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In the supplementary information, we describe the EM algorithm for maximizing the penalized likeli-
hoods in equation (18), prove the three main propositions, and provide other details and figures that were

omitted from the main document.

Web Appendix A Identifiability of total, natural direct and nat-
ural indirect effects

The total effect (TE), natural direct effect (NDE), and natural indirect effect (IDE), as defined by equations
(1-3) of the main text, are not generally identifiable [1]. However, we show that the three effects are
identifiable when the models defined by equations (4-7) hold. Moreover, although not discussed in the
main text, we can show that the three effects are identifiable even without the assumption of conditional
independence (i.e er; ~ N(0,1,)) among the factors. In other words, we prove that the effects are
identifiable when the true underlying model is defined by equations (A.1 - A.4) below and X7 is of full

rank. We assume that the distribution of Y; belongs to an exponential family,

F G dy) = exp [{Yi¢) = b(G)} Jalyy) + e(Yi ¢y )] (A1)

with

G =% + BeyEi + IB*F/YF;k (A.2)



We also assume that F'; and M, are normally distributed:
F; =0BypEi + e}ﬂ- with e}ﬂ- ~ N(0, ZZ), (A.3)
where 37 is the ¢ by ¢ covariance matrix of full rank and

M, = v} + N F! + e, , with e, , ~ N (0, U*?), U = diag(;2, ..., 7). (A.4)

p

Moreover, the estimates of these effects from fitting the models assuming independence (i.e. ef; ~
N(0,1,)) are consistent for the true estimates regardless of the format of 7.
Under the assumption of sequential ignorability, we know that the key terms in equations (1-3) defining

the TE, NDE, and NIE are related to the relevant probability distributions by

B, PN = | /f*EmrF:f:fiEi:e',Xi:w) AFpe o x ()P (@), (A5)

where X; is the set of baseline covariates, dF' F' 5= x.—,(F*) is the conditional distribution of latent
factors F; and dFy,(x) is the distribution of baseline covariates. Under a generalized linear model, the

conditional mean of Y is
E(Y|F; =" E=¢,X;=x) =g ' (% + Bive + Bin I + Biy)-, (A.6)
where g() is a link function. We now note that equation A.5 is equivalent to
E[Vi{c, F*(e)}] = /w /f 0 (R 4 By + 4 By ®)dF e 5 e x,—a(f ) dFx, (), (A7)
where f** = By f* = By 2485 2 = By F and

F; =S 1PF; =S 'PBL0E + epy = BppkEi + eg,; with €, ~ N(0,1,).



Furthermore, the parameters from the model defined by (4 - 7), Bz and By are identifiable up to
orthogonal rotation and ,BIFYB EFs B/FYQ xr and ,BIFYB ry are identifiable (see Proposition 1). Therefore,

the conditional distribution of F* = By F; is

FZ**|EZ =e, X, == ﬂ/FYFi|Ei =e,X;=x~N </6IFYﬁEF€ + /B/FYQXF:BNB/FYBFY) .

Thus, expectation A.5 is identifiable.

Web Appendix B Derivation of the likelihoods

B.1 Prospective likelihood

Based on the model in (4-7), the conditional distribution of Y;, M;, F; in (9) is multivariate normal with

mean vector (py, oy, bp), where

Uy =y + (BIFY/@EF + Bey)Ei, iy =Y + ABprpli, pp = Brpl, (B.1)

and covariance matrix
BryBry + 03 BN By
Yymp = ABpy AN +T2 A |- (B.2)
Bry A’ 1

We also use following definitions of the matrices gy, ar) and Yy,

Srvan = Cou(F, (Y, M)|E) = [gFY Af], (B3)

! + o2 "N
Sy ar = Cou(Y, M|E) — BryBry v Bry . (B.A)

AB gy AN + 02



B.2 Retrospective likelihood

Here, we assume E; ~ N(vg,0%). Then under the rare disease assumption, the joint distribution of M, F;

and E; in controls is multivariate normal with mean vector (yg, oy, thp),

Ky =Yy + AIBEF’YEa Hp = ﬁEF'YE7 hE = YE, (B~5)
and covariance matrix
UJ%J UJ%JB;L‘FA/ U%ﬁbF
YpMF = UJQEAIBEF O-?:?AﬁEFIBSEFA/ + AN + 02 O-%?AIBEF/BIEF +A|- (B.6)
0EBEr 02BprBepN + N 05BerBrr +1

We further define the matrices Xp(p ) and Xg

Spar) = Cov(F,(E,M)) = 03B 03BprBuprl + |, and (B.7)

2 2 /
OE ouBErA

ocxABer 0yABprBrrN + AN + U?

2E7M:CO’0<E,M) = (BS)

Lastly, the joint distribution of M;, F'; and Ej; in cases is also multivariate normal with the covariance

matrix Xg s r, but a different mean vector (uk, pul,, pk),

M}lE YE Bey
il = v + ABgpye| +Xemr | 0 |- (B.9)
H}r BrrVE Bry



Web Appendix C EM algorithms to obtain @;

C.1 Basic EM steps

We use a fast coordinate descent algorithm in the maximization step of the EM algorithm [8, 10] based
on the approaches developed for penalized factor analysis [5, 6, 12]. First, we outline of the EM algorithm
and then discuss the details separately for prospective and retrospective sampling.

Recall, for a fixed set of regularization parameters, {p1, ps, ps}, the goal of the (k + 1) iteration of
the M-step is to find the parameters that maximize the expected value of the penalized full likelihood

(EPFLL), where the expectation is computed using the parameters from the k' iteration:

EPFLL(9|0") = E (LF(G)m, E;, M é"’) — Y PBrvy)—p2 > PBpry)—ps Y > PAm;). (C.1)

j=1 j=1 m=1 j=1

Under prospective sampling, the full likelihood can be decomposed into three independent parts (see 10)

that are maximized separately at each M-step

N
arg max (ZE [log{fy (Y;|E:, M, F))} |YZ-,EZ-,Mi;éﬂ Z WFYJ’> (C.2)

’YYv/BFyvﬁEY7'¢'y =1 ’/BFY]

N
arg max (ZE [log {fr (F;|E;)} ]Y;,EZ,MZ’O ] Z ‘5EFJ’ > (C.3)
/BEF =1 |B EF]|

and

atg max (ZE [log {fas (ML)} Vi, B, M0 — py 3 'Amﬂ'> | (C.4)

71\1/\‘1’ m=1 j=1

We note that each objective function (C.2 - C.4) is non-convex in vy, Bry, Bey, ¥y, Ber Yar, A V2, Ve
and 0%. However, each objective function is convex when the variances 1y, 0% and ¥? are fixed. There-
fore, we fix them at the previous estimates gZAiik/, o2 and U2+ and solve the three convex optimization

problems sequentially. After the regression coefficients are updated, the corresponding variance/dispersion



parameters are updated.
For retrospective sampling, we modify these equations slightly (see Web Appendix C.3). Parameters
~us A and U2 are estimated from the same equation C.4. The remaining parameters can be updated by

maximizing the joint function of E; and M,

N q a
arg max (ZE [log {fer (E;, F;)}|Y;, E;, M ;; @k} — Z 1Brvil s Z M) . (C.5)

2,88y 05,8 py Brr \i=1 j=1 |6%Y,j| j=1 |B%F]|

The objective function (C.5) can not be decomposed into two separate optimization problems because the
mean is a product of the parameters (see B.9). Additionally it is non convex in Bry, Bey, Bgr, Ve and 0%.
However, this objective function is convex when By or By is fixed. We therefore update By from (C.5)
while keeping all other parameters fixed and update the remaining parameters while 8,5 is kept fixed.

