (16). Here we demonstrate consistency and asymptotic normality for other parameters from

the observation that γE,βFY , βEY ,βEF are estimated from (C.5) with σ2
E fixed at σ̂20

E initial square root

N estimate, which can be expanded to
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arg max
γE ,βFY ,βEY ,βEF

[
N1∑
i=1

−E

(
q∑
j=1

(Fi[j]− βEF [j]Ei − βFY [j])2

2
|Yi = 1, Ei,M i; θ̂0

)

−
N0∑
i=1

E

(
q∑
j=1

(Fi[j]− βEF [j]Ei)
2

2
|Yi = 0, Ei,M i; θ̂0

)
−

N1∑
i=1

(Ei − γE − σ̂20
E β

′
EFβFY − σ̂20

E βEY )2

2σ̂20
E

−
N0∑
i=1

(Ei − γE)2

2σ̂20
E

− ρ1

q∑
j=1

|βFY,j|
|β̂0
FY,j|

− ρ2

q∑
j=1

|βEF,j|
|β̂0
EF,j|

]
. (D.24)

Consistency and asymptotic normality for these parameters follows directly form of (D.24) and the

proof for prospective sampling. These are two penalized linear regressions with one of two parameters in

σ̂20
E β

′
EFβFY is treated as covariate. In this case, IφS is information matrix for φS = (γY ,β

S
FY , βEY ,β

S
EF )

This completes the proof of proposition 3.

Web Appendix E Covariate adjustment

Here, we rewrite our model, originally described by equations (4-7), to include a covariate vector X i =

(Xiq, ..., Xil)
′:

f(Yi; ζi, ψ) = exp [{Yiζi − b(ζi)} /a(ψY ) + c(Yi, ψY )] (E.1)

with

ζi = γY + βEYEi + β′FYF i + β′XYX i, (E.2)

F i = βEFEi + ΩXFX i + ef with ef ∼ N(0, Iq), (E.3)

and

M i = γM + ΛF i + em with em ∼ N(0,Ψ2),Ψ2 = diag{ψ2
1, ..., ψ

2
p}, (E.4)

where β′XY = (βXY,1, ..., β
′
XY,l)

T is a vector of length l and ΩXF is a q by l matrix. To estimate the vector of

parameters θ = (γY ,βFY , βEY ,βXY , ψY ,βEF ,ΩXF ,γM ,Λ,Ψ
2) using the observed data, (Yi,M i, Ei,X i)

for i = 1, ..., N , we derive prospective and retrospective likelihoods.
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E.1 Prospective likelihood

Under prospective sampling, the full data likelihood for (Y,M ,F ) is

LFP (θ) =
N∏
i=1

f(Yi,M i,F i|Ei,X i;θ), (E.5)

where f is the product of the densities defined by equations (E.1-E.4),

f(Yi,M i,F i|Ei,Xi;θ) = fY (Yi|F i, Ei,Xi; γY ,βFY ,βXY , βEY , ψY )fM (M i|F i;γM ,Λ,Ψ2)fF (F i|Ei,Xi;βEF ,ΩXF ).

(E.6)

Here, we use fM , fY , and fF to denote the implied distribution of M , Y , and F , respectively. However,

the factors F i are not observed. The likelihood for the observed data, (Yi,M i), is therefore

LOP (θ) =
N∏
i=1

∫
F
f(Yi,M i,F i|Ei,X i;θ)dF . (E.7)

Although LOP (θ) does not have a closed form in general, LOP (θ) can be written as the product of normal

distributions when Yi is normally distributed. Based on the model in (E.1-E.4), the conditional distribution

of Yi,M i,F i in (E.5) is multivariate normal with mean vector (µY ,µM ,µF ),

µY = γY + (β′FY βEF + βEY )Ei + (β′FY ΩXF + β′XY )X i,

µM = γM + ΛβEFEi + ΛΩXFX i,

µF = βEFEi + ΩXFX i,

and the same covariance matrices (B.2-B.4). Identifiability of all parameters follows from Proposition 1

while treating exposure E as a vector (e.g (Ei,X i)). We can estimate the parameters using a similar EM

procedure to that initially described for the scenario without covariates (see Web Appendix Web Appendix

C).
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E.2 Retrospective likelihood

Under retrospective sampling, N1 cases and N0 controls are drawn from the population of cases and

controls, respectively, and biomarkers, exposures and covariates are observed (N1 + N0 = N). Here we

assume Ei conditional on X i to be normally distributed with mean γE + β′XEX i and variance σ2
E in the

overall population. The corresponding likelihood has the form

LFR(θ) =
∏

i∈case
f(Ei,M i,F i|Yi = 1,Xi;θ)

∏
i∈control

f(Ei,M i,F i|Yi = 0,Xi;θ). (E.8)

To approximate the likelihood, we assume the outcome is rare in the general population, i.e.,

P (Yi = 1|Ei,F i,Xi; γY , βEY ,βFY ,βXF ) =
exp(γY + βEY Ei + β′FY F i + β′XYXi)

1 + exp(γY + βEY Ei + β′FY F i + β′XYXi)
≈ exp(γY + βEY Ei + β′FY F i+β

′
XYXi).

(E.9)

Under the rare disease assumption, the distribution of (Ei,M i,F i) in controls is approximately equal to

the distribution in the general population. Thus, under models (E.1-E.4)

f(Ei,M i,F i|Yi = 0,X i;θ) ≈ f(Ei,M i,F i|X i;θ) = φ
(
Ei,M i,F i|X i;µ0|X ,ΣE,M,F

)
, (E.10)

where φ(·|X i;µ0|X ,ΣE,M,F ) is a multivariate normal distribution with mean µ0|X = (µE|X ,µM |X ,µF |X)

and the covariance matrix ΣE,M,F . Under models (E.1-E.4) and the distributional assumption about Ei,

the mean vectors are

µM |X = γM + Λ (βEFγE + (ΩXF + βEFβ
′
XE)X i) ,

µF |X = βEFγE + (ΩXF + βEFβ
′
XE)X i,

µE|X = γE + β′XEX i,

and the covariance matrices in ΣE,M,F are equal to (B.6-B.8).

The distribution of (Ei,M i,F i) in cases under model (E.9) is

f(Ei,M i,F i|Yi = 1,X i;θ) =
f(Ei,M i,F i, Yi = 1|X i;θ)

P (Yi = 1|X i;θ)
≈ φ

(
Ei,M i,F i|X i;µ1|X ,ΣE,M,F

)
(E.11)
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where µ1|X = (µ1
E|X ,µ

1
M |X ,µ

1
F |X)′ = (µE|X ,µM |X ,µF |X)′+ ΣE,M,F (βEY ,0

′,β′FY )′. We note that the effects

of X i on Yi (i.e. βXY ) are not included in µ1|X because those parameters appear in both the numerator

and denominator of (E.11) and cancel out. Based on the above approximations, the likelihood for the full

data (Ei,M i,F i) is

LFR(θ) =
∏
i∈case

φ(Ei,M i,F i;µ1|X ,ΣE,M,F )
∏

i∈controls

φ(Ei,M i,F i;µ0|X ,ΣE,M,F ) (E.12)

and the likelihood for the observed data is therefore easily shown to be

LOR(θ) =
∏
i∈case

φ(Ei,M i;µ1;M,E|X ,ΣM,E)
∏

i∈controls

φ(Ei,M i;µ0;M,E|X ,ΣM,E), , (E.13)

where µ1;E,M |X = (µ1
E|X ,µ

1
M |X), µ0;E,M |X = (µE|X ,µM |X), and ΣE,M is the appropriate sub-matrix of

ΣE,M,F . Under the retrospective likelihoods (E.13 or E.12), both the intercept γY and vector of effects

βXY are not identifiable. Identifiability of the other parameters follows from Proposition 1 and the form of

the mean vectors. We can estimate the parameters using a similar EM procedure to that initially described

for the scenario without covariates (Web Appendix C).

E.2.1 Matched case-control design

Here, we derive two methods for analyzing case-control data. For simplicity of exposition, we shall assume

“one-to-one“ matching for each case/control pair and we will let E1
i ,M

1
i ,F

1
i , Y

1
i ,X

1
i be a vector random

variables for the case and E2
i ,M

2
i ,F

2
i , Y

2
i ,X

2
i be a vector random variables for the matched control. We

shall assume that we first identify a case and then, based on the matching variables X i, select the control.

The first method conditions on there being one case per pair [9] and describes the full likelihood by

LFMCC(θ) =

N1∏
i=1

f(Y 1
i ,M

1
i ,F

1
i , E

1
i , Y

2
i ,M

2
i ,F

2
i , E

2
i |X1

i ,X
2
i , Y

1
i + Y 2

i = 1,X1
i = X2

i ;θ), (E.14)
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which can be rewritten as

LFMCC(θ) =

N1∏
i=1

f(Y 1
i = 1,M 1

i ,F
1
i , E

1
i , Y

2
i = 0,M 2

i ,F
2
i , E

2
i |X1

i ,X
2
i , Y

1
i + Y 2

i = 1,X1
i = X2

i ;θ)

P (Y 1
i + Y 2

i = 1|X1
i ,X

2
i ,X

1
i = X2

i ;θ)
(E.15)

Under the assumption of a rare outcome

P (Y 1
i + Y 2

i = 1|X1
i ,X

2
i ,X

1
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2
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i ;θ) = 2P (Y 1
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2
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1
i = X2

i ;θ),

which leads to a likelihood equivalent to that of a retrospective study without matching

LFMCC(θ) =

N1∏
i=1

f(Y 1
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1
i |X1

i ;θ)f(Y 2
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2
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≈
N1∏
i=1

φ(E1
i ,M

1
i ,F

1
i ;µ1|X ,ΣE,M,F )φ(E2

i ,M
2
i ,F

2
i ;µ0|X ,ΣE,M,F ). (E.17)

Hence, inference on (E.14) is the same as for the retrospective likelihood presented in the previous

section. We note, as discussed by VanderWeele and Tchetgen Tchetgen [13], our likelihood still includes

covariates, X i, because we need to estimate the effect of the exposure on the mediating factors in the

presence of these covariates. The second method for matched case-control study designs takes the

difference between the vector of measurements from the first and second observation within a pair. This

procedure removes the nuisance effects of X,βXF and βXE from the estimation. The vector of differences