At the (k + 1) E-step, we calculate two conditional expectations of the latent variable F; given Y,
M, and E; (see [5, 6, 10, 12]) used in the following M step:

Ey, :E<Fi|Mi>Ei>Y;§ék> (C.6)

and

Ep = E(F,F)|Y, E, M;0") = Var(F,|V;, B, M;0") + E, . (C.7)

We assume that either the distribution of (F';,Y;, M;) given E;, or (F;, E;, M ;) given Y; is multivariate
normal to obtain closed form solutions. For other joint distributions numerical integration is required for
the for the E-step [11]. As a result, under prospective sampling, the conditional expectations of the latent

variables are



-1

NN . o K R NN .
~k NI BryBry + 03 65 BpyAF Y; =% — (BryBpr + Biy) Ei
E; = BprEi+ |8y A ok A N ik
| Yoy
= HI}JFZ?(YM)ZY,IJ@
M; — pf,

and

Efq? =1- E?(YM)E}_CIJ\]ZZ?YM)F + By, /f“

: K’ _ vk
with E(Y = ZF(YM).
Under retrospective sampling, conditional expectations of latent variables are slightly different. In

controls, these expectations are

Ak A
~k2 ~k2 K -0k
/ o) 0y BepA E, — i
0 _ 0k skt okt AR AR AR E EFEE LrE
B = by + |68 Bpr 08 BppBerA + A oAk Ak ks inaE AR AM L AEAN L ok Ok
05 N Bpr 0N BprBrppA™ + AAY + U M; — py
E'—/:LOk
~ Ok k —1k v E
= Bp +XpEnXeam o
M; — 1y
and
0 ok pk aF k 1k sk 0 0
Ej =1+ 065 BrrBrr — XrwmXem>Emr + Ep By,
with
i %
Lok | — | 2k Y- LA
poar | = |+ A Berik
~ Ok ko
1273 BrrVe

Lastly, in case samples, these expectations are



E;, — ﬂlk

~1k _ ? E

E}l = N}V E];T(EM)EE,IM]C 1
i~ My

and
Elg =TI+ &%‘kBZFBgF — X Zea S r + ELEj},
with
iy o By
i | = |3+ MBLel | + Shane | 0

C.2 Further computational details for prospective sampling

We first assume that Y; has a normal distribution and Ey, and Ej2 are calculated at the E-step of the
(k + 1) iteration. At the M-step, we then update the estimates of each set of regression coefficients (e.g.
{v, Bry, Bey }, Bre, {A, 7)) in sequence by the one-step coordinate descent algorithm [14]. We repeat
this step until convergence of all parameters is met.
Here, we show how to update our estimate of the first set, involved in equation (C.2), and note that all
k1 Ak+1

~k+1
other updates proceed similarly. We calculate 13", 8y, and 8 FJ;,]. from the following set of sequential

iterations

N Ak
S (Y- By B — B Bry )

N . ~k
Sl Zi:l (Y;Ei - %k/HEi - EzE/JgﬂFY)
and
. - - p -
B}C;J{/’lj = szgn(ﬂpy,j) (‘5FY,]" — —OIA) for le,...,q, (ClO)
N|5FY,j| n



where ()4 is the soft thresholding operator defined as

x, ifx >0
()4 = (C.11)
0, if z <0,

and
. A . . okt
Zﬁil <Y;Efz[j] - 7§+1Efi []] - Ef? []7 _]]/BFY, —j ﬁkJrlE Efz[ ])
> E ), j]

where E,[j] denotes the j™ elements of the vector Ey,, Ep[j, ] is the [j, j] element of the matrix and

Bry; = : (C.12)

E2[j,—j] is the 4" row without the j* element of the matrix E 2. Given these new estimates, we calculate

3 by
S A ~ k41 ~ k41
e S (Y- - A ) 25N, (i s - B E) BB+ B BBy
7Y N . (C.13)

These M and E steps are repeated until convergence is satisfied and the final estimates, 0 are recorded.

C.3 Further computational details for retrospective sampling

The updating step for {7,;, A, U?} is the same as for prospective sampling, with the caveat that E, and
E £2 need to be calculated separately for cases and controls as discussed on previous section.

Here we show steps to estimate remaining parameters. In the first step we update B by maximizing
the penalized likelihood (C.5) with {vz, Bey, Bry, 0%} set to k™™ iteration values. In the second step, we
update {vg, Bey, Bry } With Bgp set to k + 11 iteration values (i.e. maximization of £ and M).

In the first step of the (k+ 1) iteration of our coordinate descent algorithm, By is updated from the

conditional distribution of F'; given E; by

ﬁg}lj = szgn(ﬁEFJ) (’BEFJ| — ?—5) for j=1,...,q, (C.14)
N|Bgr,l n

where (-); is the soft thresholding operator,



SV (B — ) (B[] — Bif ) + o8 (B — vE") (B[] — 1))
Z?;(Ez - /)}Eky + vazol(Ez - ’%%)2

fp . pO% alF and 4% are estimates from the k™ iteration and fur[j] is the j* element of its vector (see

where (C.15)

/BEF,j =

section B.2). The remaining parameters vz, Bpy, Bpy and 0% are estimated from the rewriting the

optimization problem (C.5) as

N q . ~k+1 . .
arg max [Z —E (Z (Filj) = Ber 1Es = Bryli)” Y;=1,E;, M ék)

2,8 oy Bey L i=1 =1 2
M 2 Bkt 2 2 MNo 2 a
By — i — - B - |
_ § : ( e — 05Bre Bry — 05Bey) _ Z ( VE) . Z |BAFYJ| where  (C.16)
202 202 0
i=1 E i=1 E j=1 |BFY,j|

Skl ~ k1
Flj], B EJ; [7] and B F; [j] are the j™ elements of the corresponding vectors. We treat (C.16) as a penalized

least squares problem that is optimized by sequential iterations

N " ~ k41~ k N ~ N,
kel iy (B — 07 Brp Bry — 08 Bey) + > i1 Ei C 17
ryE - Nl + N() ’ ( . )
N R g Akl Ak
Ak+1 _ 21;1(571 - ’YEH - UEkﬁFE ﬁFY) (C 18)
and
5 . > ~ P1 .
Bf;{/’lj = SZgn(ﬂpy,j) ‘55’1/7]" — T fOI” le,...,q, (019)
N|5FY,j| n
where
} A k41 R Cop akHl Akl oA A k41
~ ZzNzll (sz] - BEF]EZ> + vazll (Ez - ’YEH - OJ%JkBFE,_jBFY,—j - U%kﬂg{/l) BFE,]‘
Bry,; = . (C.20)

on kL
Ny (1 + 0%k<IBFE,j)2>

Skt
Finally, we recalculate a new value of 0% by using the updated means (fp ™, iiE+1) = ( EJ; AR AR+
cpy skl
E’}Z} By as
N <1k N k
G2h+1 Zz:ll (B — :U’JlE‘ +1)2 1 Zi:ol (B — 7E+1)2 (C.21)
E = ' '
N1 NO

10



. . . ~k+1 .
These iterations are repeated until convergence and @ is recorded as the final estimate.

Web Appendix D  Proofs of Propositions 1-3

Proof of Proposition 1 (Identifiability)

Here we show that the model presented by equations (4-7) with observed data (Y, E, M) is identifiable
under both prospective and retrospective sampling. We show that under the condition from Theorem 5.1
of Anderson and Rubin [2] (condition 1 of proposition 1), if for all values of Y, E, M, f(-;0") = f(-;6%
then all parameters are equal, with A, B and By identifiable up to rotation by an orthogonal matrix
Q (e, A'Q = A2, Q'Bry = Bry, Q'BLr = Bry). Here f(-;0) denotes the conditional density used
in either in the prospective or retrospective likelihood (11 or 17). We note that the intercept 7y is not
identifiable under retrospective sampling. In addition to the parameters @, the mean v and the variance
0% of E are identifiable under retrospective sampling.