(δEi, δM i, δF i)
′ = (E1

i ,M
1
i ,F

1
i )
′ − (E2

i ,M
2
i ,F

2
i )
′ is distributed as

(δM i, δF i, δEi)
′ ∼ N (ΣE,M,F (βEY ,0

′,β′FY )′, 2ΣE,M,F ) , (E.18)

and does not contain βXF and βXE. This approach eliminates the effects of covariates X i; however, we

prefer the former method for simplicity of description and the potential loss of precision from the reduction

of degrees of freedom.
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Web Appendix F Performance of Procedure: Violations in Model

Assumptions and Alternative Criteria for Model

Selection

We evaluated how our procedure perform when some of the underlying assumptions are violated. Specif-

ically, we considered scenarios where (i) the exposure directly affected the biomarkers (ii) the biomarkers

were not normally distributed (iii) the number of factors was misspecified. We also evaluated how our

procedure would perform if we used alternative criteria for model selection (e.g. BIC, AIC instead of

EBIC). We evaluated performance by simulations.

F.1 Simulations: Set-up

We first evaluated the properties of the procedures when the exposure directly affects individual biomarkers

and those biomarkers, in turn, directly affect the outcome (see Web Figure 1). Our underlying model could

then be described by:

ζi = γY + βEYEi +
20∑
j=1

βDMY,jMij, (F.1)

and for these first 20 biomarkers

Mij = βDEM,jEi + em,i with em,i,j ∼ N(0, 1). (F.2)

We also assumed that F i and M i are normally distributed:

F i = βEFEi + ef,i with ef,i ∼ N(0, Iq), (F.3)

where Iq is the q by q identity matrix and for other biomarkers

M i = γM + ΛF i + em,i with em,i ∼ N(0,Ψ2),Ψ2 = diag{ψ2
1, ..., ψ

2
p}. (F.4)
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For these simulations, the first twenty biomarkers were mediators (see Web Figure 1; βDEM,j ∈ {0.4·0.3 =

0.12, 0.5 · 0.3 = 0.15}, βDMY,j ∈ {0.4 · 0.3 = 0.12, 0.5 · 0.3 = 0.15} for j = 1, ..., 20). Moreover, we

assumed that there were fourteen factors (q = 14), each affecting twenty unique biomarkers; the first

four factors were associated only with E and the last ten factors were associated with neither E nor Y .

Otherwise parameters were similar to those described in the main text: λ1 ∈ {0.25, 0.3}, λ0 ∈ {0.4, 0.5}

, βEY = 0.3, βEF,1 = ... = βEF,4 = 0.7, γM,1 = ... = γM,p = 0.5, ψ2
1 = ... = ψ2

p = 1, γY = −4.6 (i.e.

P (Y = 1|E = 0, F1 = 0) = 0.01 for binary outcomes), and E ∼ N(0.5, 1).

We next evaluated the properties of the procedures when the biomarkers were not normally distributed.

Specifically, we considered two scenarios. For scenario 1, we assumed that the random error (i.e. em,i in

equation 4 of the main text) followed a normalized chi-squared distribution: em,i ∼ (1/
√

100)χ2(df =

50)−50/
√

100. For scenario 2, we assumed that the random error followed a standard normal distribution,

but the values were truncated at -1.7 (The ≈ 5% of values below -1.7 were set to -1.7.). All other parameters

were identical those described in the main text.

We next evaluated the properties of the procedures when we assumed that number of factors was 20

while, in truth, q = 15. Finally, we compared the properties of the procedure when using AIC or BIC

instead of EBIC.

F.2 Simulations: Results

We describe the properties of the procedures when the biomarkers are directly related to the exposure and

the outcome biomarkers in Web Figures 2 - 4. The key result is that, for all scenarios, IMA outperforms

LMVA, TMAO and TMAR. In most scenarios, LVMA, TMAO and TMAR detect no true positives (i.e.

TP ≈ 0). However, we do note that when using AIC for model selection, LVMA successfully detected

some of the mediators.

We describe the properties of the procedures when the biomarkers are not normally distributed in Web

Figures 13 - 18. We note that violations of normality did not affect the results. The power and relative

performance of LVMA was essentially unchanged.

We describe the properties of the procedures when assuming the number of factors is 20 in web Figures
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11 and 12. The performance of all procedures are robust to this misspecification of q.

We describe the properties of the procedures when using alternative criteria for model selection in Web

Figures 5-10. The relative performance of the procedures is the same for all criteria (EBIC, AIC, or BIC),

but the overall performance tends to be higher when using EBIC.

Finally, we use these simulations to highlight a few other observations. Web Figures 8-10 show that

as the effect size increases and the number of TP approaches the maximum of 20, the bias of LVMA in

estimating the conditional effect shrinks towards 0. Web Figures 19 - 21 show that the relative performance

of LVMA in detecting mediators increases when the loadings of the exposure related factors decrease.