First, we assume that the data are obtained from prospective sampling, where the conditional density

f(+;0) can be decomposed into

f<}/z7 MZ|E17 0) = fY(Y:L’Mz; Ei;7Y7/6FY7ﬁEY>w%/uBEF?’YMJAa ‘I]2>fM(MZ|EZH6EF77M>A7 @2)7

where f, belongs to

Jy (Ye; Gy ¥0) = exp [{YiG — b(Gi) } /a(by) + (Y5, ¥y)] (D.1)

with

G = + Bey Ei + Bry Fi. (D.2)

Next to show identifiability of A and W2, we note that for all values of Y, E and M, if f(-;0') = f(-;6?)
then f(M|E;BLp, vi, A, U1 = f(M|E;B%:,73,,A*, U*?). Based on the conditional distribution of
M ; given E;, which is multivariate normal with covariance matrix AA’+ W, and the sufficient condition 1 of
Anderson and Rubin [2], we conclude that ¥?! = W?? is identifiable and A is identifiable up to rotation by

an orthogonal matrix (i.e. A'Q = A?). To show identifiability of vy and B, we consider the conditional

11



mean of M,

E(M|E) =~y + ABgrE, (D.3)

which implies A'8L, = A?8%, and v}, = v%,. Because the matrices A! and A? have rank ¢, the solution
to (D.3), Brr = (NA)"'ANE(M;|E;) is unique up to orthogonal rotation.

Similarly, we show that for given sets of parameters A', v},, BLr and A2 = A'Q, 4%, = v}, BLr =
Q' B, equality of conditional densities fy (Y|E, M; vy, Bry, By, ¥y) = [y (YIE, M35, By, oy, V%)
implies equalities and B4y up to orthogonal rotation (i.e. Q'Bky = By ).

The density of Y belongs to the exponential family with ( = vy + By E + B%yF and deviation

parameter ¥y and has the form

I (YIE, My Bpys By by ) = / o (Y[C: by ) fr (F|E, M)dF. (D.4)

Conditional on F and M, the factors F' have a multivariate normal distribution with mean and covariance

E(F|E,M) = BppE + N\ (AA, + ‘112)71 (M — vy — ABgpE) =5 + BrpEi + A M, (D.5)

1

Cov(F|E,M)=1—N\ (AN +0%) " A, (D.6)

where v = A (AN +U2) 'y, Bhp = (I =N (AN +¥2) " A)Bpg and A* = (AN + ¥2) "' A. For sets of
parameters A', v}, By and A2 = A'Q, v3, = v}y, BLr = Q'Bip, we observe Q' vyt = v, Q' By = Big
and A*1Q = A*2.

Using (D.6), ¢ can be written as ¢ = vy + BryYe + Bey E + BryBipE + Boy AN M + Bry Z with

random error coming from Z ~ N (0, I— N (AN +¥2)7! A). The integral in (D.4) is thus equivalent to

Jr(YIE, M: vy By Bovs ) = / Fr(Y(C: by fr (F|E, M)dF = / (Y (G oy) f(Z)dZ. (D7)

We now reformulated our set-up in a way that is equivalent to Berkson measurement error model [3].
In that model the parameters cannot be identified except when the variance of the term Z is known. Here,

the variance of Z is , I — A’ (AN + \IIQ)_l A, is known. Therefore, identifiability of the fixed effects of F

12



and M, vy + By Y, Bey N, Bey + By By and the deviation parameter ¢y have been discussed in [4]

and proven for linear and logistic regression models in [7]. As a result, we obtain

W+ BivYi =% + By i, By + BivBir = Biy + BryBir and By AV = By A (D.8)
Because A*'Q = A*? and both matrices have rank ¢, the equality (D.8) implies @’ B}y = 8%y and remaining
equalities vy = 75, Bhy = Bhy and ¥, = 7 are straight forward to see. Hence, the proposition is proven
for prospective sampling.

Under retrospective sampling, identifiability of the parameters @ (except ~y) follows from the above
proof and the form of the joint distribution of £ and M. Identifiability of va;, A, Bz and ¥? follows
from the corresponding proofs for prospective sampling. Recall that the joint density of the observed data
in controls, f(E;, M;|Y; = 0;0,vg,0%) is a multivariate normal distribution with mean and covariance
presented in section B.2. As result, identifiability of vz and 0% from the marginal distribution of F in

2

controls is trivial. Lastly, recall that in cases f(E;, M;|Y; = 0;0,vg, 0%) is multivariate normal distribution

with the same covariance matrix but different means

g _ Ve N 0% 05B85r Bey D.9)
Hzlw Yu + ABprE O-JQEAﬁEF U%EA/BEFﬁ/EF + Al |Bry

Identifiability of Sgy and By up to orthogonal rotation follows from equality of mean vectors (D.9)
between two joint distributions in cases. Since Vg, Yar +ABgrVE, 0% and elements of the covariance matrix
Y g m are unique, Bgy is unique and By is unique up to orthogonal rotation.

Proof of Proposition 2 (Convergence of the EM algorithm)

Convergence of the EM algorithm to a single stationary point 8% follows from direct extension of Theorem
1 [12] to adaptive lasso penalties.

Proof of Proposition 3 (Consistency/Oracle-properties)

Let A = {j|Bry,; # 0} index the set of factors with effects on Y not equal to 0, A = {j’BFY,j # 0} index

~S N
the set of factors with estimated effects on Y not equal to 0, By = {BFYJ- 1] € A} be the vector of

13



estimates for the non-zero parameters and (PS = (v, 5}?% Bry). Here, we show

Jlim P (A - A) —1 (D.10)
and as N — oo
VN — ¢%) 5y N (0,]1¢15) , (D.11)

for both prospectively and retrospectively sampled data.

Consistency and asymptotic normality for other parameters, g, %,,;, the factor loadings AS and ef-
fects B}S; g follow from the decomposition of the distribution f into four parts as in (10), Theorem 4.2 of
Shrivastava et al. (2014) and the proofs for (D.10) and (D.11).

We prove statements (D.10) and (D.11) by considering one iteration of the EM algorithm, which

is a variation of M-estimation (Van der Vaart, 2000). Let 6y be the initial v/N-consistent estimate of

0 = (7Y7/6FY76EY70-12/77E7/3EF7U%‘77M7A7 \PQ) Let 7;;7/8;1’752‘)/ and A* be the true Values, Ty = 75*/ +

L Bry = Biy + X, foy = Bhy + B and for convenience we set 8° = (17, iy, Biy), u =

(Uny s Uy > Upy ) and X; = (1, E;, F';). Then, the expected penalized full log-likelihood with a fixed value
of Yy is

u' X; u' X;

|Bry.j + u[yﬁy”
\/N)—b(,ﬁ X, + Wi — vV

N q
EPFLLy(tyy gy, Upy) = O E [ (8% X, + )Yz,Ez,Mz,Go] +pn Y
i=1 j

Let (tyy , Wapy , Ugy,y ) = arg min EPFLL,(ug,, usp, , UﬁEy) —EPFLL,(0,0,0); then one step-

Uy  Wppy Uy

estimates for 7y, Bpy and fpy are Jy =y + %» BFY Bry + jﬂy and BEY By + BEY . Using a

14



second order Taylor expansion,

N
/ X! A
EPFLLn(uvyvuﬁpwuﬁEY) — EPFLL,(0,0,0) ~ ZE [<YZ B b,(ﬁ* XZ)) \/%DQ,E%ME 00]
=1
Pa\rrtI
68 X w X X 1 & [y X)W X)) :
i=1 i=1 |
Pa;; II Part II1
Ubpy
: By + —22L | — | By ]
+ jlzx/ﬁ e £ ™I (Da3)
N j=1 |6FY,]'|
Part IV

+ - * * u
where 37" is between 3" and 38" + ik
The sum in Part I converges to u'e, with € following a multivariate normal distribution with mean 0 and

covariance

cov(e) = E [(Y _ b/(ﬁ*’Xi))2 X'X; 9*1 =1Lys,

where I &° is the Fisher information matrix. By the properties of the second derivative of a density

belonging to the GLM class, the Part II of the sum converges to

N 3% X Not/ X. X!
lim E bV'(BT X)u' X X u
N—o0 1 N

~ , 2

Because 0'(x) < 5 for any X and X have finite moments, the Part III the sum in D.13 converges in

probability to
N
lim E

N—o00 4
=1

b/'/(ﬂ+/XZ’) (UIXZ')?’
N3/2

D/iaEiaMi;éOI = 0.