Web Appendix G Further Discussion of the Breast Cancer Study

Recall, in the main paper, LVMA identified only a single factor associated with both BMI (β̂EF,1 = 0.0045)

and risk of breast cancer (β̂FY,1 = 0.23). This factor had 137 non-zero loadings but only 16 of these

loadings had an absolute value larger than 0.4, with the majority of the remaining metabolites having

loadings below 0.01. In Table 1, we list these 16 metabolites. In Web Figure 22, we display loadings for

all metabolites from LVMA.

Here, we consider the results when using the other three methods: TMAO, TMAR and IMA. We

note that neither TMAO or TMAR identified a statistically significant mediating factor and IMA did

not identify statistically significant mediation metabolites. First, we consider TMAO. Web Figure 23

summarizes results for TMAO method with q = 40 factors. All p-values from individually testing each

estimated factors were above 0.05. The most significant p-values (< 0.1) were for factors 1, 6, 9 and

17, (see Web Figure 23a) with, respectively 217, 304, 201, and 178 loadings having a magnitude (i.e.

absolute value) greater than 0 (see Web Figure 23b) and 62, 31, 26 and 14 loadings having a magnitude

larger than 0.2 (see Web Figure 23c). The next most significant factor (factor 8; p = 0.13) most closely

resembled the factor identified by LVMA (see Web Figure 23d). Web Figure 24 summarizes results for

TMAR method with q = 40 fitted factors. Second, we consider TMAR. The results were similar to those

obtained from TMAO, with six factors having p-values below 0.1 (see Figure 24a). Again, factor 8 closely

resembled the factor discovered by LVMA (see Web Figure 24d) and had a p-value of approximately 0.08.
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Third, we consider IMA. IMA detected eight metabolites with p-value below 0.01 but none of them below

Bonferroni threshold 0.05/481 = 0.0001 (see Web Figure 25 and Web Table 1). Importantly, these findings

reinforce our idea that joint modeling of the latent factors by LVMA can significantly increase the number

of discovered mediators.
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Web Appendix H Web Figures and Tables

Here, we present following additional figures and tables:

Web Figure 1: Causal graphs of the simulation models.

Web Figure 2: Continuous/Binary Outcome, EBIC selection and the exposure directly affects individual

biomarker.

Web Figure 3: Continuous/Binary Outcome, BIC selection and the exposure directly affects individual

biomarker.

Web Figure 4: Continuous/Binary Outcome, AIC selection and the exposure directly affects individual

biomarker.

Web Figure 5: Results for a simulation model with continuous outcome, large factor effects (λ1 = 0.3),

N = 300 and N = 500. BIC criteria was used.

Web Figure 6: Results for a simulation model with binary outcome, large factor effects (λ1 = 0.3),

N = 300 and N = 500. BIC criteria was used.

Web Figure 7: Results for a simulation model with continuous and binary outcome, small factor effects

(λ1 = 0.3), N = 300 and N = 500. BIC criteria was used.

Web Figure 8: Results for a simulation model with continuous outcome, large factor effects (λ1 = 0.3),

N = 300 and N = 500. AIC criteria was used.

Web Figure 9: Results for a simulation model with binary outcome, large factor effects (λ1 = 0.3),

N = 300 and N = 500. AIC criteria was used.

Web Figure 10: Results for a simulation model with continuous and binary outcome, small factor effects

(λ1 = 0.3), N = 300 and N = 500. AIC criteria was used.

Web Figure 11: Results for a simulation model with continuous outcome, large factor effects (λ1 = 0.3),

N = 300 and N = 500. Model with q = 20 factors was fitted and EBIC criteria was used.

Web Figure 12: Results for a simulation model with binary outcome, large factor effects (λ1 = 0.3),

N = 300 and N = 500. Model with q = 20 factors was fitted and EBIC criteria was used.

Web Figure 13: Results for a simulation model with continuous outcome, non-symmetric and heavy tailed

error. EBIC criteria was used.
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Web Figure 14: Results for a simulation model with binary outcome, non-symmetric and heavy tailed

error. BIC criteria was used.

Web Figure 15: Results for a simulation model with continuous outcome, non-symmetric and heavy tailed

error. AIC criteria was used.

Web Figure 16: Results for a simulation model with binary outcome, left truncated error and N = 500.

EBIC criteria was used.

Web Figure 17: Results for a simulation model with continuous and binary outcomes, left truncated error

and N = 500. BIC criteria was used.

Web Figure 18: Results for a simulation model with continuous and binary outcomes, left truncated error

and N = 500. AIC criteria was used.

Web Figure 19: Results for a simulation model with continuous outcome, large factor effects (λ1 = 0.3),

small exposure effects on factors (βEF,2 = 0.25), N = 300 and N = 500. EBIC criteria

was used.

Web Figure 20: Results for a simulation model with binary outcome, large factor effects (λ1 = 0.3), small

exposure effects on factors (βEF,2 = 0.25), N = 300 and N = 500. EBIC criteria was

used.

Web Figure 21: Results for a simulation model with continuous and binary outcomes, small factor effects

(λ1 = 0.25), small exposure effects on factors (βEF,2 = 0.25) and N = 500. EBIC criteria

was used.

Web Figure 22: Loading affects on metabolites by the factor mediating increased BMI and ER+ breast

cancer in PLCO.

Web Figure 23: Summary results of TMAO method for detecting factors that mediate increased BMI and

ER+ breast cancer in PLCO.

Web Figure 24: Summary results of TMAR method for detecting factors that mediate increased BMI and

ER+ breast cancer in PLCO.

Web Figure 25: Summary results of IMA method for detecting metabolites that mediate increased BMI

and ER+ breast cancer in PLCO.

Web Table 1: List of metabolites with p-values below 0.01.
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Web Table 2: Comparison of computational time of TMAO, TMAR and LVMA.
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H.1 Figures

Web Figure 1: Causal graph of the simulation models. Our model assumes that only first set of 20
biomarkers directly mediate the effect of E on Y . The first four latent factors are only associated with E
and the remaining ten are associated neither with E nor Y .

E Y

M1 M10 M20

F1
M21 M30 M40
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Web Figure 2: Continuous/Binary Outcome, EBIC selection and the exposure directly affects
individual biomarker. The panels, labeled a-c, show the average number of true positives (TP), the
average number of false positives (FP), and the average estimate of the direct effect for the four methods
(red=LVMA; blue=TMAO; green=TMAR; purple=IMA) and for four scenarios (A: βEM,1 = 0.12, λ0 =
0.4; B: βEM,1 = 0.12, λ0 = 0.5; C: βEM,1 = 0.15, λ0 = 0.4; D: βEM,1 = 0.15, λ0 = 0.5) based on 1000
simulations. Te top panel is for a study with a continuous outcome with N = 500 and the bottom panel
is for a study with binary outcome with N1 = N0 = 250 subjects respectively. The whiskers show two
standard errors around the average estimates.

Continuous outcome, N = 500, Large Factor Effects (λ1 = 0.3), EBIC selection

a) True Positive

● ● ● ●

A
ve

ra
ge

 N
um

be
r 

of
 T

P

A B C D

0
1

2
3

4
5

6

●LVMA TMAO TMAR IMA

b) False Positive

●

●

●
●

A
ve

ra
ge

 N
um

be
r 

of
 F

P

A B C D

0
1

2
3

4

●LVMA TMAO TMAR IMA

c) Estimate of Conditional Effect

● ●

● ●

A
ve

ra
ge

 c
on

di
tio

na
l e

ffe
ct

 o
f e

xp
os

ur
e

A B C D

0.
25

0.
35

0.
45

●LVMA TMAO TMAR IMA

Binary outcome, N1 = N0 = 250, Small Factor Effects (λ1 = 0.25), EBIC selection
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Web Figure 3: Continuous/Binary Outcome, BIC selection and the exposure directly affects
individual biomarker. The panels, labeled a-c, show the average number of true positives (TP), the
average number of false positives (FP), and the average estimate of the direct effect for the four methods
(red=LVMA; blue=TMAO; green=TMAR; purple=IMA) and for four scenarios (A: βEM,1 = 0.12, λ0 =
0.4; B: βEM,1 = 0.12, λ0 = 0.5; C: βEM,1 = 0.15, λ0 = 0.4; D: βEM,1 = 0.15, λ0 = 0.5) based on 1000
simulations. Top panel is for a study with continuous outcome with N = 500 and bottom panel is for a
study with binary outcome with N1 = N0 = 250 subjects respectively. The whiskers show two standard
errors around the average estimates.

Continuous outcome, N = 500, Large Factor Effects (λ1 = 0.3), BIC selection
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c) Estimate of Conditional Effect
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Binary outcome, N1 = N0 = 250, Small Factor Effects (λ1 = 0.25), BIC selection
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Web Figure 4: Continuous/Binary Outcome, AIC selection and the exposure directly affects
individual biomarker. The panels, labeled a-c, show the average number of true positives (TP), the
average number of false positives (FP), and the average estimate of the direct effect for the four methods
(red=LVMA; blue=TMAO; green=TMAR; purple=IMA) and for four scenarios (A: βEM,1 = 0.12, λ0 =
0.4; B: βEM,1 = 0.12, λ0 = 0.5; C: βEM,1 = 0.15, λ0 = 0.4; D: βEM,1 = 0.15, λ0 = 0.5) based on 1000
simulations. Top panel is for a study with continuous outcome with N = 500 and bottom panel is for a
study with binary outcome with N1 = N0 = 250 subjects respectively. The whiskers show two standard
errors around the average estimates.

Continuous outcome, N = 500, Large Factor Effects (λ1 = 0.3), AIC selection
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Binary outcome, N1 = N0 = 250, Small Factor Effects (λ1 = 0.25), AIC selection
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Web Figure 5: Continuous Outcome and Large Factor Effects (λ1 = 0.3), BIC selection. The
panels, labeled a-c, show the average number of true positives (TP), the average number of false positives
(FP), and the average estimate of the direct effect for the four methods (red=LVMA; blue=TMAO;
green=TMAR; purple=IMA) and for four scenarios (A: βEF,1 = 0.4, λ0 = 0.4; B: βEF,1 = 0.4, λ0 = 0.5; C:
βEF,1 = 0.5, λ0 = 0.4; D: βEF,1 = 0.5, λ0 = 0.5) based on 1000 simulations. Top and bottom panel are for
studies with N = 300 and N = 500 subjects respectively. The whiskers show two standard errors around
the average estimates.