Lastly, we derive the convergence of Part IV in (D.13) using assumption that pN/\/N — 0 and py — o0.
Let Bfy; # 0, then

* up ,J *
On \/N|BFYJ + % — |Bry ] _ Pn 1
VN B0y 5] VN 8% |

Ue,i51g1(Bry ;) —p 0 by Slutsky’s theorem. (D.14)

15



Let Bfy; = 0, then

|ﬁ* ) + uﬁFy,j _ /8* ) 1 0 1f uﬁ g = O
Pr VN L ‘/g | FY’Jl = =l o by Slutsky’s theorem.
\/N |5FYJ| |\/N6FY’]‘ oo if UBpy,; 7& 0
(D.15)
By combining (D.14) and (D.15), we obtain the following limiting convergence of Part IV
% UBry, ; * : _ . *
On N|/8Fy’j -+ % — |BEy] N 0 ifug,,, =0foralj¢A D.16)
o )
VN Byl oo otherwise.

In conclusion, we observed that

/ / . . "
u' g€ s —1/2u g1 su s ifug,, =0forallj¢gA
EPFLLy(ty gy upp, ) — EPFLLy(0,0,0) =44 @ @ o " P rv

s} otherwise,

(D.17)
where €pS = (Evy s €Bpy A% EBpy )5 Ugps = (Unyy s Uy, A%, Ugpy ) and [¢s is Fisher’ information for vy, B2
and Sgy. The difference, EPFLL(t, , Ug,y , Up,, ) — EPFLL(0,0,0), is convex and the unique minimum
of (D.17) is

(ﬁvw ﬁﬁEY? TAI’BFY,A"’ ﬁ'ﬁFYvA*C)OO - (H¢IS €¢S’ O) ' (D'18)

Following the epi-convergence results of Geyer (1994) and Knight and Fu (2000); we have

(ﬁ’ﬂov ﬂgEY’llgF%A*, ’lA,l,BF%A*c) —d (I[éls €¢S, 0> (Dlg)

Therefore, we prove asymptotically normality.
Next we show the consistency part. For any j € A*, the asymptotic normality results indicate that

Bry; —p By ;; thus P(j € A) —, 1. Tt is left to show that for any j/ ¢ A*, P(j' € A) —, 0. By the

16



Karush-Kuhn-Tucker optimality conditions, we have

N

SOE[(Y:— 0(BX,)) Fy|Yi, B, My 00| = pu——

n
i=1 |/8FY] |

! (D.20)

By dividing both parts by v N and using normal convergence of the estimates (B), square-root consistent

initial estimates (6) and Slutsky’s theorem (Delta method), we observe

Z¢Z1E [( - b/(BXz)> FylY;, B, Mvz;éo]
VN

—q N(0,02), (D.21)

and
Pn

S L NN (D.22)
VN| By |

Thus,

|> —0 (D.23)

p(redg,,) < (g B (- vBx0) £ M) =
FY,j

Consistency and asymptotic normality of zﬂy follow from the estimation equations, asymptotic normality
of the regression coefficients and Slutsky’s theorem.

The proof for the retrospective likelihood follows from similar arguments. Here we again do not show
consistency and asymptotic normality for 4,,, factor loadings A and U2 because of the decomposition of
the likelihood (16). Here we demonstrate consistency and asymptotic normality for other parameters from
the observation that vg, Bpy, Bey, Bgr are estimated from (C.5) with ¢% fixed at 6% initial square root

N estimate, which can be expanded to
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arg max [i —-E <i (Fils] = Bir il B = Bry )" Y;=1,E;, M;; éo)

TE, /BFY BEY ;s /BEF =1 7=1 2
N ~20 3/ ~20 2
Eij] 5 E; — g — _
_ZE<Z( BEF[ ] ) ’KZO,E@M@‘;%) _Z( YE JEﬂQg%:)BFY og EY)
i=1
o~ (Fi = Brvsl |Ber,]
FY,j EF
Yy ey e 2y
in1 182yl * 8%,

Consistency and asymptotic normality for these parameters follows directly form of (D.24) and the
proof for prospective sampling. These are two penalized linear regressions with one of two parameters in
07 BppBpy is treated as covariate. In this case, Iys is information matrix for o° = (W, Boy Bev, Bar)

This completes the proof of proposition 3.

Web Appendix E Covariate adjustment

Here, we rewrite our model, originally described by equations (4-7), to include a covariate vector X; =

(Xiqa ---:Xil)/:
(Y55 Gy b) = exp [{YiG — b(G)} /a(y) + c(Yi, dby)] (E.1)
with
G =7+ BeyEi + Bpy Fi + Byy X, (E.2)
Fi:/BEFEi+QXFXi+ef Wlth efNN(O,]q), (ES)
and
M; =~y + AF; + e, with e,, ~ N(0, %), ¥? = diag{{, ..., 2}, (E.4)

where By = (Bxvi, - BS(YJ)T is a vector of length [ and Qxr is a ¢ by [ matrix. To estimate the vector of
parameters 0 = (vy, Bry, Bey, Bxy, Yy, Ber, Qxr, Y, A, ¥2) using the observed data, (Y;, M;, E;, X;)

fort=1,..., N, we derive prospective and retrospective likelihoods.
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E.1 Prospective likelihood
Under prospective sampling, the full data likelihood for (Y, M, F) is
N
Lp(0) =] f(vi, M, Fi|E;, X ;;0), (E.5)
i=1

where f is the product of the densities defined by equations (E.1-E.4),

f(Yis, M, Fi|E;, X:;0) = fy (Yi|Fi, E;, Xisvv, Bry: Bxy Bey Uy ) far (MG Fisy 0 A, V) fr(Fi| B, X5 Bep, Qxr).
(E.6)

Here, we use fy;, fy, and fr to denote the implied distribution of M, Y, and F', respectively. However,

the factors F'; are not observed. The likelihood for the observed data, (Y;, M), is therefore
N
L9(8) = H/F f(Y;,M;, F;|E;, X 0)dF. (E.7)
i=1

Although L8(0) does not have a closed form in general, L8(0) can be written as the product of normal
distributions when Y; is normally distributed. Based on the model in (E.1-E.4), the conditional distribution

of Y;, M;, F; in (E.5) is multivariate normal with mean vector (uy, ty;, ),

ty =y + (BryBer + Bey)Ei + (BryQxr + Byxy) X,

Ky =Yy + ABprEi + AQxr X,
Kty = /BEFEZ + Qxr X,

and the same covariance matrices (B.2-B.4). Identifiability of all parameters follows from Proposition 1
while treating exposure F as a vector (e.g (E;, X;)). We can estimate the parameters using a similar EM
procedure to that initially described for the scenario without covariates (see Web Appendix Web Appendix
C).
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E.2 Retrospective likelihood

Under retrospective sampling, N; cases and Ny controls are drawn from the population of cases and
controls, respectively, and biomarkers, exposures and covariates are observed (N; + Ny = N). Here we
assume E; conditional on X; to be normally distributed with mean vz + 3y ;X and variance % in the

overall population. The corresponding likelihood has the form

Lp0)= [] fB, M, FilYi=1,X;60) [[ f(B:, M, FilY;=0,X;6). (E.8)

i€case i€Econtrol

To approximate the likelihood, we assume the outcome is rare in the general population, i.e.,

ex + Ei+ By Fi+ By X
P(Y; =1E;, Fi, X339y, Bey, Bry: Bxr) = p(vy + fey Bry By X)

- ~ exp(yy + Bey Ei + Bry Fi+Bxy Xi).
1+ exp(yy + Bey Ei + Bry Fi + By X)) ( FY Xy Xi)

(E.9)
Under the rare disease assumption, the distribution of (E;, M;, F;) in controls is approximately equal to

the distribution in the general population. Thus, under models (E.1-E.4)
f(E;, M, F;|Y; =0,X;;0) ~ f(E;, M;, F;|X;;0) = ¢ (E;, M;, F;| X; Mo|x SEMF) (E.10)

where ¢(:| Xi; po)x, Xgarr) is a multivariate normal distribution with mean g x = (1gx, B x, Br x)
and the covariance matrix g . Under models (E.1-E.4) and the distributional assumption about E;,

the mean vectors are

Barix =Y + A (Berve + (Qxr + BerBir) Xi)
pex = Berye + (Qxr + BprBiyr) X,
pEex =ve + BxpX,

and the covariance matrices in X gy p are equal to (B.6-B.8).
The distribution of (E;, M;, F;) in cases under model (E.9) is
f(E;, M;, F;,Y; =1 X;;0)

f(E, M, F,|Y;=1,X;,0) = P, = 11X, ) X0 (Ez‘,Mz’>F7;|X7;;M1|X;EE,M,F) (E.11)
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where px = (MIE|X7 l’l’}mXa M}:p{)/ = (1pix, x> Beix) + Eeur(Bey, 0 Bry)'. We note that the effects
of X; onY; (ie. Bxy) are not included in py x because those parameters appear in both the numerator
and denominator of (E.11) and cancel out. Based on the above approximations, the likelihood for the full

data (El, Mi7 Fz) is

L) = [] ¢(B: My, Fis . Serr) [ 0(Ei Mo, Fi; oy, Seanr) (E.12)

1€Ecase i€controls

and the likelihood for the observed data is therefore easily shown to be

L%(O) = H ¢(Ei>Mi§u'1;M,E|X72M,E> H ¢(EiaMi;.u‘0;M,E\XazM,E)M (E-13)
i€Ecase i€controls
where p,pmx = (N1E'|X7HJI\J|X)7 Mo, M|X = (NE|X,[LM|X), and Xpjr is the appropriate sub-matrix of

Ygar. Under the retrospective likelihoods (E.13 or E.12), both the intercept vy and vector of effects
Bxy are not identifiable. Identifiability of the other parameters follows from Proposition 1 and the form of
the mean vectors. We can estimate the parameters using a similar EM procedure to that initially described

for the scenario without covariates (Web Appendix C).

E.2.1 Matched case-control design

Here, we derive two methods for analyzing case-control data. For simplicity of exposition, we shall assume
“one-to-one“ matching for each case/control pair and we will let E}, M}, F},Y;', X be a vector random
variables for the case and E?, M7, F? Y X? be a vector random variables for the matched control. We

shall assume that we first identify a case and then, based on the matching variables X, select the control.

The first method conditions on there being one case per pair [9] and describes the full likelihood by

Ny
Lf\FJC’C’<0) = Hf(Y;l,MZI’FlI,ES’Y?’M?,F?’E?‘X},X?,Y;l +Y? = 17le = vae)v (E14)
i=1
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which can be rewritten as

L ooy = T[ L0 = LMLFLELY? =0 MELFLEXLXEY! 202 = L XL = XEO)
R PO+ Y2 = 11X1, X7, X = X3;6) |
Under the assumption of a rare outcome
PO+ Y2 = 11X] X2 X! = X%0) ~ PV = 1|X], X2, X! = X7 0)
+P(Y? = 1|X5, X7, X = X7,0) = 2P(Y] = 1|X;, X}, X; = X7;0),
which leads to a likelihood equivalent to that of a retrospective study without matching
Meem 2P(Y = 11X}, X}, X| = X};0) ' '
N1
~ H (B}, M}, F; oy x, Spr)0(E;, M7 F? pox, Spanr)- (E.17)
i=1

Hence, inference on (E.14) is the same as for the retrospective likelihood presented in the previous
section. We note, as discussed by VanderWeele and Tchetgen Tchetgen [13], our likelihood still includes
covariates, X;, because we need to estimate the effect of the exposure on the mediating factors in the
presence of these covariates. The second method for matched case-control study designs takes the
difference between the vector of measurements from the first and second observation within a pair. This
procedure removes the nuisance effects of X 8, and By from the estimation. The vector of differences

(6E;,0M;,0F;) = (E}, M}, F}) — (E?, M?, F?)' is distributed as

(0M;,0F;,0E;) ~ N (3 mr(Bey,0, Bry) 25 0m,r) , (E.18)

and does not contain By and Byp. This approach eliminates the effects of covariates X ;; however, we
prefer the former method for simplicity of description and the potential loss of precision from the reduction

of degrees of freedom.
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Web Appendix F Performance of Procedure: Violations in Model
Assumptions and Alternative Criteria for Model
Selection

We evaluated how our procedure perform when some of the underlying assumptions are violated. Specif-
ically, we considered scenarios where (i) the exposure directly affected the biomarkers (ii) the biomarkers
were not normally distributed (iii) the number of factors was misspecified. We also evaluated how our
procedure would perform if we used alternative criteria for model selection (e.g. BIC, AIC instead of

EBIC). We evaluated performance by simulations.

F.1 Simulations: Set-up

We first evaluated the properties of the procedures when the exposure directly affects individual biomarkers
and those biomarkers, in turn, directly affect the outcome (see Web Figure 1). Our underlying model could

then be described by:
20

G =y + BeyEi + Z 5]\314]-]\4@‘7 (F.1)
j=1
and for these first 20 biomarkers
M;; = B ;B + emg with e ~ N(0,1). (F.2)

We also assumed that F'; and M; are normally distributed:
Fz’ = /BEFEZ + €ri with €ri ™~ N(O, Iq), (F?))
where I, is the ¢ by ¢ identity matrix and for other biomarkers

M; =~y + AF; + e,; with e,,; ~ N(0,V?), U* = diag{v3, ..., V> }. (F.4)
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For these simulations, the first twenty biomarkers were mediators (see Web Figure 1; 55 vy €10.4:-0.3 =
0.12,0.5 - 0.3 = 0.15}, Biy,; € {0.4-03 = 0.12,0.5- 0.3 = 0.15} for j = 1,...,20). Moreover, we
assumed that there were fourteen factors (¢ = 14), each affecting twenty unique biomarkers; the first
four factors were associated only with £ and the last ten factors were associated with neither E nor Y.
Otherwise parameters were similar to those described in the main text: A; € {0.25,0.3}, Ay € {0.4,0.5}
, Bey = 0.3, Bepr1 = .. = Berpa = 0.7, a1 = . = Yup = 05, Y7 = .. =92 =1, 5y = —4.6 (ie.
P(Y =1|E =0,F; =0) =0.01 for binary outcomes), and £ ~ N(0.5,1).

We next evaluated the properties of the procedures when the biomarkers were not normally distributed.
Specifically, we considered two scenarios. For scenario 1, we assumed that the random error (i.e. e, in
equation 4 of the main text) followed a normalized chi-squared distribution: e,,; ~ (1/v/100)x?(df =
50) —50/4/100. For scenario 2, we assumed that the random error followed a standard normal distribution,
but the values were truncated at -1.7 (The &~ 5% of values below -1.7 were set to -1.7.). All other parameters
were identical those described in the main text.

We next evaluated the properties of the procedures when we assumed that number of factors was 20
while, in truth, ¢ = 15. Finally, we compared the properties of the procedure when using AIC or BIC
instead of EBIC.

F.2 Simulations: Results

We describe the properties of the procedures when the biomarkers are directly related to the exposure and
the outcome biomarkers in Web Figures 2 - 4. The key result is that, for all scenarios, IMA outperforms
LMVA, TMAO and TMAR. In most scenarios, LVMA, TMAO and TMAR detect no true positives (i.e.
TP =~ 0). However, we do note that when using AIC for model selection, LVMA successfully detected
some of the mediators.

We describe the properties of the procedures when the biomarkers are not normally distributed in Web
Figures 13 - 18. We note that violations of normality did not affect the results. The power and relative
performance of LVMA was essentially unchanged.

We describe the properties of the procedures when assuming the number of factors is 20 in web Figures
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11 and 12. The performance of all procedures are robust to this misspecification of q.