Continuous outcome, N = 300, BIC selection
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Continuous outcome, N = 500, BIC selection
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Web Figure 6: Binary Outcome and Large Factor Effects (λ1 = 0.3), BIC selection. The panels,
labeled a-c, show the average number of true positives (TP), the average number of false positives (FP), and
the average estimate of the direct effect for the four methods (red=LVMA; blue=TMAO; green=TMAR;
purple=IMA) and for four scenarios (A: βEF,1 = 0.4, λ0 = 0.4; B: βEF,1 = 0.4, λ0 = 0.5; C: βEF,1 = 0.5,
λ0 = 0.4; D: βEF,1 = 0.5, λ0 = 0.5) based on 1000 simulations. Top and bottom panel are for studies with
N = 300 and N = 500 subjects respectively. The whiskers show two standard errors around the average
estimates.
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Binary outcome, N1 = N0 = 250, BIC selection
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Web Figure 7: Small Factor Effects (λ1 = 0.25), BIC selection. The panels, labeled a-c, show the
average number of true positives (TP), the average number of false positives (FP), and the average estimate
of the direct effect for the four methods (red=LVMA; blue=TMAO; green=TMAR; purple=IMA) and for
four scenarios (A: βEF,1 = 0.4, λ0 = 0.4; B: βEF,1 = 0.4, λ0 = 0.5; C: βEF,1 = 0.5, λ0 = 0.4; D: βEF,1 = 0.5,
λ0 = 0.5) based on 1000 simulations. Top and bottom panel are for studies with continuous and binary
outcomes, respectively. The whiskers show two standard errors around the average estimates.

Continuous outcome, N = 500, BIC selection
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Binary outcome, N1 = N0 = 250, BIC selection
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Web Figure 8: Continuous Outcome and Large Factor Effects (λ1 = 0.3), AIC selection. The
panels, labeled a-c, show the average number of true positives (TP), the average number of false positives
(FP), and the average estimate of the direct effect for the four methods (red=LVMA; blue=TMAO;
green=TMAR; purple=IMA) and for four scenarios (A: βEF,1 = 0.4, λ0 = 0.4; B: βEF,1 = 0.4, λ0 = 0.5; C:
βEF,1 = 0.5, λ0 = 0.4; D: βEF,1 = 0.5, λ0 = 0.5) based on 1000 simulations. Top and bottom panel are for
studies with N = 300 and N = 500 subjects respectively. The whiskers show two standard errors around
the average estimates.
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Continuous outcome, N = 500, AIC selection
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Web Figure 9: Binary Outcome and Large Factor Effects (λ1 = 0.3), AIC selection. The panels,
labeled a-c, show the average number of true positives (TP), the average number of false positives (FP), and
the average estimate of the direct effect for the four methods (red=LVMA; blue=TMAO; green=TMAR;
purple=IMA) and for four scenarios (A: βEF,1 = 0.4, λ0 = 0.4; B: βEF,1 = 0.4, λ0 = 0.5; C: βEF,1 = 0.5,
λ0 = 0.4; D: βEF,1 = 0.5, λ0 = 0.5) based on 1000 simulations. Top and bottom panel are for studies with
N = 300 and N = 500 subjects respectively. The whiskers show two standard errors around the average
estimates.
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Binary outcome, N1 = N0 = 250, AIC selection
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Web Figure 10: Small Factor Effects (λ1 = 0.25), AIC selection. The panels, labeled a-c, show the
average number of true positives (TP), the average number of false positives (FP), and the average estimate
of the direct effect for the four methods (red=LVMA; blue=TMAO; green=TMAR; purple=IMA) and for
four scenarios (A: βEF,1 = 0.4, λ0 = 0.4; B: βEF,1 = 0.4, λ0 = 0.5; C: βEF,1 = 0.5, λ0 = 0.4; D: βEF,1 = 0.5,
λ0 = 0.5) based on 1000 simulations. Top and bottom panel are for studies with continuous and binary
outcomes, respectively. The whiskers show two standard errors around the average estimates.
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Binary outcome, N1 = N0 = 250, AIC selection
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Web Figure 11: Continuous Outcome and Large Factor Effects (λ1 = 0.3), EBIC selection and
fitted q = 20 factors. The panels, labeled a-c, show the average number of true positives (TP), the
average number of false positives (FP), and the average estimate of the direct effect for the four methods
(red=LVMA; blue=TMAO; green=TMAR; purple=IMA) and for four scenarios (A: βEF,1 = 0.4, λ0 = 0.4;
B: βEF,1 = 0.4, λ0 = 0.5; C: βEF,1 = 0.5, λ0 = 0.4; D: βEF,1 = 0.5, λ0 = 0.5) based on 1000 simulations.
Top and bottom panel are for studies with N = 300 and N = 500 subjects respectively. The whiskers show
two standard errors around the average estimates.