We describe the properties of the procedures when using alternative criteria for model selection in Web
Figures 5-10. The relative performance of the procedures is the same for all criteria (EBIC, AIC, or BIC),
but the overall performance tends to be higher when using EBIC.

Finally, we use these simulations to highlight a few other observations. Web Figures 8-10 show that
as the effect size increases and the number of TP approaches the maximum of 20, the bias of LVMA in
estimating the conditional effect shrinks towards 0. Web Figures 19 - 21 show that the relative performance

of LVMA in detecting mediators increases when the loadings of the exposure related factors decrease.

Web Appendix G Further Discussion of the Breast Cancer Study

Recall, in the main paper, LVMA identified only a single factor associated with both BMI (BEFl = 0.0045)
and risk of breast cancer (Bpm = 0.23). This factor had 137 non-zero loadings but only 16 of these
loadings had an absolute value larger than 0.4, with the majority of the remaining metabolites having
loadings below 0.01. In Table 1, we list these 16 metabolites. In Web Figure 22, we display loadings for
all metabolites from LVMA.

Here, we consider the results when using the other three methods: TMAO, TMAR and IMA. We
note that neither TMAO or TMAR identified a statistically significant mediating factor and IMA did
not identify statistically significant mediation metabolites. First, we consider TMAO. Web Figure 23
summarizes results for TMAO method with ¢ = 40 factors. All p-values from individually testing each
estimated factors were above 0.05. The most significant p-values (< 0.1) were for factors 1, 6, 9 and
17, (see Web Figure 23a) with, respectively 217, 304, 201, and 178 loadings having a magnitude (i.e.
absolute value) greater than 0 (see Web Figure 23b) and 62, 31, 26 and 14 loadings having a magnitude
larger than 0.2 (see Web Figure 23c). The next most significant factor (factor 8; p = 0.13) most closely
resembled the factor identified by LVMA (see Web Figure 23d). Web Figure 24 summarizes results for
TMAR method with g = 40 fitted factors. Second, we consider TMAR. The results were similar to those
obtained from TMAQO, with six factors having p-values below 0.1 (see Figure 24a). Again, factor 8 closely

resembled the factor discovered by LVMA (see Web Figure 24d) and had a p-value of approximately 0.08.
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Third, we consider IMA. IMA detected eight metabolites with p-value below 0.01 but none of them below
Bonferroni threshold 0.05/481 = 0.0001 (see Web Figure 25 and Web Table 1). Importantly, these findings
reinforce our idea that joint modeling of the latent factors by LVMA can significantly increase the number

of discovered mediators.

26



Web Appendix H Web Figures and Tables

Here, we present following additional figures and tables:

Web Figure 1:
Web Figure 2:

Web Figure 3:

Web Figure 4:

Web Figure 5:

Web Figure 6:

Web Figure 7:

Web Figure 8:

Web Figure 9:

Web Figure 10:

Web Figure 11:

Web Figure 12:

Web Figure 13:

Causal graphs of the simulation models.

Continuous/Binary Outcome, EBIC selection and the exposure directly affects individual
biomarker.

Continuous/Binary Outcome, BIC selection and the exposure directly affects individual
biomarker.

Continuous/Binary Outcome, AIC selection and the exposure directly affects individual
biomarker.

Results for a simulation model with continuous outcome, large factor effects (A\; = 0.3),
N =300 and N = 500. BIC criteria was used.

Results for a simulation model with binary outcome, large factor effects (A\; = 0.3),
N =300 and N = 500. BIC criteria was used.

Results for a simulation model with continuous and binary outcome, small factor effects
(A1 =0.3), N =300 and N = 500. BIC criteria was used.

Results for a simulation model with continuous outcome, large factor effects (A\; = 0.3),
N =300 and N = 500. AIC criteria was used.

Results for a simulation model with binary outcome, large factor effects (A = 0.3),
N =300 and N = 500. AIC criteria was used.

Results for a simulation model with continuous and binary outcome, small factor effects
(A1 =0.3), N =300 and N = 500. AIC criteria was used.

Results for a simulation model with continuous outcome, large factor effects (A; = 0.3),

N =300 and N = 500. Model with ¢ = 20 factors was fitted and EBIC criteria was used.

Results for a simulation model with binary outcome, large factor effects (A, = 0.3),

N =300 and N = 500. Model with ¢ = 20 factors was fitted and EBIC criteria was used.

Results for a simulation model with continuous outcome, non-symmetric and heavy tailed
error. EBIC criteria was used.
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Web Figure 14:

Web Figure 15:

Web Figure 16:

Web Figure 17:

Web Figure 18:

Web Figure 19:

Web Figure 20:

Web Figure 21:

Web Figure 22:

Web Figure 23:

Web Figure 24:

Web Figure 25:

Web Table 1:

Results for a simulation model with binary outcome, non-symmetric and heavy tailed
error. BIC criteria was used.

Results for a simulation model with continuous outcome, non-symmetric and heavy tailed
error. AIC criteria was used.

Results for a simulation model with binary outcome, left truncated error and N = 500.
EBIC criteria was used.

Results for a simulation model with continuous and binary outcomes, left truncated error
and N = 500. BIC criteria was used.

Results for a simulation model with continuous and binary outcomes, left truncated error

and N = 500. AIC criteria was used.

Results for a simulation model with continuous outcome, large factor effects (A\; = 0.3),
small exposure effects on factors (Bgr2 = 0.25), N = 300 and N = 500. EBIC criteria
was used.

Results for a simulation model with binary outcome, large factor effects (A\; = 0.3), small
exposure effects on factors (Bgre = 0.25), N = 300 and N = 500. EBIC criteria was
used.

Results for a simulation model with continuous and binary outcomes, small factor effects
(A1 = 0.25), small exposure effects on factors (Bgp2 = 0.25) and N = 500. EBIC criteria
was used.

Loading affects on metabolites by the factor mediating increased BMI and ER+ breast
cancer in PLCO.

Summary results of TMAO method for detecting factors that mediate increased BMI and
ER+ breast cancer in PLCO.

Summary results of TMAR method for detecting factors that mediate increased BMI and
ER+ breast cancer in PLCO.

Summary results of IMA method for detecting metabolites that mediate increased BMI
and ER+ breast cancer in PLCO.

List of metabolites with p-values below 0.01.
28



Web Table 2: Comparison of computational time of TMAO, TMAR and LVMA.
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H.1 Figures

Web Figure 1: Causal graph of the simulation models. Our model assumes that only first set of 20
biomarkers directly mediate the effect of £ on Y. The first four latent factors are only associated with F
and the remaining ten are associated neither with £ nor Y.

M, e0e M, o000 M,
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Web Figure 2: Continuous/Binary Outcome, EBIC selection and the exposure directly affects
individual biomarker. The panels, labeled a-c, show the average number of true positives (TP), the
average number of false positives (FP), and the average estimate of the direct effect for the four methods
(red=LVMA; blue=TMAO; green=TMAR; purple=IMA) and for four scenarios (A: Bgp1 = 0.12, Ny =
04, B: BEM,I = 0127 /\0 = 057 C: 5EM,1 = 0157 )\0 = 04, D: BEM,I = 0157 )\0 = 05) based on 1000
simulations. Te top panel is for a study with a continuous outcome with N = 500 and the bottom panel
is for a study with binary outcome with N; = Ny = 250 subjects respectively. The whiskers show two
standard errors around the average estimates.

Continuous outcome, N = 500, Large Factor Effects (A; = 0.3), EBIC selection

a) True Positive b) False Positive ¢) Estimate of Conditional Effect
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Web Figure 3: Continuous/Binary Outcome, BIC selection and the exposure directly affects
individual biomarker. The panels, labeled a-c, show the average number of true positives (TP), the
average number of false positives (FP), and the average estimate of the direct effect for the four methods
(red=LVMA; blue=TMAO; green=TMAR; purple=IMA) and for four scenarios (A: Bgp1 = 0.12, Ny =
04, B: BEM,I = 0127 /\0 = 057 C: 5EM,1 = 0157 )\0 = 04, D: BEM,I = 0157 )\0 = 05) based on 1000
simulations. Top panel is for a study with continuous outcome with N = 500 and bottom panel is for a
study with binary outcome with N; = Ny = 250 subjects respectively. The whiskers show two standard
errors around the average estimates.

Continuous outcome, N = 500, Large Factor Effects (A; = 0.3), BIC selection

a) True Positive b) False Positive ¢) Estimate of Conditional Effect
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Web Figure 4: Continuous/Binary Outcome, AIC selection and the exposure directly affects
individual biomarker. The panels, labeled a-c, show the average number of true positives (TP), the
average number of false positives (FP), and the average estimate of the direct effect for the four methods
(red=LVMA; blue=TMAO; green=TMAR; purple=IMA) and for four scenarios (A: Bgp1 = 0.12, Ny =
04, B: BEM,I = 0127 /\0 = 057 C: 5EM,1 = 0157 )\0 = 04, D: BEM,I = 0157 )\0 = 05) based on 1000
simulations. Top panel is for a study with continuous outcome with N = 500 and bottom panel is for a
study with binary outcome with N; = Ny = 250 subjects respectively. The whiskers show two standard
errors around the average estimates.

Continuous outcome, N = 500, Large Factor Effects (A; = 0.3), AIC selection
a) True Positive b) False Positive ¢) Estimate of Conditional Effect
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Web Figure 5: Continuous Outcome and Large Factor Effects (A = 0.3), BIC selection. The
panels, labeled a-c, show the average number of true positives (TP), the average number of false positives
(FP), and the average estimate of the direct effect for the four methods (red=LVMA; blue=TMAO;
green=TMAR; purple=IMA) and for four scenarios (A: fgp1 = 0.4, \g = 0.4; B: Bgr1 = 0.4, Ay = 0.5; C:
Ber1 = 0.5, \g = 0.4; D: Bgr1 = 0.5, A\g = 0.5) based on 1000 simulations. Top and bottom panel are for
studies with N = 300 and N = 500 subjects respectively. The whiskers show two standard errors around
the average estimates.

Continuous outcome, N = 300, BIC selection
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Web Figure 6: Binary Outcome and Large Factor Effects (A = 0.3), BIC selection. The panels,
labeled a-c, show the average number of true positives (TP), the average number of false positives (FP), and
the average estimate of the direct effect for the four methods (red=LVMA; blue=TMAO; green=TMAR;
purple=IMA) and for four scenarios (A: Bgr1 = 0.4, Ao = 0.4; B: Bgp1 = 0.4, \g = 0.5; C: Bgp1 = 0.5,
Ao = 0.4; D: Bgr1 = 0.5, A\g = 0.5) based on 1000 simulations. Top and bottom panel are for studies with
N = 300 and N = 500 subjects respectively. The whiskers show two standard errors around the average

estimates.
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Web Figure 7: Small Factor Effects (A, = 0.25), BIC selection. The panels, labeled a-c, show the
average number of true positives (TP), the average number of false positives (FP), and the average estimate
of the direct effect for the four methods (red=LVMA; blue=TMAO; green=TMAR; purple=IMA) and for
four scenarios (A 5EF,1 = 047 )\0 = 04, B: /BEF,I = 047 )\0 = 05, C: BEF,I = 05, )\0 = 04, D: BEF,I = 05,
Ao = 0.5) based on 1000 simulations. Top and bottom panel are for studies with continuous and binary
outcomes, respectively. The whiskers show two standard errors around the average estimates.
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Web Figure 8: Continuous Outcome and Large Factor Effects (A\; = 0.3), AIC selection. The
panels, labeled a-c, show the average number of true positives (TP), the average number of false positives
(FP), and the average estimate of the direct effect for the four methods (red=LVMA; blue=TMAO;
green=TMAR; purple=IMA) and for four scenarios (A: fgp1 = 0.4, \g = 0.4; B: Bgr1 = 0.4, Ay = 0.5; C:
Ber1 = 0.5, Ao = 0.4; D: Bgr1 = 0.5, A\g = 0.5) based on 1000 simulations. Top and bottom panel are for
studies with N = 300 and N = 500 subjects respectively. The whiskers show two standard errors around
the average estimates.
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Web Figure 9: Binary Outcome and Large Factor Effects (A\; = 0.3), AIC selection. The panels,
labeled a-c, show the average number of true positives (TP), the average number of false positives (FP), and
the average estimate of the direct effect for the four methods (red=LVMA; blue=TMAO; green=TMAR;
purple=IMA) and for four scenarios (A: Bgr1 = 0.4, Ao = 0.4; B: Bgp1 = 0.4, \g = 0.5; C: Bgp1 = 0.5,
Ao = 0.4; D: Bgr1 = 0.5, A\g = 0.5) based on 1000 simulations. Top and bottom panel are for studies with
N = 300 and N = 500 subjects respectively. The whiskers show two standard errors around the average
estimates.
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Web Figure 10: Small Factor Effects (\; = 0.25), AIC selection. The panels, labeled a-c, show the
average number of true positives (TP), the average number of false positives (FP), and the average estimate
of the direct effect for the four methods (red=LVMA; blue=TMAO; green=TMAR; purple=IMA) and for
four scenarios (A 5EF,1 = 047 )\0 = 04, B: /BEF,I = 047 )\0 = 05, C: BEF,I = 05, )\0 = 04, D: BEF,I = 05,
Ao = 0.5) based on 1000 simulations. Top and bottom panel are for studies with continuous and binary
outcomes, respectively. The whiskers show two standard errors around the average estimates.
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Web Figure 11: Continuous Outcome and Large Factor Effects (\; = 0.3), EBIC selection and
fitted ¢ = 20 factors. The panels, labeled a-c, show the average number of true positives (TP), the
average number of false positives (FP), and the average estimate of the direct effect for the four methods
(red=LVMA; blue=TMAO; green=TMAR; purple=IMA) and for four scenarios (A: Sgr1 = 0.4, A\g = 0.4;
B: Bgr1 = 0.4, Ao = 0.5; C: Bgp1 = 0.5, A\g = 0.4; D: Bgp1 = 0.5, Ay = 0.5) based on 1000 simulations.
Top and bottom panel are for studies with N = 300 and N = 500 subjects respectively. The whiskers show
two standard errors around the average estimates.
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Web Figure 12: Binary Outcome and Large Factor Effects (\; = 0.3), EBIC selection and
fitted ¢ = 20 factors. The panels, labeled a-c, show the average number of true positives (TP), the
average number of false positives (FP), and the average estimate of the direct effect for the four methods
(red=LVMA; blue=TMAO; green=TMAR; purple=IMA) and for four scenarios (A: Sgr1 = 0.4, A\g = 0.4;
B: Bgr1 = 0.4, Ao = 0.5; C: Bgp1 = 0.5, A\g = 0.4; D: Bgp1 = 0.5, Ay = 0.5) based on 1000 simulations.
Top and bottom panel are for studies with N = 300 and N = 500 subjects respectively. The whiskers show
two standard errors around the average estimates.

Binary outcome, N1 = Ny = 150, EBIC selection, ¢ = 20
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Web Figure 13: Continuous/Binary Outcome, non-symmetric and heavy tailed error in
biomarker, EBIC selection. The panels, labeled a-c, show the average number of true positives (TP),
the average number of false positives (FP), and the average estimate of the direct effect for the four methods
(red=LVMA; blue=TMAO; green=TMAR; purple=IMA) and for four scenarios (A: Sgr1 = 0.4, A\g = 0.4;
B: 5EF,1 = 04, )\0 = 05, C: /BEF,I = 05, )\0 = 04, D: BEF,I = 05, /\0 = 05) based on 1000 simulations.
Top panel is for a study with continuous outcome with N = 500 and bottom panel is for a study with
binary outcome with Ny = Ny = 250 subjects respectively. The whiskers show two standard errors around
the average estimates.
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Web Figure 14: Continuous/Binary Outcome, non-symmetric and heavy tailed error in
biomarker, BIC selection. The panels, labeled a-c, show the average number of true positives (TP), the
average number of false positives (FP), and the average estimate of the direct effect for the four methods
(red=LVMA; blue=TMAO; green=TMAR; purple=IMA) and for four scenarios (A: Sgr1 = 0.4, A\g = 0.4;
B: 5EF,1 = 04, )\0 = 05, C: /BEF,I = 05, )\0 = 04, D: BEF,I = 05, /\0 = 05) based on 1000 simulations.
Top panel is for a study with continuous outcome with N = 500 and bottom panel is for a study with
binary outcome with Ny = Ny = 250 subjects respectively. The whiskers show two standard errors around
the average estimates.