Continuous outcome, N = 300, EBIC selection, q = 20
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Continuous outcome, N = 500, EBIC selection, q = 20
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Web Figure 12: Binary Outcome and Large Factor Effects (λ1 = 0.3), EBIC selection and
fitted q = 20 factors. The panels, labeled a-c, show the average number of true positives (TP), the
average number of false positives (FP), and the average estimate of the direct effect for the four methods
(red=LVMA; blue=TMAO; green=TMAR; purple=IMA) and for four scenarios (A: βEF,1 = 0.4, λ0 = 0.4;
B: βEF,1 = 0.4, λ0 = 0.5; C: βEF,1 = 0.5, λ0 = 0.4; D: βEF,1 = 0.5, λ0 = 0.5) based on 1000 simulations.
Top and bottom panel are for studies with N = 300 and N = 500 subjects respectively. The whiskers show
two standard errors around the average estimates.

Binary outcome, N1 = N0 = 150, EBIC selection, q = 20
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Binary outcome, N1 = N0 = 250, EBIC selection, q = 20
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Web Figure 13: Continuous/Binary Outcome, non-symmetric and heavy tailed error in
biomarker, EBIC selection. The panels, labeled a-c, show the average number of true positives (TP),
the average number of false positives (FP), and the average estimate of the direct effect for the four methods
(red=LVMA; blue=TMAO; green=TMAR; purple=IMA) and for four scenarios (A: βEF,1 = 0.4, λ0 = 0.4;
B: βEF,1 = 0.4, λ0 = 0.5; C: βEF,1 = 0.5, λ0 = 0.4; D: βEF,1 = 0.5, λ0 = 0.5) based on 1000 simulations.
Top panel is for a study with continuous outcome with N = 500 and bottom panel is for a study with
binary outcome with N1 = N0 = 250 subjects respectively. The whiskers show two standard errors around
the average estimates.

Continuous outcome, N = 500, Large Factor Effects (λ1 = 0.3), EBIC selection
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Binary outcome, N1 = N0 = 250, Small Factor Effects (λ1 = 0.25), EBIC selection
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Web Figure 14: Continuous/Binary Outcome, non-symmetric and heavy tailed error in
biomarker, BIC selection. The panels, labeled a-c, show the average number of true positives (TP), the
average number of false positives (FP), and the average estimate of the direct effect for the four methods
(red=LVMA; blue=TMAO; green=TMAR; purple=IMA) and for four scenarios (A: βEF,1 = 0.4, λ0 = 0.4;
B: βEF,1 = 0.4, λ0 = 0.5; C: βEF,1 = 0.5, λ0 = 0.4; D: βEF,1 = 0.5, λ0 = 0.5) based on 1000 simulations.
Top panel is for a study with continuous outcome with N = 500 and bottom panel is for a study with
binary outcome with N1 = N0 = 250 subjects respectively. The whiskers show two standard errors around
the average estimates.

Continuous outcome, N = 500, Large Factor Effects (λ1 = 0.3), BIC selection
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Binary outcome, N1 = N0 = 250, Small Factor Effects (λ1 = 0.25), BIC selection
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Web Figure 15: Continuous/Binary Outcome, non-symmetric and heavy tailed error in
biomarker, AIC selection. The panels, labeled a-c, show the average number of true positives (TP), the
average number of false positives (FP), and the average estimate of the direct effect for the four methods
(red=LVMA; blue=TMAO; green=TMAR; purple=IMA) and for four scenarios (A: βEF,1 = 0.4, λ0 = 0.4;
B: βEF,1 = 0.4, λ0 = 0.5; C: βEF,1 = 0.5, λ0 = 0.4; D: βEF,1 = 0.5, λ0 = 0.5) based on 1000 simulations.
Top panel is for a study with continuous outcome with N = 500 and bottom panel is for a study with
binary outcome with N1 = N0 = 250 subjects respectively. The whiskers show two standard errors around
the average estimates.

Continuous outcome, N = 500, Large Factor Effects (λ1 = 0.3), AIC selection
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Binary outcome, N1 = N0 = 250, Small Factor Effects (λ1 = 0.25), AIC selection
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Web Figure 16: Continuous/Binary Outcome and left truncated error in biomarker, EBIC
selection. The panels, labeled a-c, show the average number of true positives (TP), the average number
of false positives (FP), and the average estimate of the direct effect for the four methods (red=LVMA;
blue=TMAO; green=TMAR; purple=IMA) and for four scenarios (A: βEF,1 = 0.4, λ0 = 0.4; B: βEF,1 = 0.4,
λ0 = 0.5; C: βEF,1 = 0.5, λ0 = 0.4; D: βEF,1 = 0.5, λ0 = 0.5) based on 1000 simulations. Top panel is
for a study with continuous outcome with N = 500 and bottom panel is for a study with binary outcome
with N1 = N0 = 250 subjects respectively. The whiskers show two standard errors around the average
estimates.

Continuous outcome, N = 500, Large Factor Effects (λ1 = 0.3), EBIC selection
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Binary outcome, N1 = N0 = 250, Small Factor Effects (λ1 = 0.25), EBIC selection
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Web Figure 17: Continuous/Binary Outcome and left truncated error in biomarker, BIC se-
lection. The panels, labeled a-c, show the average number of true positives (TP), the average number
of false positives (FP), and the average estimate of the direct effect for the four methods (red=LVMA;
blue=TMAO; green=TMAR; purple=IMA) and for four scenarios (A: βEF,1 = 0.4, λ0 = 0.4; B: βEF,1 = 0.4,
λ0 = 0.5; C: βEF,1 = 0.5, λ0 = 0.4; D: βEF,1 = 0.5, λ0 = 0.5) based on 1000 simulations. Top panel is
for a study with continuous outcome with N = 500 and bottom panel is for a study with binary outcome
with N1 = N0 = 250 subjects respectively. The whiskers show two standard errors around the average
estimates.