Continuous outcome, N = 500, Large Factor Effects (A; = 0.3), BIC selection
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Web Figure 15: Continuous/Binary Outcome, non-symmetric and heavy tailed error in
biomarker, AIC selection. The panels, labeled a-c, show the average number of true positives (TP), the
average number of false positives (FP), and the average estimate of the direct effect for the four methods
(red=LVMA; blue=TMAO; green=TMAR; purple=IMA) and for four scenarios (A: Sgr1 = 0.4, A\g = 0.4;
B: 5EF,1 = 04, )\0 = 05, C: /BEF,I = 05, )\0 = 04, D: BEF,I = 05, /\0 = 05) based on 1000 simulations.
Top panel is for a study with continuous outcome with N = 500 and bottom panel is for a study with
binary outcome with Ny = Ny = 250 subjects respectively. The whiskers show two standard errors around
the average estimates.

Continuous outcome, N = 500, Large Factor Effects (A; = 0.3), AIC selection
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Web Figure 16: Continuous/Binary Outcome and left truncated error in biomarker, EBIC
selection. The panels, labeled a-c, show the average number of true positives (TP), the average number
of false positives (FP), and the average estimate of the direct effect for the four methods (red=LVMA;
blue=TMAO; green=TMAR; purple=IMA) and for four scenarios (A: Bgr1 = 0.4, \g = 0.4; B: fgp1 = 0.4,
Mo = 0.5; C: Bgpy = 0.5, \g = 0.4; D: Bgp1 = 0.5, \g = 0.5) based on 1000 simulations. Top panel is
for a study with continuous outcome with N = 500 and bottom panel is for a study with binary outcome
with N7 = Ny = 250 subjects respectively. The whiskers show two standard errors around the average
estimates.

Continuous outcome, N = 500, Large Factor Effects (A; = 0.3), EBIC selection
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Web Figure 17: Continuous/Binary Outcome and left truncated error in biomarker, BIC se-
lection. The panels, labeled a-c, show the average number of true positives (TP), the average number
of false positives (FP), and the average estimate of the direct effect for the four methods (red=LVMA;
blue=TMAO; green=TMAR; purple=IMA) and for four scenarios (A: Bgr1 = 0.4, \g = 0.4; B: fgp1 = 0.4,
Mo = 0.5; C: Bgpy = 0.5, \g = 0.4; D: Bgp1 = 0.5, \g = 0.5) based on 1000 simulations. Top panel is
for a study with continuous outcome with N = 500 and bottom panel is for a study with binary outcome
with N7 = Ny = 250 subjects respectively. The whiskers show two standard errors around the average
estimates.

Continuous outcome, N = 500, Large Factor Effects (A; = 0.3), BIC selection
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Web Figure 18: Continuous/Binary Outcome and left truncated error in biomarker, AIC se-
lection. The panels, labeled a-c, show the average number of true positives (TP), the average number
of false positives (FP), and the average estimate of the direct effect for the four methods (red=LVMA;
blue=TMAO; green=TMAR; purple=IMA) and for four scenarios (A: Bgr1 = 0.4, \g = 0.4; B: fgp1 = 0.4,
Mo = 0.5; C: Bgpy = 0.5, \g = 0.4; D: Bgp1 = 0.5, \g = 0.5) based on 1000 simulations. Top panel is
for a study with continuous outcome with N = 500 and bottom panel is for a study with binary outcome
with N7 = Ny = 250 subjects respectively. The whiskers show two standard errors around the average
estimates.

Continuous outcome, N = 500, Large Factor Effects (A; = 0.3), AIC selection
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Web Figure 19: Continuous Outcome and Large Factor Effects (A\; = 0.3), EBIC selection and
Small Exposure Effects (fgr2 = 0.4). The panels, labeled a-c, show the average number of true
positives (TP), the average number of false positives (FP), and the average estimate of the direct effect
for the four methods (red=LVMA; blue=TMAO; green=TMAR; purple=IMA) and for four scenarios (A:
BEF,I = 04, /\0 = 04, B: BEF,I = 04, )\0 = 05, C: ﬂEF,l = 05, )\0 = 04, D: BEF,I = 05, )\0 = 05) based on
1000 simulations. Top and bottom panel are for studies with N = 300 and N = 500 subjects respectively.
The whiskers show two standard errors around the average estimates.
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Web Figure 20: Binary Outcome and Large Factor Effects (A\; = 0.3), EBIC selection and Small
Exposure Effects (Sgr2 = 0.4). The panels, labeled a-c, show the average number of true positives
(TP), the average number of false positives (FP), and the average estimate of the direct effect for the four
methods (red=LVMA; blue=TMAOQO; green=TMAR; purple=IMA) and for four scenarios (A: Sgr1 = 0.4,
Ao = 0.4; B: Bgp1 = 04, \g = 0.5; C: Bpp1 = 0.5, A\g = 0.4; D: Bgp1 = 0.5, Ay = 0.5) based on 1000
simulations. Top and bottom panel are for studies with N = 300 and N = 500 subjects respectively. The
whiskers show two standard errors around the average estimates.

Binary outcome, N1 = Ny = 150, EBIC selection
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Web Figure 21: Small Factor Effects (A, = 0.25), EBIC selection and Small Exposure Effects
(Ber2 = 0.4). The panels, labeled a-c, show the average number of true positives (TP), the average number
of false positives (FP), and the average estimate of the direct effect for the four methods (red=LVMA;
blue=TMAOQO; green=TMAR; purple=IMA) and for four scenarios (A: Bgr1 = 0.4, \g = 0.4; B: fgp1 = 0.4,
Ao = 0.5; C: Bgp1 = 0.5, A\g = 0.4; D: Bgp1 = 0.5, Ao = 0.5) based on 1000 simulations. Top and bottom
panel are for studies with continuous and binary outcomes, respectively (N = 500). The whiskers show
two standard errors around the average estimates.

Continuous outcome, N = 500, EBIC selection
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Web Figure 22: Metabolites Linking BMI and Breast Cancer. These figures include
metabolites by the factor mediating increased BMI and ER+ breast cancer in PLCO.
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Web Figure 23: Summary for TMAO. Summary results for TMAO method with ¢, = 40 fitted factor.

P-values are calculated using Sobel’s test on estimated factors.
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Web Figure 24: Summary for TMAR. Summary results for TMAR method with ¢, = 40 fitted factor.

P-values are calculated using Sobel’s test on estimated factors.
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Web Figure 25: Summary for IMA. IMA’s p-values are calculated using Sobel’s test on each metabolite.
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Web Table 1: Metabolites Linking BMI and Breast Cancer. This list includes those metabolites
with p-values from Sobel’s test below 0.01.

Metabolite Loading (\;;)
16a-hydroxy DHEA 3-sulfate 0.003
3-methyl-2-oxobutyrate 0.002
3- methylglutarylcarnitine 0.003
4-androsten-33, 17-5-diol disulfate (2) 0.009
4-androsten-33, 17-3-diol disulfate (1) 0.007
Allo-isoleucine 0.003
~v-glutamylvaline 0.006
Urate 0.003

Web Table 2: Comparison of computational time.

Number of Factors TMAO TMAR LVMA

15 24 min 24 min 10hr
20 33 min 32 min 12hr
40 1:12hr  1:10hr 26hr
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