Continuous outcome, N = 500, Large Factor Effects (λ1 = 0.3), BIC selection
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c) Estimate of Conditional Effect
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Web Figure 18: Continuous/Binary Outcome and left truncated error in biomarker, AIC se-
lection. The panels, labeled a-c, show the average number of true positives (TP), the average number
of false positives (FP), and the average estimate of the direct effect for the four methods (red=LVMA;
blue=TMAO; green=TMAR; purple=IMA) and for four scenarios (A: βEF,1 = 0.4, λ0 = 0.4; B: βEF,1 = 0.4,
λ0 = 0.5; C: βEF,1 = 0.5, λ0 = 0.4; D: βEF,1 = 0.5, λ0 = 0.5) based on 1000 simulations. Top panel is
for a study with continuous outcome with N = 500 and bottom panel is for a study with binary outcome
with N1 = N0 = 250 subjects respectively. The whiskers show two standard errors around the average
estimates.
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Web Figure 19: Continuous Outcome and Large Factor Effects (λ1 = 0.3), EBIC selection and
Small Exposure Effects (βEF,2 = 0.4). The panels, labeled a-c, show the average number of true
positives (TP), the average number of false positives (FP), and the average estimate of the direct effect
for the four methods (red=LVMA; blue=TMAO; green=TMAR; purple=IMA) and for four scenarios (A:
βEF,1 = 0.4, λ0 = 0.4; B: βEF,1 = 0.4, λ0 = 0.5; C: βEF,1 = 0.5, λ0 = 0.4; D: βEF,1 = 0.5, λ0 = 0.5) based on
1000 simulations. Top and bottom panel are for studies with N = 300 and N = 500 subjects respectively.
The whiskers show two standard errors around the average estimates.
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Web Figure 20: Binary Outcome and Large Factor Effects (λ1 = 0.3), EBIC selection and Small
Exposure Effects (βEF,2 = 0.4). The panels, labeled a-c, show the average number of true positives
(TP), the average number of false positives (FP), and the average estimate of the direct effect for the four
methods (red=LVMA; blue=TMAO; green=TMAR; purple=IMA) and for four scenarios (A: βEF,1 = 0.4,
λ0 = 0.4; B: βEF,1 = 0.4, λ0 = 0.5; C: βEF,1 = 0.5, λ0 = 0.4; D: βEF,1 = 0.5, λ0 = 0.5) based on 1000
simulations. Top and bottom panel are for studies with N = 300 and N = 500 subjects respectively. The
whiskers show two standard errors around the average estimates.
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Web Figure 21: Small Factor Effects (λ1 = 0.25), EBIC selection and Small Exposure Effects
(βEF,2 = 0.4). The panels, labeled a-c, show the average number of true positives (TP), the average number
of false positives (FP), and the average estimate of the direct effect for the four methods (red=LVMA;
blue=TMAO; green=TMAR; purple=IMA) and for four scenarios (A: βEF,1 = 0.4, λ0 = 0.4; B: βEF,1 = 0.4,
λ0 = 0.5; C: βEF,1 = 0.5, λ0 = 0.4; D: βEF,1 = 0.5, λ0 = 0.5) based on 1000 simulations. Top and bottom
panel are for studies with continuous and binary outcomes, respectively (N = 500). The whiskers show
two standard errors around the average estimates.
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Web Figure 22: Metabolites Linking BMI and Breast Cancer. These figures include affects on
metabolites by the factor mediating increased BMI and ER+ breast cancer in PLCO.

a) LVMA
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Web Figure 23: Summary for TMAO. Summary results for TMAO method with qmax = 40 fitted factor.
P-values are calculated using Sobel’s test on estimated factors.

a) −log10(p− values)
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Web Figure 24: Summary for TMAR. Summary results for TMAR method with qmax = 40 fitted factor.
P-values are calculated using Sobel’s test on estimated factors.

a) −log10(p− values)
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c) Number of loadings per factor larger than 0.2
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d) Comparison of factor loadings
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Web Figure 25: Summary for IMA. IMA’s p-values are calculated using Sobel’s test on each metabolite.
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Web Table 1: Metabolites Linking BMI and Breast Cancer. This list includes those metabolites
with p-values from Sobel’s test below 0.01.

Metabolite Loading (λij)
16α-hydroxy DHEA 3-sulfate 0.003
3-methyl-2-oxobutyrate 0.002
3- methylglutarylcarnitine 0.003
4-androsten-3β, 17-β-diol disulfate (2) 0.009
4-androsten-3β, 17-β-diol disulfate (1) 0.007
Allo-isoleucine 0.003
γ-glutamylvaline 0.006
Urate 0.003

Web Table 2: Comparison of computational time.

Number of Factors TMAO TMAR LVMA
15 24 min 24 min 10hr
20 33 min 32 min 12hr
40 1:12hr 1:10hr 26hr
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